A lHanai T,Ghassemi M M. (2017). Predicting latent narrative mood using audio and physiological data. AAAI.
A. Labrinidis and H. V. Jagadish. (2012). Challenges and opportunities with big data. Proc. VLDB Endowment, pp. 2032-2033.
A. Vera-Baquero, R. Colomo-Palacios, O. Molloy. (2014). Towards a process to guide big data based decision support systems for business processes, Procedia Technol. 11–21.
Al Hanai T,Ghassemi M M. (2017). Predicting Latentnarrativemood using audioand physiologic data. AAAI .
Alaoui, Gahi. (2019). The Impact of Big Data Quality on Sentiment Analysis Approaches. Procedia Computer Science 160, (pp. 803-810).
Amir Gandomi, Murtaza Haider. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, (pp. 137–144).
Anderson, Eric T. and Duncan Simester. (2003). “Effects of $9 Price Endingson Retail Sales: Evidence from Field Experiments,”. Quantitative Marketingand Economics, pp. 93–110.
Anderson, J. L. , Jolly, L. D. , & Fairhurst, A. E. (2007). Customer relationship manage- ment in retailing: A content analysis of retail trade journals. Journal of Retailing and Consumer Services, 394–399.
Andreas M. Kaplan , Michael Haenlein. (2010). Users of the world, unite! The challenges and. Business Horizons , 53, pp. 59—68.
Avita Katal, Mohammad Wazid, R. H. Gouder. (n.d.). Big Data: Issues, Challenges, Tools and Good Practices,. 13(1).
B. Brown, M. Chui, J. Manyika. (2011). Are you ready for the era of ‘big data’. McKinsey Q. 4, 24–35.
B. Fang, P. Zhang. (2016). Big data in finance, Big Data Concepts, Theories, and Applications. Springer, 391–412.
Bagozzi RP,Gopinath,NyaPU. (1999). The roleofemotionsin marketing. Acad.Mark.Sci., 27, 184-206.
Bagozzi RP,GopinathM,NyerPU. (1999,). The roleofemotionsin marketing. J. Acad.Mark.Sci., 184-20.
Barbier, G., & Liu, H. (2011). Data mining in social media. Social network data analytics, (pp. 327–352).
Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J.,. (1984). Classification and Regression Trees. , . Monterey:Wadsworth and Brooks/Cole.
Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics:Form big data to big impact. MIS Quarterly, pp. 1165–1188.
Chung, W. (2014). Biz Pro: Extracting and categorizing business intelligence fac-tors from textual news articles. International Journal of Information Management, 272–284.
Cowie R, Douglas-CowieE, Savvidou, McMahonE, SaweyM, Schro¨ der M. (2000). FEELTRACE:Aninstrumentforrecording perceived emotioninrealtime. ISCA TutorialandResearch Workshop (ITRW)onSpeechandEmotion.
Cowie R,Douglas-CowieE,Savvidou,McMahon E,Sawey M. (2000). Aninstrumentforrecording perceived emotion realtime. ISCA Tutorial and Research Workshop (ITRW)on Speech and Emotion.
Daft, R. L., & Lengel, R. H. (1986). Organizational information. Management Science, 35(5), pp. 554-571.
Davenport, T. H. (2012). Enterprise analytics: Optimize performance, process, and deci-sions through big data. Upper Saddle River, New Jersey: FT Press OperationsManagement.
Dekimpe, Marnik G. and Dominique M. Hanssens. (2000). “Time-series Modelsin Marketing: Past, Present and Future”. International Journal of Researchin Marketing, 17(2), pp. 183–93.
Dietrich, B. L., Plachy, E. C., & Norton, M. F. (n.d.). Analytics across the enterprise: How IBM realizes business value from big data and analytics. Financial Times Prentice. Hall, IBM press.
Faasse, R. E. M., Helms, R. W., & Spruit, M. R. (2011). Web 2.0 in the CRM domain: Defining social CRM. International Journal of Electronic Customer Relationship Management,, 5(1), 1–22.
