跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/04/01 16:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳婷雅
研究生(外文):Ting Ya Chen
論文名稱:利用臥式研磨機大規模製備次微米等級水相絹雲母
論文名稱(外文):Large-scale synthesis of sub-micron aqueous phase sericite using a horizontal milling machine
指導教授:胡焯淳、邱泰嘉、林怡君
學位類別:碩士
校院名稱:國立臺東大學
系所名稱:應用科學系
學門:自然科學學門
學類:其他自然科學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:66
中文關鍵詞:臥式研磨機絹雲母礦羧甲基纖維素阻隔紫外光
外文關鍵詞:horizontal milling machinesericitecarboxymethyl celluloseUV blocking
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
絹雲母礦係層狀矽酸鹽礦物的一種,為片狀結構,平均粒徑為10 μm,可作為造紙、建材中的填料,但受限於大尺寸使其實際資源利用效益並不大。本研究以臥式研磨機溼式研磨大規模製備次微米等級水相絹雲母,研磨轉速為1500 rpm,選擇大小為1.2 mm及0.6 mm的氧化鋯球作為研磨介質。在研磨漿料中添加羧甲基纖維素 (CMC) 作為增稠劑與分散劑。實驗過程中分別探討了 (1) 絹雲母的初始濃度、(2) CMC的添加量、(3) 氧化鋯球與絹雲母的重量比,以及 (4) 儲料桶上方加裝攪拌器對於絹雲母平均粒徑變化的影響。從實驗結果中得知,在儲料桶上方加裝攪拌器能讓儲料桶內的絹雲母漿料在研磨過程中混合均勻。當絹雲母漿料初始濃度為35 %,CMC添加量為0.5 %,氧化鋯球與絹雲母的重量比值為 2.38,並將漿液之黏度控制在1500~3500 mPa‧s時,可有效使其絹雲母之平均粒徑降低,研磨絹雲母的平均粒徑從10 μm降低至0.45 μm,厚度從1 μm降低至45 nm。從XRD結果中可發現,經研磨過的絹雲母並未產生新的晶相。將微量的研磨絹雲母 ( 0.16 g /cm2 ) 塗於石英玻璃上,可見光 ( 波長為550 nm ) 仍有77.4%的光穿透率,同時能有效地遮蔽UV光 ( 200 nm ~ 400 nm的平均光穿透率為40.5 % );進一步更以亞甲基藍降解實驗證明研磨絹雲母確實具有阻隔紫外光之功能。
致謝 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 vii
表目錄 ix
第一章 文獻回顧 1
1.1 研磨機種類 1
1.1.1 臥式球磨機 1
1.1.2 直立式球磨機 3
1.1.3 行星式球磨機 5
1.2 乾式研磨與溼式研磨 7
1.2.1 乾式研磨 7
1.2.2 溼式研磨 10
第二章 前言 11
2.1 研究動機 11
2.2 研究方法與目的 12
2.3 研究內容 13
第三章 研究方法 14
3.1 實驗材料 14
3.1.1 天然絹雲母粉末 14
3.1.2 添加劑 16
3.1.3 研磨介質 16
3.2 實驗儀器 17
3.2.1 臥式研磨機 17
3.2.1 高扭力攪拌器 20
3.2.2 桌上型行星式球磨機 20
3.2.3 高速攪拌機 20
3.2.4 黏度計 20
3.2.5 烘箱 20
3.3 檢測儀器 21
3.3.1 沉降離心式粒徑分布儀 21
3.3.2 掃描式電子顯微鏡 ( Scanning Electron Microscopy ) 22
3.3.3 X射線繞射儀 (X-ray diffractometer ) 22
3.3.4 傅立葉轉換紅外線光譜儀 (Fourier-transform infrared spectroscopy ) 22
3.3.5 原子力顯微鏡 (Atomic Force Microscope ) 22
3.3.6 反射式紫外光-可見光光譜儀 23
3.3.7 紫外-可見光光譜儀 23
3.4 實驗方法 24
3.4.1 利用臥式研磨機研磨天然絹雲母 ( NS ) 24
3.4.2 研磨絹雲母漿料 ( BNS ) 穩定性 26
3.4.3 利用桌上型行星式球磨機研磨天然絹雲母 ( NS ) 26
3.4.4 研磨絹雲母 ( BNS ) 光學性質 26
3.4.5 研磨絹雲母 ( BNS ) 作為UV阻擋材料 27
第四章 結果與討論 28
4.1 利用臥式研磨機研磨天然絹雲母 ( NS ) 28
4.1.1 實驗組別1 29
4.1.2 實驗組別2 32
4.1.3 實驗組別3 35
4.1.4 實驗組別4 39
4.2 利用桌上型行星式球磨機研磨天然絹雲母 ( NS ) 50
4.3 研磨絹雲母 ( BNS ) 光學性質 54
4.4 研磨絹雲母 ( BNS ) 作為UV阻擋材料 58
第五章 結論與建議 61
5.1 結論 61
5.2 建議 61
第六章 參考文獻 62
1.Runowski, M., Nanotechnology – nanomaterials, nanoparticles and multifunctional core-shell type nanostructures. CHEMIK, 2014. 68(9): p. 766-775.
