跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/26 04:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭至崴
研究生(外文):CHIH-WEI CHENG
論文名稱:簡便合成的雙放射螢光碳奈米點作為多功能探針
論文名稱(外文):Facilely synthesized Dual Emission Fluorescent Carbon Nanodots as a Multifunctional Probe
指導教授:胡焯淳胡焯淳引用關係
學位類別:碩士
校院名稱:國立臺東大學
系所名稱:應用科學系
學門:自然科學學門
學類:其他自然科學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:47
中文關鍵詞:碳點電化學雙放射嘉磷塞羥氯喹嚀汞離子
外文關鍵詞:carbon nanodotsduel-emissionelectrochemical generationglyphosatehydroxychloroquinemercury ion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本篇所製備的碳點是以簡便的電化學所合成的。相較於其他的合成方法,電化學合成不需要在極端的環境下就可得到碳點。本篇碳點是利用和鄰苯二胺為前驅物在10V 電壓下電解 2小時所獲得。碳點在極端 pH 值和高離子強度下,螢光都不會有太大的變化。碳點也藉由XPS,FT-IR 和 TEM 的鑑定來確認表面官能基和粒徑大小。電化學合成的碳點的平均粒徑為 5.17 nm,且藉由 XPS 和 FT-IR的鑑定,能確定碳點的表面富有酸基和胺基。碳點具有雙重發射螢光特性。在兩種不同的激發波長下,分別有綠色和藍色放光團。發現在加入汞離子和銅離子後,碳點的綠色發射可以被淬滅,並且羥氯喹嚀可以抑制碳點的藍色發射。此外,通過添加嘉磷塞增強了生成的碳點 / 銅離子的螢光。在最佳條件下,汞離子,嘉磷塞和羥氯喹嚀的檢測極限分別為0.42 μM,6.5 μM和0.14 μM。此外,該方法具有分別檢測環境水,穀物和尿液樣品中的汞離子,嘉磷塞和羥氯喹嚀。
Here in, we developed a facile method to synthesize the dual-emissive carbon nanodots (CDs) thought electrolysis of trimesic acid and o-phenylenediamine. The CDs was synthesized by electrolysis for 2h at 10V. The sizes of the CDs were mainly distributed in the range of 3-7nm with an average size of 5.17 nm. The dual emission fluorescent property of this CDs was obviated under the two different excitation wavelengths. It was found that the green-emission of the CDs could be quenched after adding the Hg2+ and Cu2+ and the blue-emission of the CDs could be inhibited by hydroxychloroquine. Furthermore, the fluorescence of the generated CDs/Cu2+ were enhanced by adding the glyphosate. Under the optimal conditions, the detection limits of Hg2+, glyphosate, and hydroxychloroquine were 0.42μM, 6.5 μM, and 0.14μM, respectively. Moreover, this method has the potential to detect Hg2+, glyphosate, and hydroxychloroquine in environmental water, cereals, and urine samples, respectively.
致謝 III
中文摘要 IV
Abstract V
Chapter 1 緒論 1
1.1 前言 1
1.1.1 研究目的 1
1.1.2 材料選擇 4
1.1.3 合成方法 4
1.2 文獻回顧 5
Chapter 2 實驗方法 9
2.1 化學藥劑 9
2.2 儀器 9
2.3 雙發射碳點的合成 9
2.4 汞離子的檢測 10
2.5 嘉磷塞的檢測 10
2.6 羥氯喹嚀的檢測 10
2.7 真實樣品檢測 10
2.7.1 實際樣品中汞離子回收率的計算 10
2.7.2 實際樣品中嘉磷塞回收率的計算 11
2.7.3 實際樣品中羥氯喹嚀回收率的計算 11
Chapter 3 結果和討論 12
3.1 碳點的合成與表徵 12
3.2 碳點的光學特性 17
3.3 碳點的穩定性 19
3.4 碳點的應用 25
3.4.1 汞離子的檢測 25
3.4.2 嘉磷塞的檢測 30
3.4.3 羥氯喹嚀的檢測 37
Chapter 4 結論 42
Chapter 5 參考文獻 43
1.Zhao, C., et al., Green and microwave-assisted synthesis of carbon dots and application for visual detection of cobalt (II) ions and pH sensing. Microchemical Journal, 2019. 147: p. 183-190.
2.Xia, J., et al., Synthesis of highly stable red-emissive carbon polymer dots by modulated polymerization: from the mechanism to application in intracellular pH imaging. Nanoscale, 2018. 10(47): p. 22484-22492.
3.Fu, X., et al., A dual-emission nano-rod MOF equipped with carbon dots for visual detection of doxycycline and sensitive sensing of MnO 4−. RSC advances, 2018. 8(9): p. 4766-4772.
4.Fu, Y., G. Gao, and J. Zhi, Electrochemical synthesis of multicolor fluorescent N-doped graphene quantum dots as a ferric ion sensor and their application in bioimaging. Journal of Materials Chemistry B, 2019. 7(9): p. 1494-1502.
