|
1.Runowski, M., Nanotechnology – nanomaterials, nanoparticles and multifunctional core-shell type nanostructures. CHEMIK, 2014. 68(9): p. 766-775. 2.Liu, J., et al., Hydrothermal synthesis of novel photosensitive gold and silver bimetallic nanoclusters protected by adenosine monophosphate (AMP). Journal of Materials Chemistry C, 2017. 5(38): p. 9979-9985. 3.Liu, Y., et al., Hydrothermal synthesis of fluorescent carbon dots from sodium citrate and polyacrylamide and their highly selective detection of lead and pyrophosphate. Carbon, 2017. 115: p. 550-560. 4.Ishida, Y., et al., Thiolate-Protected Gold Nanoparticles Via Physical Approach: Unusual Structural and Photophysical Characteristics. Sci Rep, 2016. 6: p. 29928. 5.Khojasteh, M. and V.V. Kresin, Influence of source parameters on the growth of metal nanoparticles by sputter-gas-aggregation. Applied Nanoscience, 2017. 7(8): p. 875-883. 6.Kondalkar, V.V., et al., Langmuir–Blodgett self organized nanocrystalline tungsten oxide thin films for electrochromic performance. RSC Advances, 2015. 5(34): p. 26923-26931. 7.Wang, L., et al., Liquid-interface-assisted synthesis of covalent-organic and metal-organic two-dimensional crystalline polymers. npj 2D Materials and Applications, 2018. 2(1): p. 26. 8.Dubey, P.K., et al., Synthesis of reduced graphene oxide–TiO 2 nanoparticle composite systems and its application in hydrogen production. International Journal of Hydrogen Energy, 2014. 39(29): p. 16282-16292. 9.Pan, X.F., et al., Transforming ground mica into high-performance biomimetic polymeric mica film. Nat Commun, 2018. 9(1): p. 2974. 10.Ansari, S.A. and M.H. Cho, Highly Visible Light Responsive, Narrow Band gap TiO2 Nanoparticles Modified by Elemental Red Phosphorus for Photocatalysis and Photoelectrochemical Applications. Sci Rep, 2016. 6: p. 25405. 11.Liu, X., et al., Ball Milling-Assisted Synthesis of Ultrasmall Ruthenium Phosphide for Efficient Hydrogen Evolution Reaction. Catalysts, 2019. 9(3). 12.Tie, X., et al., Si@SiOx/Graphene Nanosheets Composite: Ball Milling Synthesis and Enhanced Lithium Storage Performance. Frontiers in Materials, 2018. 4. 13.Ohenoja, K. and M. Illikainen, Effect of operational parameters and stress energies on stirred media milling of talc. Powder Technology, 2015. 283: p. 254-259. 14.Zeng, Y., et al., Effects of convex rib height on spherical particle milling in a lab-scale horizontal rice mill. Powder Technology, 2019. 342: p. 1-10. 15.Yoshida, T., et al. Vibration characteristics of an operating ball mill. in Journal of Physics: Conference Series. 2019. IOP Publishing. 16.Jayasundara, C.T., et al., Effects of disc rotation speed and media loading on particle flow and grinding performance in a horizontal stirred mill. International Journal of Mineral Processing, 2010. 96(1-4): p. 27-35. 17.Castro, R.C.d.A., S.I. Mussatto, and I.C. Roberto, A vertical ball mill as a new reactor design for biomass hydrolysis and fermentation process. Renewable Energy, 2017. 114: p. 775-780. 18.Rocha, D., et al., Predicting the product particle size distribution from a laboratory vertical stirred mill. Minerals Engineering, 2018. 129: p. 85-92. 19.Altun, D., et al., Operational parameters affecting the vertical roller mill performance. Minerals Engineering, 2017. 103-104: p. 67-71. 20.Aisyah, I.S., W. Caesarendra, and A. Suprihanto, Design and Testing of UMM Vertical Ball Mill (UVBM) for producing Aluminium Powder. Journal of Physics: Conference Series, 2018. 1007. 21.Burmeister, C.F. and A. Kwade, Process engineering with planetary ball mills. Chem Soc Rev, 2013. 42(18): p. 7660-7. 22.Sivasankaran, S. and A.S. Alaboodi, Structural characterization and mechanical behavior of Al 6061 nanostructured matrix reinforced with TiO2 nanoparticles for automotive applications. Funct. Nanomater., 2016. 23.Alinejad, B. and K. Mahmoodi, Synthesis of graphene nanoflakes by grinding natural graphite together with NaCl in a planetary ball mill. Functional Materials Letters, 2017. 10(04). 24.Bor, A., et al., Cu/CNT nanocomposite fabrication with different raw material properties using a planetary ball milling process. Powder Technology, 2018. 323: p. 563-573. 25.Xu, X., et al., N-doped biochar synthesized by a facile ball-milling method for enhanced sorption of CO2 and reactive red. Chemical Engineering Journal, 2019. 368: p. 564-572. 26.Godet-Morand, L., A. Chamayou, and J. Dodds, Talc grinding in an opposed air jet mill: start-up, product quality and production rate optimization. Powder Technology, 2002. 128(2-3): p. 306-313. 27.Sohn, M., et al., Metal-assisted mechanochemical reduction of graphene oxide. Carbon, 2016. 110: p. 79-86. 28.Mahmoud, A.E.D., A. Stolle, and M. Stelter, Sustainable Synthesis of High-Surface-Area Graphite Oxide via Dry Ball Milling. ACS Sustainable Chemistry & Engineering, 2018. 