Fan, S., Lau, R. Y. K., & Zhao, J. L. (2015). Demystifying Big Data analytics for business intelligence through the lens of marketing mix. Retrieved from Big Data Research.: http://doi.org/10.1016/j.bdr.2015.02.006.
Fosso Wamba, S. A. (2015). How “big data” can make big impact: Findings from a systematic review and a longitudinal. International Journal of Production Economics, 165, 234–246.
Fosso Wamba, S., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How “big data” can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234–246. .
Fosso Wamba, S., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How “big data” can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234–246.
Gartner. (2016, 10 31). Gartner Says 6.4 Billion Connected Things WillBe in Use in 2016, Up 30 Percent From 2015. Retrieved from Gartner PressRelease: http://www.gartner.com/newsroom/id/3165317
GemaBello-Orgaz,JasonJ.Jung,∗,DavidCamacho. (2016). Socialbigdata:Recentachievementsandnewchallenges. Information Fusion, (pp. 45–59).
Goffman, E. (1959). The presentation of self in everyday life. New York: Doubleday Anchor Books.
Goldsmith, R., Horowitz, D. (2006). Measuring motivations for online opinion seeking. Interact. Advert, 6(2), 1–16.
Greenberg, P. (2010). The impact of CRM 2.0 on customer insight. Journal of Business & Industrial Marketing, 25(6), 410–419.
Gregory T.Bradley,Elizabeth K.LaFleur. (2016). Toward the development of hedonic-utilitarian measures of retail service. Journal of Retailing and Consumer Services.
Gupta, Sunil, Dominique Hanssens, Bruce Hardie, Wiliam Kahn, V. Kumar,Nathaniel Lin, Nalini Ravishanker and S. Sriram. (2006). Modeling Cus-tomer Lifetime Value. Journal of Service Research, 9(2), pp. 139–55.
H.KimG.J.,Koehler. (1995). Theory and practice of decision tree induction. Omega.
Hauser JR,UrbanGL,LiberaliG. (2009). BraunM: Website morphing. Mark. Sci.(28), 202-223.
Hirsh JB,KangSK,BodenhausenGV. (2012). Personalized persuasion: tailoring persuasive appealstorecipients’personality traits. Psychol. Sci., 578-581.
Hirsh JB,KangSK,BodenhausenGV. (2012). Personalized persuasion: tailoring persuasiveappealstorecipients’personalitytraits. Psychol. Sci, 23:578-581.
Holsti. (1969). Content Analysis for the Social Sciences and Humanities. . MA.
Hui, Sam K., Peter S. Fader and Eric T. Bradlow. (2009). “Path Data in Mar-keting: An Integrative Framework and Prospectus for Model Building,”. Marketing Science, 28(2), pp. 320–35.
I.A.T.Hashema, I.Yaqoob,N.B.Anuara,S.Mokhtara,A.Gania,S.U.Khanh. (2015). There is eof bigdata and cloud computing : review and open research issues,. 47, pp. 98–115.
I.A.T.Hashema,I.Yaqooba,N.B.Anuara,S.Mokhtara,A.Gania,S.U.Khanb,. (2015). Ther ise of big data on cloud computing : review and open research issues. Inf .Syst., 98–115.
Javier Cuesta, MD, Paula Antuña, MD, César Jiménez, MD, Fernando Rivero, MD, Teresa Bastante, MD,. (2019). Can Plaque Erosion Be Visualized by High-Definition Intravascular Ultrasound? IMAGES IN INTERVENTION.
JL, A. (1997). In Dimensions Of Brand Personality.. (pp. 34:347-356). J. Mark.Res.
JL, A. (1999). In The malleableself:theroleofselfexpressionin persuasion (Vol. 36, pp. 45-57.). J. Mark.Res.
K. Venkatram, M.A. Geetha. (2017). Review on big data & analytics–concepts, philosophy, process and applications, Cybernet. Inform. Technol, 3-27.
Kaplan, A.M. and Haenlein, M. (2010). Users of the world unite! The challenges and opportunities of SM. Science direct, 53(59-68).
Kass, G. V. (1980). An Exploratory Technique for Investigating Large Quantities of Categorical Data., (pp. 119-127). Applied Statistics.