5.Ma, Z., et al., One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New Journal of Chemistry, 2012. 36(4): p. 861-864.
6.Hu, Y., et al., Facile synthesis of red dual-emissive carbon dots for ratiometric fluorescence sensing and cellular imaging. Nanoscale, 2020. 12(9): p. 5494-5500.
7.Yu, H., et al., Smart utilization of carbon dots in semiconductor photocatalysis. Advanced materials, 2016. 28(43): p. 9454-9477.
8.Xu, Y., et al., Enhanced-quantum yield sulfur/nitrogen co-doped fluorescent carbon nanodots produced from biomass Enteromorpha prolifera: synthesis, posttreatment, applications and mechanism study. Scientific reports, 2017. 7(1): p. 1-12.
9.Yuan, B., et al., Highly efficient carbon dots with reversibly switchable green–red emissions for trichromatic white light-emitting diodes. ACS applied materials & interfaces, 2018. 10(18): p. 16005-16014.
10.Liu, Y., et al., Red emission B, N, S-co-doped carbon dots for colorimetric and fluorescent dual mode detection of Fe3+ ions in complex biological fluids and living cells. ACS applied materials & interfaces, 2017. 9(14): p. 12663-12672.
11.Zeng, H., et al., Simple and selective determination of 6-thioguanine by using polyethylenimine (PEI) functionalized carbon dots. Talanta, 2018. 178: p. 879-885.
12.Mohapatra, S., M.K. Bera, and R.K. Das, Rapid “turn-on” detection of atrazine using highly luminescent N-doped carbon quantum dot. Sensors and Actuators B: Chemical, 2018. 263: p. 459-468.
13.Harada, M., Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Critical reviews in toxicology, 1995. 25(1): p. 1-24.
14.Colson, P., et al., Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents, 2020. 105932(10.1016).
15.Wang, H., et al., Electrochemically prepared oxygen and sulfur co-doped graphitic carbon nitride quantum dots for fluorescence determination of copper and silver ions and biothiols. Analytica chimica acta, 2018. 1027: p. 121-129.
16.黃智盈, et al., 利用市售筆芯電化學合成螢光奈米碳點. 科學教育月刊, 2018.
17.Li, Y., et al., Electrochemical synthesis of phosphorus-doped graphene quantum dots for free radical scavenging. Physical Chemistry Chemical Physics, 2017. 19(18): p. 11631-11638.
18.Qie, X., et al., One-step synthesis of nitrogen, sulfur co-doped carbon nanodots and application for Fe 3+ detection. Journal of Materials Chemistry B, 2018. 6(21): p. 3549-3554.
19.Niu, F., et al., Electrochemically generated green-fluorescent N-doped carbon quantum dots for facile monitoring alkaline phosphatase activity based on the Fe3+-mediating ON-OFF-ON-OFF fluorescence principle. Carbon, 2018. 127: p. 340-348.
20.Li, N., et al., Adenosine-derived doped carbon dots: from an insight into effect of N/P co-doping on emission to highly sensitive picric acid sensing. Analytica chimica acta, 2018. 1013: p. 63-70.
21.Atchudan, R., et al., Highly fluorescent nitrogen-doped carbon dots derived from Phyllanthus acidus utilized as a fluorescent probe for label-free selective detection of Fe3+ ions, live cell imaging and fluorescent ink. Biosensors and Bioelectronics, 2018. 99: p. 303-311.
22.Xu, S., et al., One-step fabrication of boronic-acid-functionalized carbon dots for the detection of sialic acid. Talanta, 2019. 197: p. 548-552.
23.Zhang, M., et al., Red/orange dual-emissive carbon dots for pH sensing and cell imaging. Nano Research, 2019. 12(4): p. 815-821.
24.Du, F., et al., Rapid synthesis of multifunctional carbon nanodots as effective antioxidants, antibacterial agents, and quercetin nanoprobes. Talanta, 2020. 206: p. 120243.
25.Bandi, R., et al., N-Doped carbon dots with pH-sensitive emission, and their application to simultaneous fluorometric determination of iron (III) and copper (II). Microchimica Acta, 2020. 187(1): p. 30.
26.Zhang, S., et al., Biodegradation behavior of magnesium and ZK60 alloy in artificial urine and rat models. Bioactive materials, 2017. 2(2): p. 53-62.
27.Liang, Y., et al., Effects of chemical bonds between nitrogen and its neighbor carbon atoms on fluorescence properties of carbon quantum dots. Journal of Luminescence, 2018. 197: p. 285-290.
28.Fettkenhauer, C., et al., Synthesis of efficient photocatalysts for water oxidation and dye degradation reactions using CoCl 2 eutectics. Journal of Materials Chemistry A, 2015. 3(42): p. 21227-21232.
29.Qiao, F., et al., As a new peroxidase mimetics: The synthesis of selenium doped graphitic carbon nitride nanosheets and applications on colorimetric detection of H2O2 and xanthine. Sensors and Actuators B: Chemical, 2015. 216: p. 418-427.
