跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/25 00:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林夏妘
研究生(外文):Hsia-Yun Lin
論文名稱:運用Twitter推文辨識商品特徴與使用者情緒之關係
論文名稱(外文):Applying Twitter Data to Identity the Relationship between Product Characteristics and User Emotions
指導教授:許雯絞許雯絞引用關係駱榮問駱榮問引用關係
指導教授(外文):Wen-Chiao HsuJung-Wen Lo
學位類別:碩士
校院名稱:國立臺中科技大學
系所名稱:資訊管理系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:40
中文關鍵詞:使用者情感商品特徵值自然語言處理Twitter
外文關鍵詞:User Emotionsproduct characteristicsNLPTwitter
相關次數:
  • 被引用被引用:1
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來社群網路平台普及,消費者不再是單向被動接受資訊。在社群平台上使用者可以自行創造粉絲圈/追隨者,在平台上與粉絲相互交換訊息資料。Twitter 訊息傳播快速,影響力也很大,推文在沒有設定隱私的功能時,所有的推文是公開可以獲取。另外使用者發文時主要在傳播消息、知識、和有興趣的事,Twitter大量的海內外文本數據集,提供很好的數據集資料。這些大量文字內容具有研究與商業價值,經由文字探勘,可以挖掘出其中潛在內涵,提供另一種市場調查方式,給予企業行銷時多一份參考依據,企業有更多的市場資料參考來源更能幫助其決策方案的制定。

藉由語意分析在推文中找出商品特徵值,再結合文字情感分析,賦予情感的色彩,分析使用者對商品特徵值的好感度,之後再轉為李克氏五點量表,藉此能夠了解使用者對該商品特徵值的滿意度,進而發掘客戶的需求,提供另一個市場問卷調查方式,在進行市場開發時可以多一個決策考量依據,進而調整行銷策略方向。本研究中以巧克力商品做為實驗項目,並探討在不同區域市場中商品特徵值與其喜好程度的差異性,可以做為市場區隔與行銷的參考。
Social networks, such as Facebook, Twitter, and Instagram, are most popular in a decade. Consumers are no longer received product information in single way. For example, users can gather their followers or fans and swap products information on social media. Twitter disseminates information quickly, as well as influence effect. When there is no privacy setting for tweets, all tweets are publicly available. The posted tweets are shared information, knowledge, and interested things. The global information of Twitter datasets provided big data for data mining. Those big data also have commercial value. We can use those data not only to give a new method of market survey, but also to provide company more information to make selling plan and market promotion.

This study adopted NLP (Natural-Language-Processing) and TF-IDF (Term Frequency-Inverse Document Frequency) to find out potential characters of specific product through twitter. Sentiment analysis is used to detect the emotions of sentence. Also, we use Likert Five-Point Scale to detect the satisfaction of product characters. Finally, comparing the relationship between characteristics and emotions, the users’ satisfaction with a product in various characteristics can be found. It is expected that the results of this research can be used as a reference for product market research. In this study, chocolate is used as experimental item, and the differences in product characteristic values and their preferences in different regional markets are discussed, which can be used as a reference for market segmentation and marketing.
摘要 i
ABSTRACT ii
誌謝 iii
目次 iv
表目次 v
圖目次 vi
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 研究的貢獻 3
第四節 章節概要 3
第二章 文獻探討 4
第一節 情感分析Sentiment Analysis 4
第二節 Twitter 與其價值 5
第三節 TF-IDF 7
第三章 研究方法 9
第一節 研究架構 9
第二節 研究步驟 11
3-2-1資料預處理 11
3-2-2資料分析 13
第三節 結果探討 18
第四章 實驗結果與分析 19
第一節 實驗資料集 19
第二節 研究分析 20
4-2-1 TF-IDF分析 20
第三節 商品特徵值與使用者情緒分析 23
第五章 結論 35
第一節 結論 35
第二節 貢獻 35
第三節 研究限制與未來研究方向 36
參考文獻 37
[1]游綉雯(2015),使用情緒分析於社群論壇消費者評論滿意度評估之研究-以TripAdvisor 旅遊網站為例,台灣博碩士論文知識加值系統,1-63。
[2]王淳儀(2017),提升網路問卷調查效度的探索研究,台灣博碩士論文知識加值系統,1-42。
[3]Wu, H., Zha, S., & Li, L.(2013). Social media competitive analysis and text mining: A case study in the pizza industry. International Journal of Information Management, 464-472.
[4]Amado, A., Cortez, P., Rita, P., & Moro, S. (2018). Research trends on Big Data in Marketing: A text mining and topic modeling based literature analysis. European Research on Management and Business Economics, 1-7.
[5]Arora, A., Bansal, S., Kandpal, C., Aswani, R., & Dwivedi, Y. (2019). Measuring social media influencer index- insights from facebook, Twitter and Instagram. Journal of Retailing and Consumer Services, 86-101.
[6]內政部統計處自行研究報告(2017),挖掘網路世界的文字寶藏-文字探勘與民意調查結合應用,1-56。
[7]李亭宜(2017),運用Twitter數據分析消費者情緒與品牌價值關係之研究,台灣博碩士論文知識加值系統,,1-98。
[8]Ireland, R., & Liu, A. (2018). Application of data analytics for product design: Sentiment analysis of online product reviews. CIRP Journal of Manufacturing Science and Technology, 128-144.