6(5): p. 6358-6369. 29.Mandal, R.K., et al., Enhanced photocatalytic performance of V2O5–TiO2 nanocomposites synthesized by mechanical alloying with morphological hierarchy. New Journal of Chemistry, 2019. 43(6): p. 2804-2816. 30.Ye, B., et al., One-Step Ball Milling Preparation of Nanoscale CL-20/Graphene Oxide for Significantly Reduced Particle Size and Sensitivity. Nanoscale Res Lett, 2018. 13(1): p. 42. 31.Protesescu, L., et al., Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling. ACS applied nano materials, 2018. 1(3): p. 1300-1308. 32.Singh, M., et al., A novel ball milling technique for room temperature processing of TiO2 nanoparticles employed as the electron transport layer in perovskite solar cells and modules. Journal of Materials Chemistry A, 2018. 6(16): p. 7114-7122. 33.Kahimbi, H., et al., Facile and scalable synthesis of nanostructured Fe2O3 using ionic liquid-assisted ball milling for high-performance pseudocapacitors. Solid State Sciences, 2018. 83: p. 201-206. 34.Yun, S., et al., Scalable synthesis of exfoliated organometal halide perovskite nanocrystals by ligand-assisted ball milling. ACS Sustainable Chemistry & Engineering, 2018. 6(3): p. 3733-3738. 35.Wang, Y., et al., Novel multilayer TiO2 heterojunction decorated by low g-C3N4 content and its enhanced photocatalytic activity under UV, visible and solar light irradiation. Sci Rep, 2019. 9(1): p. 5932. 36.陳家齊, et al., 開採向陽之寶-絹雲母礦. 臺灣博物季刊, 2014. 33(3): p. 80-85. 37.雷大同, 台東向陽地區絹雲母晶格離子置換及改質研究. 2001. 38.陳忠輝, 開發國產絹雲母材料以改善彩色噴墨用紙適性之研究. 圖文傳播學報, 2005. 39.Lopez, C.G., et al., Structure of sodium carboxymethyl cellulose aqueous solutions: A SANS and rheology study. Journal of Polymer Science Part B: Polymer Physics, 2015. 53(7): p. 492-501. 40.Liang, B., et al., Genipin-enhanced nacre-inspired montmorillonite-chitosan film with superior mechanical and UV-blocking properties. Composites Science and Technology, 2019. 182. 41.Deng, S., et al., Preparation of polyvinylidene fluoride/expanded graphite composites with enhanced thermal conductivity via ball milling treatment. RSC Advances, 2016. 6(51): p. 45578-45584. 42.Balaz, P., et al., Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev, 2013. 42(18): p. 7571-637. 43.Song, M.Y., E. Choi, and Y.J. Kwak, Preparation of a Mg-Based alloy with a high hydrogen-storage capacity by adding a polymer CMC via milling in a hydrogen atmosphere. International Journal of Hydrogen Energy, 2019. 44(7): p. 3779-3789. 44.Chandran, N., S. C, and S. Thomas, Introduction to rheology, in Rheology of Polymer Blends and Nanocomposites. 2020. p. 1-17. 45.Deng, S., et al., A facile way to large-scale production of few-layered graphene via planetary ball mill. Chinese Journal of Polymer Science, 2016. 34(10): p. 1270-1280. 46.Negm, N.A., et al., Heterogeneous catalytic transformation of vegetable oils into biodiesel in one-step reaction using super acidic sulfonated modified mica catalyst. Journal of Molecular Liquids, 2017. 237: p. 38-45. 47.Dong, Z., et al., Effects of ball milling and ultrasonic treatment on the UV shielding performance of illite micro flakes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018. 556: p. 316-325. 48.Acar, I. and O. Acisli, Mechano-chemical surface modification of calcite by wet-stirred ball milling. Applied Surface Science, 2018. 457: p. 208-213. 49.Ostovari Moghaddam, A., et al., Synthesis of bornite Cu5FeS4 nanoparticles via high energy ball milling: Photocatalytic and thermoelectric properties. Powder Technology, 2018. 333: p. 160-166. 50.Kohobhange, S.P.K., et al., The effect of prolonged milling time on comminution of quartz. Powder Technology, 2018. 330: p. 266-274. 51.Rigopoulos, I., et al., Effect of ball milling on the carbon sequestration efficiency of serpentinized peridotites. Minerals Engineering, 2018. 120: p. 66-74. 52.Yang, C., et al., Highly efficient photocatalytic degradation of methylene blue by P2ABSA-modified TiO2 nanocomposite due to the photosensitization synergetic effect of TiO2 and P2ABSA. RSC Advances, 2017. 7(38): p. 23699-23708. 53.Zhang, C., et al., Investigation of gamma-(2,3-Epoxypropoxy)propyltrimethoxy Silane Surface Modified Layered Double Hydroxides Improving UV Ageing Resistance of Asphalt. Materials (Basel), 2017. 10(1).
54.Xie, S., et al., Graphene Oxide Transparent Hybrid Film and Its Ultraviolet Shielding Property. ACS Appl Mater Interfaces, 2015. 7(32) p. 17558-64. 55.Lim, K.M., et al., UV-protective properties of poly(lactic acid) nanocomposites containing chemical treated halloysite nanotube. Materials Today: Proceedings, 2019. 17 p. 853-863. 56.Zahedi, Y., B. Fathi-Achachlouei, and A.R. Yousefi, Physical and mechanical properties of hybrid montmorillonite/zinc oxide reinforced carboxymethyl cellulose nanocomposites. Int J Biol Macromol, 2018. 108 p. 863-873.
|