2.Liu, J., et al., Hydrothermal synthesis of novel photosensitive gold and silver bimetallic nanoclusters protected by adenosine monophosphate (AMP). Journal of Materials Chemistry C, 2017. 5(38): p. 9979-9985.
3.Liu, Y., et al., Hydrothermal synthesis of fluorescent carbon dots from sodium citrate and polyacrylamide and their highly selective detection of lead and pyrophosphate. Carbon, 2017. 115: p. 550-560.
4.Ishida, Y., et al., Thiolate-Protected Gold Nanoparticles Via Physical Approach: Unusual Structural and Photophysical Characteristics. Sci Rep, 2016. 6: p. 29928.
5.Khojasteh, M. and V.V. Kresin, Influence of source parameters on the growth of metal nanoparticles by sputter-gas-aggregation. Applied Nanoscience, 2017. 7(8): p. 875-883.
6.Kondalkar, V.V., et al., Langmuir–Blodgett self organized nanocrystalline tungsten oxide thin films for electrochromic performance. RSC Advances, 2015. 5(34): p. 26923-26931.
7.Wang, L., et al., Liquid-interface-assisted synthesis of covalent-organic and metal-organic two-dimensional crystalline polymers. npj 2D Materials and Applications, 2018. 2(1): p. 26.
8.Dubey, P.K., et al., Synthesis of reduced graphene oxide–TiO 2 nanoparticle composite systems and its application in hydrogen production. International Journal of Hydrogen Energy, 2014. 39(29): p. 16282-16292.
9.Pan, X.F., et al., Transforming ground mica into high-performance biomimetic polymeric mica film. Nat Commun, 2018. 9(1): p. 2974.
10.Ansari, S.A. and M.H. Cho, Highly Visible Light Responsive, Narrow Band gap TiO2 Nanoparticles Modified by Elemental Red Phosphorus for Photocatalysis and Photoelectrochemical Applications. Sci Rep, 2016. 6: p. 25405.
11.Liu, X., et al., Ball Milling-Assisted Synthesis of Ultrasmall Ruthenium Phosphide for Efficient Hydrogen Evolution Reaction. Catalysts, 2019. 9(3).
12.Tie, X., et al., Si@SiOx/Graphene Nanosheets Composite: Ball Milling Synthesis and Enhanced Lithium Storage Performance. Frontiers in Materials, 2018. 4.
13.Ohenoja, K. and M. Illikainen, Effect of operational parameters and stress energies on stirred media milling of talc. Powder Technology, 2015. 283: p. 254-259.
14.Zeng, Y., et al., Effects of convex rib height on spherical particle milling in a lab-scale horizontal rice mill. Powder Technology, 2019. 342: p. 1-10.
15.Yoshida, T., et al. Vibration characteristics of an operating ball mill. in Journal of Physics: Conference Series. 2019. IOP Publishing.