[9]許家銘(2017),情感分析應用於社群媒體輿論分析之研究,台灣博碩士論文知識加值系統,1-46。
[10]陳怡妏(2018),賽事語意及情感分析在運動行銷的應用-以羽球為例,台灣博碩士論文知識加值系統,1-78。
[11] Sun, Y., Wang, Z., Zhang. B., Zhao, W., & Xu, F. (2020), Residents'' sentiments
towards electricity price policy: Evidence from text mining in social media,Resources, Conservation & Recycling. 1-9。
[12]El-Diraby, T., Shalaby, A., & Hosseini, M. (2019). Linking social, semantic and sentiment analyses to support modeling transit customers’ satisfaction: Towards formal study of opinion dynamics. Sustainable Cities and Society, 1-14.
[13]Lawani, A., Reed, M. R., Mark, T., & Zheng, Y. (2019). Reviews and price on online platforms: Evidence from sentiment analysis of Airbnb reviews in Boston. Regional Science and Urban Economics, 22-34.
[14]陳安怡(2016),運用文字探勘及情緒分析技術發展店家品項評價模組,台灣博碩士論文知識加值系統,1-54。
[15]王櫻蒨(2018),從線上評論發掘遊客關注度與情感分析-以觀光工廠為例,台灣博碩士論文知識加值系統,1-32。
[16]Ngoc, P. T., & Yoo, M. (2014). The Lexicon-based Sentiment Analysis for Fan Page Ranking in Facebook. The International Conference on Information Networking 2014 (ICOIN 2014), Phuket, Thailand, 444-448.
[17]吳秉勳(2015),以字典為基礎之雲端情感分析方法,台灣博碩士論文知識加值系統,1-103。
[18]M.Al-Daihani, S., & Abrahams, A. (2016). A Text Mining Analysis of Academic Libraries'' Tweets. The Journal of Academic Librarianship, 135-143.
[19]Yu, Y., & Wang, X. (2015). World Cup 2014 in the Twitter World: A big data analysis of sentiments in U.S. sports fans’ tweets. Computers in Human Behavior, 392-400.
[20]Sailunaz, K., & Alhajj, R. (2019). Emotion and sentiment analysis from Twitter text. Journal of Computational Science, 1-41.
[21]Plunz, R. A., Zhou, Y. , Vintimilla, M. I. C., Mckeown, K., Yu, T., Uguccioni, L., & Sutto, M. P. (2019). Twitter sentiment in New York City parks as measure of well-being. Landscape and Urban Planning, 235–246.
[22]Figueiredo, F., & Jorge, A. (2019). Identifying topic relevant hashtags in Twitter streams. Information Sciences, 65-83.
[23]Salloum, S. A., Al-Emran, M., Monem, A. A., & Shaalan, K. (2017). A Survey of Text Mining in Social Media: Facebook and Twitter Perspectives. Advances in Science, Technology and Engineering Systems Journal, 127-133.
[24]Majumdar, A., & Bose, I. (2019). Do tweets create value? A multi-period analysis of Twitter use and content of tweets for manufacturing firms. International Journal of Production Economics, 1-11.
[25]Liu, X., Shin, H., & Burns, A. C. (2019). Examining the impact of luxury brand''s social media marketing on customer engagement: Using big data analytics and natural language processing. Journal of Business Research, 1-12.
[26]Lim, S., & Tucker, C.S., (2019). Mining Twitter data for causal links between tweets and real-world outcomes. Expert Systems with Applications: X, 1-17.
[27]Number of monthly active Twitter users worldwide from 1st quarter 2010 to 1st quarter 2019. Available: https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/
[28]Kusen, E., & Strembeck, M. (2018). Politics, sentiments, and misinformation: An analysis of the Twitter discussion on the 2016 Austrian Presidential Elections. Online Social Networks and Media, 37-50.
[29]亞紹克(2017),基於情緒分析對於社群網路上之諷刺的文本偵測,台灣博碩士論文知識加值系統,1-49。
[30]Ibrahim, N. F., & Wang, X. (2019). A text analytics approach for online retailing service improvement: Evidence from Twitter. Decision Support Systems, 37-50.
[31]Luis, M. D., Juan, C. M., & Glen, M. (2019). Social media as a resource for sentiment analysis of Airport Service Quality (ASQ). Journal of Air Transport Management, 106-115.
[32] Seo, S., Seo, D., Jang, M., Jeong, J. & Kang,. P. (2019). Unusual customer response identification and visualization base on text mining and anomaly detection. Expert Systems with Applications, 1-12.
[33]Djavan, D.C., Wen,Z., & Song,Q. (2019). Innovation hotspots in food waste treatment,biogas, and anaerobic digestion technology: A natural language processing approach. Science of the Total Environment, 402-413.
[34]Kaleel,S.B., & Abhari, A. (2015). Cluster-discovery of Twitter messages for event detection and trending. Journal of Computational Science, 47-57.
[35]林君儒(2017),基於卷積神經網路的電影海報概念分析,台灣博碩士論文知識加值系統,1-45。
[36]Borruto, G. (2015). Analysis of tweets in Twitter. Webology, 1-11.
[37]佐. 拓郎(2017),大數據時代一定要會的自動化資料搜集術 データを集める技術 Techniques of collecting Data,旗標科技股份有限公。
[38]黎桂如(2019),應用歌手辨識及角色標注於輿情意見目標分析之研究,台灣博碩士論文知識加值系統,1-57。
電子全文 電子全文(網際網路公開日期:20250825)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