Kassarjian, H. H. (1977). Content analysis in Consumer Research. Journal of Consumer.
Kenrick DT, FunderDC. (988). Profiting fromcontroversy:lessons from theperson-situationdebate. Psychol, 43:23.
Kenrick DT,FunderDC. (1988). Profiting fromcontroversy:lessons from theperson-situationdebate. Am. Psychol, 43:23.
Kopalle, P. K. (2012). The Impact of Household Level Heterogeneity in Reference Price Effectson Optimal Retailer Pricing Policies”. Journal of Retailing, 88(1), pp. 102–14.
Kosinski M, M. S. (2015). Still well D: Facebook as are search tool for the social sciences. Am. Psycho, 543-556.
Kosinski M, Matz S C, Gosling S D, Popov V, Still well D. (2015). Facebook as are search tool for the social sciences. In Psychol. (Vol. 70, pp. 543-556).
Kotler, P. J. (1991). Marketing Management,Seventh Edition. NJ: Prentice-Hall.
KotlerPhilip. (2014). 行銷3.0 :與消費者心靈共鳴. 天下雜誌.
KotlerPhilip. (2017). 行銷4.0:新虛實融合時代贏得顧客的全思維. 天下雜誌.
Kowalczyk, M. , & Buxmann, P. (2015). n ambidextrous perspective on business in- telligence and analytics support in decision processes: Insights from a multiple case study. Decision Support Systems, 80, pp. 1–13 .
Kumar, G. (2015). An encyclopedic overview of “big data” analytics. International Journal of Applied Engineering Research, 10(3), 5681–5705.
Kumar, S., & Rishi, R. (2015). Data collection and analytics strategies of social networking websites. In Green Computing and Internet of Things (ICGCIoT), 643-648.
Laney, D. (2001). 3D Data Management: Controlling Data Volume, Velocity, and Va- riety, Technical. Retrieved from Data-Management-Controlling-Data-Volume-Velocity-and- Variety: http://blogs.gartner.com/doug-laney/files/ 2012/01/ad949-3D
Lazer D, Pentland A S, Adamic L, Aral S,Barabasi A L, Brewer D, Christakis N, Contractor N, Fowler J, Gutmann M. (2009). Life in the network: the oming age of computation alsocial science. New York, NY, 323:721.
Li Kam Wa R, Liu Y, LaneND, ZhongL. (2013). Moodscope:buildinga mood sensorfromsmartphoneusagepatterns. . Proceeding of the 11thannualinternationalconferenceonMobilesystems, applications, andservices, (pp. 389-402).
Li Kam Wa R,Liu Y,Lane N D,Zhong L. (2013). Moodscope:building a mood sensor from smartphone usage patterns. Proceeding of the 11th annual international conference on Mobile Systems, applications, and services (pp. 389-402). ACT.
LiKam Wa R, Liu Y, Lane N D, Zhong L. (2013). building a mood sensor from smartphone usage patterns. Proceeding of the 11thannualinternationalconferenceonMobilesystems, applications, andservices (pp. 389-402.). ACM.
Liu, B. (2010). Sentiment analysis and subjectivity. Handbook Nat. Lang. Process, 5 (1), pp. 1–38.
M.A. Beyer, D. Laney. (2012). The Importance of ‘Big Data’: A Definition. Stamford: Gartner.
M.R. Bendre, V.R. Thool. (2016). Analytics, challenges and applications in big data environment:a survey. J. Manage. Analyt, 206–239.
M.-T. Martin-Valdivia, E. Martinez-Cámara, J.-M. Perea-Ortega, L.A. (2012). Sentiment polarity detection in Spanish reviews combining. supervised and unsupervised approaches, Expert Syst.
Marcus B,MachilekF,Schu¨ tz. (2006). Personality in cyberspace: personal Websites Asmedia For person ality expressions and impressions. J. Pers.Soc.Psychol., 90, 1014-1031.
Mark J.Arnold,Kristy E.Reynolds. (2003). Hedonic shopping motivations. Journal of Retailing.
