[1]游綉雯(2015),使用情緒分析於社群論壇消費者評論滿意度評估之研究-以TripAdvisor 旅遊網站為例,台灣博碩士論文知識加值系統,1-63。[2]王淳儀(2017),提升網路問卷調查效度的探索研究,台灣博碩士論文知識加值系統,1-42。[3]Wu, H., Zha, S., & Li, L.(2013). Social media competitive analysis and text mining: A case study in the pizza industry. International Journal of Information Management, 464-472.
[4]Amado, A., Cortez, P., Rita, P., & Moro, S. (2018). Research trends on Big Data in Marketing: A text mining and topic modeling based literature analysis. European Research on Management and Business Economics, 1-7.
[5]Arora, A., Bansal, S., Kandpal, C., Aswani, R., & Dwivedi, Y. (2019). Measuring social media influencer index- insights from facebook, Twitter and Instagram. Journal of Retailing and Consumer Services, 86-101.
[6]內政部統計處自行研究報告(2017),挖掘網路世界的文字寶藏-文字探勘與民意調查結合應用,1-56。
[7]李亭宜(2017),運用Twitter數據分析消費者情緒與品牌價值關係之研究,台灣博碩士論文知識加值系統,,1-98。[8]Ireland, R., & Liu, A. (2018). Application of data analytics for product design: Sentiment analysis of online product reviews. CIRP Journal of Manufacturing Science and Technology, 128-144.
[9]許家銘(2017),情感分析應用於社群媒體輿論分析之研究,台灣博碩士論文知識加值系統,1-46。[10]陳怡妏(2018),賽事語意及情感分析在運動行銷的應用-以羽球為例,台灣博碩士論文知識加值系統,1-78。[11] Sun, Y., Wang, Z., Zhang. B., Zhao, W., & Xu, F. (2020), Residents'' sentiments
towards electricity price policy: Evidence from text mining in social media,Resources, Conservation & Recycling. 1-9。
[12]El-Diraby, T., Shalaby, A., & Hosseini, M. (2019). Linking social, semantic and sentiment analyses to support modeling transit customers’ satisfaction: Towards formal study of opinion dynamics. Sustainable Cities and Society, 1-14.
[13]Lawani, A., Reed, M. R., Mark, T., & Zheng, Y. (2019). Reviews and price on online platforms: Evidence from sentiment analysis of Airbnb reviews in Boston. Regional Science and Urban Economics, 22-34.
[14]陳安怡(2016),運用文字探勘及情緒分析技術發展店家品項評價模組,台灣博碩士論文知識加值系統,1-54。[15]王櫻蒨(2018),從線上評論發掘遊客關注度與情感分析-以觀光工廠為例,台灣博碩士論文知識加值系統,1-32。[16]Ngoc, P. T., & Yoo, M. (2014). The Lexicon-based Sentiment Analysis for Fan Page Ranking in Facebook. The International Conference on Information Networking 2014 (ICOIN 2014), Phuket, Thailand, 444-448.
[17]吳秉勳(2015),以字典為基礎之雲端情感分析方法,台灣博碩士論文知識加值系統,1-103。[18]M.Al-Daihani, S., & Abrahams, A. (2016). A Text Mining Analysis of Academic Libraries'' Tweets. The Journal of Academic Librarianship, 135-143.
[19]Yu, Y., & Wang, X. (2015). World Cup 2014 in the Twitter World: A big data analysis of sentiments in U.S. sports fans’ tweets. Computers in Human Behavior, 392-400.
[20]Sailunaz, K., & Alhajj, R. (2019). Emotion and sentiment analysis from Twitter text. Journal of Computational Science, 1-41.
[21]Plunz, R. A., Zhou, Y. , Vintimilla, M. I. C., Mckeown, K., Yu, T., Uguccioni, L., & Sutto, M. P. (2019). Twitter sentiment in New York City parks as measure of well-being. Landscape and Urban Planning, 235–246.
[22]Figueiredo, F., & Jorge, A. (2019). Identifying topic relevant hashtags in Twitter streams. Information Sciences, 65-83.
[23]Salloum, S. A., Al-Emran, M., Monem, A. A., & Shaalan, K. (2017). A Survey of Text Mining in Social Media: Facebook and Twitter Perspectives. Advances in Science, Technology and Engineering Systems Journal, 127-133.
[24]Majumdar, A., & Bose, I. (2019). Do tweets create value? A multi-period analysis of Twitter use and content of tweets for manufacturing firms. International Journal of Production Economics, 1-11.
[25]Liu, X., Shin, H., & Burns, A. C. (2019). Examining the impact of luxury brand''s social media marketing on customer engagement: Using big data analytics and natural language processing. Journal of Business Research, 1-12.
[26]Lim, S., & Tucker, C.S., (2019). Mining Twitter data for causal links between tweets and real-world outcomes. Expert Systems with Applications: X, 1-17.
[27]Number of monthly active Twitter users worldwide from 1st quarter 2010 to 1st quarter 2019. Available: https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/
[28]Kusen, E., & Strembeck, M. (2018). Politics, sentiments, and misinformation: An analysis of the Twitter discussion on the 2016 Austrian Presidential Elections. Online Social Networks and Media, 37-50.
[29]亞紹克(2017),基於情緒分析對於社群網路上之諷刺的文本偵測,台灣博碩士論文知識加值系統,1-49。[30]Ibrahim, N. F., & Wang, X. (2019). A text analytics approach for online retailing service improvement: Evidence from Twitter. Decision Support Systems, 37-50.
[31]Luis, M. D., Juan, C. M., & Glen, M. (2019). Social media as a resource for sentiment analysis of Airport Service Quality (ASQ). Journal of Air Transport Management, 106-115.
[32] Seo, S., Seo, D., Jang, M., Jeong, J. & Kang,. P. (2019). Unusual customer response identification and visualization base on text mining and anomaly detection. Expert Systems with Applications, 1-12.
[33]Djavan, D.C., Wen,Z., & Song,Q. (2019). Innovation hotspots in food waste treatment,biogas, and anaerobic digestion technology: A natural language processing approach. Science of the Total Environment, 402-413.
[34]Kaleel,S.B., & Abhari, A. (2015). Cluster-discovery of Twitter messages for event detection and trending. Journal of Computational Science, 47-57.
[35]林君儒(2017),基於卷積神經網路的電影海報概念分析,台灣博碩士論文知識加值系統,1-45。[36]Borruto, G. (2015). Analysis of tweets in Twitter. Webology, 1-11.
[37]佐. 拓郎(2017),大數據時代一定要會的自動化資料搜集術 データを集める技術 Techniques of collecting Data,旗標科技股份有限公。
[38]黎桂如(2019),應用歌手辨識及角色標注於輿情意見目標分析之研究,台灣博碩士論文知識加值系統,1-57。