30.Shen, L., et al., Switching Carbon Nanodots from Single Emission to Dual Emission by One-Step Electrochemical Tailoring in Alkaline Alcohols: Implications for Sensing and Bioimaging. ACS Applied Nano Materials, 2019. 2(5): p. 2776-2784.
31.Li, L., et al., Excitation-independent hollow orange-fluorescent carbon nanoparticles for pH sensing in aqueous solution and living cells. Talanta, 2019. 196: p. 109-116.
32.Shi, L., et al., Excitation-independent yellow-fluorescent nitrogen-doped carbon nanodots for biological imaging and paper-based sensing. Sensors and Actuators B: Chemical, 2017. 251: p. 234-241.
33.Wang, X., et al., Novel Enteromorpha Prolifera based carbon dots: Probing the radical scavenging of natural phenolic compounds. Colloids and Surfaces B: Biointerfaces, 2019. 174: p. 161-167.
34.Das, P., et al., A simplistic approach to green future with eco-friendly luminescent carbon dots and their application to fluorescent nano-sensor ‘turn-off'probe for selective sensing of copper ions. Materials Science and Engineering: C, 2017. 75: p. 1456-1464.
35.Liu, K.K., et al., Efficient Red/Near‐Infrared‐Emissive Carbon Nanodots with Multiphoton Excited Upconversion Fluorescence. Advanced Science, 2019. 6(17): p. 1900766.
36.Ye, Q., et al., N, B-doped carbon dots as a sensitive fluorescence probe for Hg2+ ions and 2, 4, 6-trinitrophenol detection for bioimaging. Journal of Photochemistry and Photobiology B: Biology, 2016. 162: p. 1-13.
37.Wang, L., et al., Facile, green and clean one-step synthesis of carbon dots from wool: application as a sensor for glyphosate detection based on the inner filter effect. Talanta, 2016. 160: p. 268-275.
38.Xia, J., et al., Gold Nanocluster-decorated nanocomposites with enhanced emission and reactive oxygen species generation. ACS applied materials & interfaces, 2019. 11(7): p. 7369-7378.
39.Koide, Y., et al., Design and synthesis of fluorescent probes for selective detection of highly reactive oxygen species in mitochondria of living cells. Journal of the American Chemical Society, 2007. 129(34): p. 10324-10325.
40.Iqbal, A., et al., Heterogeneous synthesis of nitrogen-doped carbon dots prepared via anhydrous citric acid and melamine for selective and sensitive turn on-off-on detection of Hg (II), glutathione and its cellular imaging. Sensors and Actuators B: Chemical, 2018. 255: p. 1130-1138.
41.Zhang, H., et al., Highly luminescent carbon dots as temperature sensors and “off-on” sensing of Hg2+ and biothiols. Dyes and Pigments, 2020. 173: p. 107950.
42.Zhang, X. and Y.-Y. Zhu, A new fluorescent chemodosimeter for Hg2+-selective detection in aqueous solution based on Hg2+-promoted hydrolysis of rhodamine-glyoxylic acid conjugate. Sensors and Actuators B: Chemical, 2014. 202: p. 609-614.
43.Singh, A.K., et al., One pot hydrothermal synthesis of fluorescent NP-carbon dots derived from Dunaliella salina biomass and its application in on-off sensing of Hg (II), Cr (VI) and live cell imaging. Journal of Photochemistry and Photobiology A: Chemistry, 2019. 376: p. 63-72.
44.Shen, S., et al., A dual-responsive fluorescent sensor for Hg 2+ and thiols based on N-doped silicon quantum dots and its application in cell imaging. Journal of Materials Chemistry B, 2019. 7(44): p. 7033-7041.
45.Li, L., B. Yu, and T. You, Nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of Hg (Ⅱ) ions. Biosensors and Bioelectronics, 2015. 74: p. 263-269.
46.He, J., et al., Carbon dots-based fluorescent probe for “off-on” sensing of Hg (II) and I−. Biosensors and Bioelectronics, 2016. 79: p. 531-535.
47.Wang, L., et al., Carbon dots based turn-on fluorescent probes for the sensitive determination of glyphosate in environmental water samples. RSC advances, 2016. 6(89): p. 85820-85828.
48.Chang, Y.-C., et al., A highly selective and sensitive nanosensor for the detection of glyphosate. Talanta, 2016. 161: p. 94-98.
49.da Silva, A.S., et al., A simple and green analytical method for determination of glyphosate in commercial formulations and water by diffuse reflectance spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011. 79(5): p. 1881-1885.
50.Coutinho, C.F., et al., Direct determination of glyphosate using hydrophilic interaction chromatography with coulometric detection at copper microelectrode. Analytica chimica acta, 2007. 592(1): p. 30-35.
51.Yuan, Y., et al., Fluorescent carbon dots for glyphosate determination based on fluorescence resonance energy transfer and logic gate operation. Sensors and Actuators B: Chemical, 2017. 242: p. 545-553.
52.Furst, D.E., Pharmacokinetics of hydroxychloroquine and chloroquine during treatment of rheumatic diseases. Lupus, 1996. 5(1_suppl): p. 11-15.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top