Marshall, A., Mueck, S., & Shockley, R. (2015). How leading organizations use big data and analytics to innovate. Strategy & Leadership, 43(5), 32–39.
Martin. (2016, 4 3). Best use of big data in marketing. Retrieved from http://www.cleverism.com/best-uses-big-data marketing/
Matz S,KosinskiM,NaveG,StillwellD. (n.d.). Personality-matching increases theeffectivenessofdigitaladvertising. Working Paper.
McAfee, Andrew, Erik Brynjolfsson, Thomas H. Davenport, D.J. Patil and Dominic Barton. (2012). Big Data: The Management Revolution. Harvard Business Review, 90 (10), 61–70.
Mille, G. (1995). WordNet: a lexical database for English. Commun. ACM, 38, 39-41.
Mohan, S., Choi, E., & Min, D. (2008). Conceptual modeling of enterprise application system using social networking and web 2.0 “Social CRM system”. 2008 International conference on convergence and hybrid information technology, (pp. pp. 237–244).
Moharm, K. (2019). State of the art in big data applications in microgrid: A review. Advanced Engineering Informatics 42, (p. 100945).
Muhammad Anshari, Mohammad Nabil Almunawar , Syamimi Ariff Lim , Abdullah Al-Mudimigh. (2019). Customer relationship management and big data enabled:Personalization & customization of services. Applied Computing and Informatics 15, (pp. 94–101).
Ohbyung Kwona,, Namyeon Lee, Bongsik Shin,. (2014). Data quality management, data usage experience and acquisitionintention of big data analytics. International Journal of Information Management 34, (pp. 387–394).
Orenga-Roglá, S., & Chalmeta, R. (2016). Social customer relationship management: Taking advantage of Web 2.0 and Big Data technologies. SpringerPlus, 5(1462), 1–17.
Panigrahi, B. K., Abraham, A. (2010). Computational intelligence in powerengineering. Springer.
Park G,SchwartzH,EichstaedtJ,KernML,KosinskiM,StillwellD, Ungar LH,. (2014). SeligmanMEP: Automaticpersonalityassessment through socialmedialanguage. J. Pers.Soc.Psychol, 180, 934-952.
Paulus, P. (2009). Mental health backbone of the soul. Health Education, 109(4), 289-298.
Pierluigi Zerbino, Davide Aloini, Riccardo Dulmin, Valeria Mininno. (2018). Big Data-enabled Customer Relationship Management: A holistic. Information Processing and Management 54, (pp. 818–846).
Planalp, S. (1989). Relational communication and cognition, Rethinking Commun. 269–277.
Plotkina, D., Munzel, A. (2016). Delight the experts, but never dissatisfy your customers! A multi-category study on the effects of online review source on intention to buy a new. Retail. Consum. Serv., (pp. 1-11).
Quercia D,KosinskiM,StillwellD,CrowcroftJ. (2011). Our Twitter profiles, ourselves:predictingpersonalitywith Twitter. IEEE International Conference on Social Computing, (pp. 18:180-185).
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning.
Quinlan., J. R. ( 1983). Learning efficient classification procedures and their application to chess end-games. Machine Learning, pp. Vol. 1, pages 463-482.
R.K. Srivastava, T.A. Shervani, L. Fahey. (1998). Market-based assets and shareholder value: a framework for analysis. J. Marketing, 2-18.
R.L. Villars, C.W. Olofson, M. Eastwood. (2011). Big data: what it is and why you should care. White Paper, IDC.
R.L.Villars,C.W.Olofson,M.Eastwood. (2011). Bigdata:whatitisandwhy you shouldcare. WhitePaper.
Reinartz, W., Krafft, M., & Hoyer, W. D. (2004). The customer relationship management process: Its measurement and impact on performance. Journal of Marketing, 41(3), 293–305. Retrieved from http://doi.org/10.1509/jmkr.41.3.293.35991.
Rossi, Peter E., Robert E. McCulloch and Greg M. Allenby. (1996). “The Valueof Purchase History Data in Target Marketing”. Marketing Science, 15(4), pp. 321–40.