16.Jayasundara, C.T., et al., Effects of disc rotation speed and media loading on particle flow and grinding performance in a horizontal stirred mill. International Journal of Mineral Processing, 2010. 96(1-4): p. 27-35.
17.Castro, R.C.d.A., S.I. Mussatto, and I.C. Roberto, A vertical ball mill as a new reactor design for biomass hydrolysis and fermentation process. Renewable Energy, 2017. 114: p. 775-780.
18.Rocha, D., et al., Predicting the product particle size distribution from a laboratory vertical stirred mill. Minerals Engineering, 2018. 129: p. 85-92.
19.Altun, D., et al., Operational parameters affecting the vertical roller mill performance. Minerals Engineering, 2017. 103-104: p. 67-71.
20.Aisyah, I.S., W. Caesarendra, and A. Suprihanto, Design and Testing of UMM Vertical Ball Mill (UVBM) for producing Aluminium Powder. Journal of Physics: Conference Series, 2018. 1007.
21.Burmeister, C.F. and A. Kwade, Process engineering with planetary ball mills. Chem Soc Rev, 2013. 42(18): p. 7660-7.
22.Sivasankaran, S. and A.S. Alaboodi, Structural characterization and mechanical behavior of Al 6061 nanostructured matrix reinforced with TiO2 nanoparticles for automotive applications. Funct. Nanomater., 2016.
23.Alinejad, B. and K. Mahmoodi, Synthesis of graphene nanoflakes by grinding natural graphite together with NaCl in a planetary ball mill. Functional Materials Letters, 2017. 10(04).
24.Bor, A., et al., Cu/CNT nanocomposite fabrication with different raw material properties using a planetary ball milling process. Powder Technology, 2018. 323: p. 563-573.
25.Xu, X., et al., N-doped biochar synthesized by a facile ball-milling method for enhanced sorption of CO2 and reactive red. Chemical Engineering Journal, 2019. 368: p. 564-572.
26.Godet-Morand, L., A. Chamayou, and J. Dodds, Talc grinding in an opposed air jet mill: start-up, product quality and production rate optimization. Powder Technology, 2002. 128(2-3): p. 306-313.
27.Sohn, M., et al., Metal-assisted mechanochemical reduction of graphene oxide. Carbon, 2016. 110: p. 79-86.
28.Mahmoud, A.E.D., A. Stolle, and M. Stelter, Sustainable Synthesis of High-Surface-Area Graphite Oxide via Dry Ball Milling. ACS Sustainable Chemistry & Engineering, 2018. 6(5): p. 6358-6369.
29.Mandal, R.K., et al., Enhanced photocatalytic performance of V2O5–TiO2 nanocomposites synthesized by mechanical alloying with morphological hierarchy. New Journal of Chemistry, 2019. 43(6): p. 2804-2816.
30.Ye, B., et al., One-Step Ball Milling Preparation of Nanoscale CL-20/Graphene Oxide for Significantly Reduced Particle Size and Sensitivity. Nanoscale Res Lett, 2018. 13(1): p. 42.
31.Protesescu, L., et al., Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling. ACS applied nano materials, 2018. 1(3): p. 1300-1308.
32.Singh, M., et al., A novel ball milling technique for room temperature processing of TiO2 nanoparticles employed as the electron transport layer in perovskite solar cells and modules. Journal of Materials Chemistry A, 2018. 6(16): p. 7114-7122.
33.Kahimbi, H., et al., Facile and scalable synthesis of nanostructured Fe2O3 using ionic liquid-assisted ball milling for high-performance pseudocapacitors. Solid State Sciences, 2018. 83: p. 201-206.
34.Yun, S., et al., Scalable synthesis of exfoliated organometal halide perovskite nanocrystals by ligand-assisted ball milling. ACS Sustainable Chemistry & Engineering, 2018. 6(3): p. 3733-3738.
35.Wang, Y., et al., Novel multilayer TiO2 heterojunction decorated by low g-C3N4 content and its enhanced photocatalytic activity under UV, visible and solar light irradiation. Sci Rep, 2019. 9(1): p. 5932.