RW, B. (1975). Situational variables consumer behavior. Consum., 157-164.
RW, B. (1975, 2:157-164.). Situational variablesandconsumerbehavior. J. Consum.
RW, B. (1975,). Situational variables and consumer behavior. J. Consum. Res.
S. Baccianella, A. Esuli, F. Sebastiani. (2010). SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. Proceedings of the Seventh International Conference on Language (pp. 2200–2204). in: N. Calzolari, K. Choukri, B. Maegaard, J. Mariani, J. Odijk, S. Piperidis, M. Rosner, D. Tapias (Eds.).
S.C. Deerwester, S.T. Dumais, T.K. Landauer, G.W. Furnas, R.A. (1990). Indexing by latent semantic analysis (Vol. 41). J. Am. Soc.
Sandra C Matz , Oded Netzer. (n.d.). Behavioral Sciences. Using Big data as a window into consumer’s psychology. 18(1), 2352-1546.
Schau, H. J., & Gilly, M. C. (2003). We are what we post? Selfpresentation in personal web space. Journal of Consumer Research, 30(3), 385-404.
Schectman, J. (2012). Netflix uses big data to improve streaming video. Retrieved from Wall Street J: http://blogs.wsj.com/cio/2012/10/26/netflix-usesbig- data-to-improve-streaming-video
Shandong Mou , David J. Robb , Nicole DeHoratius. (2018). Retail store operations: Literature review and research directions. European Journal of Operational Research, (pp. 399-422).
Smith, W. (1956). Product differentiation and market segmentation as alternative marketing strategies. The Journal of Marketing, 3-8.
Sundsøy, P., Bjelland, J., Iqbal, A. M., Pentland, A., & De Montjoye, Y. A. (2014). Big data-driven marketing: How machine learning outperforms marketers’ gut-feeling. Retrieved from Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics): http://doi.org/10.1007/978-3-319-05579-4-45
T, Y. (2010). Personalityin100,000words:alarge-scaleanalysis of personalityandworduseamongbloggers. 44:363-373.
Teixeira T, Wedel M, PietersR. (n.d.). Emotion-induced engagementin internet videoadvertisements. 49, 144-159.
Teixeira T,WedelM,PietersR. (2012). Emotion-induced engagementin internet videoadvertisements. J. Mark.Res.
Torre-Bastida, A. I., Villar-Rodriguez, E., Gil-Lopez, S., & Del Ser, J. (2015). Design and implementation of an extended corporate CRM database system with big data analytical functionalities. Journal of Universal Computer Science, 21(6), 757–776.
Vyncke, P. (2002). Lifestyle SegmentationFrom Attitudes, Interests and Opinions, to Values, Aesthetic Styles, Life Visions and Media Preferences. European Journal of Communication.
W. Zhang, H. Xu, W. Wan. (2012). Weakness finder: find product weakness from Chinese reviews by using aspects based sentiment analysis. In Expert Syst. (Vol. 39 (11), pp. 10283–10291).
Walker, S. J. (2014). Big data: A revolution that will transform how we live, work, and think.
Wan-YuLiu,Chun-ChengLin,Yang SunLee,Der-JiunnDeng. (2013). On gender differences in consumer behavior for online financial transaction of cosmetics. Mathematical and Computer Modelling.
Watson D, C. T. (1988). Developmentandvalidationof brief measuresofpositiveandnegativeaffect:thePANAS scales. Soc.Psychol, (pp. 1063-1070).
Watson D,ClarkLa,Tellegena. (1988). Development And Validation Of brief measure of positive negative affect:the PANAS scales. J. Pers.Soc.Psychol., 54:1063-1070.
Watson, H. (2014). Tutorial: big data analytics: concepts, technologies, and applications. Commun. Assoc. Inf. Syst, 1247–1268.
Weisstein, F.L., Song, L., Andersen, P., Zhu, Y. (2017). Examining impacts of negative reviews and purchase goals on consumer purchase decision. Retail. Consum. Serv, (pp. 201–207).
Wirawan Dony Dahana,Yukihiro Miwa,Makoto Morisada. (2019). Linking lifestyle to customer lifetime value: An exploratory study in an online fashion retail market. Journal of Business Research.
X. Ge, J. Jackson. (2014). The big data application strategy for cost reduction in automotive industry. SAE Int. J. Commer. Veh. 7, 588–598.
YanSong,ShuGuoaMingZhang. (2019). Assessing customers'' perceived value of the anti-haze cosmetics under haze pollution. Science of The Total Environment.
Yuexiang Huang,Chun-Hsien Chen,Li Pheng Khoo. (2012). Products classification in emotional design using a basic-emotion based semantic differential method. International Journal of Industrial Ergonomics.
Zeng Z,PanticM,RoismanGI,HuangTS. (2009). A surveyofaffect recognition methods:audio,visual,andspontaneous expressions. IEEE Trans, 31:39-58.
Zeng Z,PanticM,RoismanGI,HuangTS. (2009). A surveyofaffect recognition methods:audio,visual,andspontaneous expressions. IEEE Trans.PatternAnal.Mach.Intell., (pp. 39-58).
王素灣. (2018). 零售業發展現況與展望. 產業暸望, 頁 115-120.
任立中, 楊泮池, 陳厚銘,賈景光,謝邦昌,陳傑豪,梁錦琳,吳師豪. (2016). 大數據戰略4.0. 新北市: 傅國彰.
行銷別再區分線上和線下!一張表教你國際品牌都在做的「全通路」經營. (2018年04月16日). 擷取自 數位時代: https://www.bnext.com.tw/article/48806/omnichannel
李欣宜. (2015年04月01日). 一次搞懂大數據(上). 擷取自 數位時代: https://www.bnext.com.tw/article/35807/bn-2015-03-31-151014-36
林津瑩. (2006). 以資源基礎理論探討流通業物流能力、企業策略與經營績效之關係.
范淑雯. (2011). 零售商店顧客經驗管理:商店環境、購物動機之觀點. 國立臺中科技大學流通管理系碩士論文. 台中市, 台灣: 范淑雯.徐欽盛. (2019). 大數據分析 市場行銷得力助手. 擷取自 品牌志: https://www.expbravo.com/7584/%E5%A4%A7%E6%95%B8%E6%93%9A%E5%88%86%E6%9E%90-%E5%B8%82%E5%A0%B4%E8%A1%8C%E9%8A%B7%E5%BE%97%E5%8A%9B%E5%8A%A9%E6%89%8B.html
高端訓. (2019). 大數據行銷預測. 台北市: 趙政岷.
彭夢竺. (2018年8月27日). 台灣零售業營業額屢創新高 超商、超市占比增加. 擷取自 今日新聞: https://www.nownews.com/news/20180827/2806463/
曾靉. (2016年10月30日). 從線下到線上!Walmart用數據抓住消費者的心. 擷取自 數位時代: https://www.bnext.com.tw/article/41482/walmart-offline-to-online-big-data-e-commerce
勤業眾信聯合會計師事務所. (2019). 2019年零售力量與趨勢展望論壇-數位轉型時代下新零售產業之決勝關鍵. 勤業眾信聯合會計師事務所.
楊爵宇. (2012年01月18日). 如何善用社群行銷(Social Media Marketing)與目標族群對話-台灣企業實例分享. 擷取自 知識管理中心: http://mymkc.com/article/content/21288
葉子維. (2017). 顧客消費行為分析及行動銀行使用預測-決策樹、隨機森林與判別分析之比較.
資策會. (2018). 2018 台灣網路報告. 資策會.
劉雅方. (2019). 運用決策樹預測產品不良因素之研究-以半導體封裝廠為例.
蕭豐達. (2004). 應用模糊理論與決策樹法於空載影像建築物分類之探討.
謝家德. (2017年06月06日). 網路社群媒體零售轉型. 擷取自 FashionExpress: https://www.fashionexpress.org.tw/focus/paper/5357118299
顏理謙. (2016年05月03日). 新零售時代來了!5大趨勢重新定義消費場景. 擷取自 數位時代: https://www.bnext.com.tw/article/39438/bn-2016-05-03-185757-178