36.陳家齊, et al., 開採向陽之寶-絹雲母礦. 臺灣博物季刊, 2014. 33(3): p. 80-85.
37.雷大同, 台東向陽地區絹雲母晶格離子置換及改質研究. 2001.
38.陳忠輝, 開發國產絹雲母材料以改善彩色噴墨用紙適性之研究. 圖文傳播學報, 2005.
39.Lopez, C.G., et al., Structure of sodium carboxymethyl cellulose aqueous solutions: A SANS and rheology study. Journal of Polymer Science Part B: Polymer Physics, 2015. 53(7): p. 492-501.
40.Liang, B., et al., Genipin-enhanced nacre-inspired montmorillonite-chitosan film with superior mechanical and UV-blocking properties. Composites Science and Technology, 2019. 182.
41.Deng, S., et al., Preparation of polyvinylidene fluoride/expanded graphite composites with enhanced thermal conductivity via ball milling treatment. RSC Advances, 2016. 6(51): p. 45578-45584.
42.Balaz, P., et al., Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev, 2013. 42(18): p. 7571-637.
43.Song, M.Y., E. Choi, and Y.J. Kwak, Preparation of a Mg-Based alloy with a high hydrogen-storage capacity by adding a polymer CMC via milling in a hydrogen atmosphere. International Journal of Hydrogen Energy, 2019. 44(7): p. 3779-3789.
44.Chandran, N., S. C, and S. Thomas, Introduction to rheology, in Rheology of Polymer Blends and Nanocomposites. 2020. p. 1-17.
45.Deng, S., et al., A facile way to large-scale production of few-layered graphene via planetary ball mill. Chinese Journal of Polymer Science, 2016. 34(10): p. 1270-1280.
46.Negm, N.A., et al., Heterogeneous catalytic transformation of vegetable oils into biodiesel in one-step reaction using super acidic sulfonated modified mica catalyst. Journal of Molecular Liquids, 2017. 237: p. 38-45.
47.Dong, Z., et al., Effects of ball milling and ultrasonic treatment on the UV shielding performance of illite micro flakes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018. 556: p. 316-325.
48.Acar, I. and O. Acisli, Mechano-chemical surface modification of calcite by wet-stirred ball milling. Applied Surface Science, 2018. 457: p. 208-213.
49.Ostovari Moghaddam, A., et al., Synthesis of bornite Cu5FeS4 nanoparticles via high energy ball milling: Photocatalytic and thermoelectric properties. Powder Technology, 2018. 333: p. 160-166.
50.Kohobhange, S.P.K., et al., The effect of prolonged milling time on comminution of quartz. Powder Technology, 2018. 330: p. 266-274.
51.Rigopoulos, I., et al., Effect of ball milling on the carbon sequestration efficiency of serpentinized peridotites. Minerals Engineering, 2018. 120: p. 66-74.
52.Yang, C., et al., Highly efficient photocatalytic degradation of methylene blue by P2ABSA-modified TiO2 nanocomposite due to the photosensitization synergetic effect of TiO2 and P2ABSA. RSC Advances, 2017. 7(38): p. 23699-23708.
53.Zhang, C., et al., Investigation of gamma-(2,3-Epoxypropoxy)propyltrimethoxy Silane Surface Modified Layered Double Hydroxides Improving UV Ageing Resistance of Asphalt. Materials (Basel), 2017. 10(1).

54.Xie, S., et al., Graphene Oxide Transparent Hybrid Film and Its Ultraviolet Shielding Property. ACS Appl Mater Interfaces, 2015. 7(32) p. 17558-64.
55.Lim, K.M., et al., UV-protective properties of poly(lactic acid) nanocomposites containing chemical treated halloysite nanotube. Materials Today: Proceedings, 2019. 17 p. 853-863.
56.Zahedi, Y., B. Fathi-Achachlouei, and A.R. Yousefi, Physical and mechanical properties of hybrid montmorillonite/zinc oxide reinforced carboxymethyl cellulose nanocomposites. Int J Biol Macromol, 2018. 108 p. 863-873.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top