跳到主要內容

臺灣博碩士論文加值系統

(44.210.85.190) 您好!臺灣時間:2022/12/10 12:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林筱凡
研究生(外文):Hsiao-Fan Lin
論文名稱:以吉布斯隨機場整合DInSAR和GNSS資料於地表三維變位之建構
論文名稱(外文):Derivation of Three-Dimensional Surface Displacement Field from the Integration of DInSAR and GNSS Data by Gibbs Random Fields
指導教授:韓仁毓韓仁毓引用關係
指導教授(外文):Jen-Yu Han
口試委員:郭重言曾國欣景國恩
口試委員(外文):Chung-Yen KuoKuo-Hsin TsengKuo-En Ching
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:70
中文關鍵詞:合成孔徑雷達差分干涉全球導航衛星系統地表三維變位吉布斯隨機場資料融合
外文關鍵詞:Differential Interferometric Synthetic Aperture Radar (DInSAR)Global Navigation Satellite System (GNSS)3D Deformation AnalysisGibbs Random FieldData Fusion
DOI:10.6342/NTU202000392
相關次數:
  • 被引用被引用:0
  • 點閱點閱:140
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著空間資訊科學快速發展,發展兼顧效率以及成本的高精度三維空間資訊獲取技術已成為此領域之關鍵課題。合成孔徑雷達差分干涉技術可快速捕捉大範圍之細微變位訊號,然而其所獲得之視線方向位移並無法完整反映真實三維變位。而全球衛星導航系統可提供接收站穩定且精確的三維坐標時間序列,雖測站分布稀疏,仍能作為高精度且穩定空間約制的依據。本研究利用一期兩組的合成孔徑雷達干涉影像解算多期升軌與降軌視角方向的相對變位量。在各期影像不足以回復三維變位的情況下,引入全球導航衛星系統之三維觀測時間序列。以全球導航衛星系統之觀測資料作為邊界條件,透過保持視角方向變位量梯度場的二維泊松方程,對視角方向變位量進行轉換改正,藉此提升LOS變位量的絕對精度。將各期LOS變位量進行線性擬合以減少因影像品質不佳、地震等突發災害導致變位遽增的情況。最後,在影像稀少而不足解的情況下,透過內插全球導航衛星系統之三維變位觀測,估算區域地表三位變位速度場,並藉由吉布斯隨機場理論,以內插之三維變位速度場和兩軌之視角方向變位量進行區域三維變位回復,透過隨機場模型以避免內插行為過度影響成果解算精度,達到地表完整三維變位建構。
根據研究成果顯示,利用保持視角方向變位量梯度場的改正模型,可有效提升視角方向變位量的絕對精度。吉布斯隨機場模型能夠快速的解算三維變位,且有效抑止因內插行為導致誤差過大的情況。經實驗驗證,本研究以吉布斯隨機場模型所建構之區域三維變位能夠在觀測條件稀少的情況下足夠完整地回復三維變位,且相較於最小二乘法各期三維變位的時間序列更加穩定且一致,能作為另一個低成本、高效率建構區域地表三維變位場的可行方案。
Driven by rapid progress in spatial information science, developing an efficient and low-cost 3D spatial data acquisition technique is becoming a key issue. Differential Interferometric Synthetic Aperture Radar (DInSAR) is capable of capturing detailed displacement signals of ground surface of a wide area. However, the line-of-sight (LOS) displacements derived from the DInSAR technique do not provide an accurate representation of the actual 3D deformation field. In this study, multiple sets of SAR images will be used to derive the LOS displacements time series. The 3D observations from the Global Navigation Satellite System (GNSS) technique will be used to provide highly accurate spatial constraints as boundary conditions to adjust LOS displacements by preserving the gradient field of LOS displacements. Finally, probability theory and Gibbs random field will be introduced to integrate all available information and a complete approach for delivering 3D displacement of ground surface will then be established. The experimental results show that despite the insufficient interferograms, the 3D displacement can be resolved by this construction methodology with higher accuracy than least square method. A reliable observation and analysis solution with a high accuracy and good coverage will then become available for the deformation monitoring tasks.
致謝 i
摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 3
1.3 研究流程 4
1.4 論文架構 4
第二章 文獻回顧 5
2.1 地表變位之相關研究 5
2.1.1 地表變位之應用 5
2.1.2 地表變位分析方法 7
2.2 全球衛星導航系統與地表變位分析 8
2.2.1 全球衛星導航系統原理 8
2.2.2 全球衛星導航系統特性與地表變位分析 10
2.3 合成孔徑雷達干涉技術 11
2.3.1 合成孔徑雷達干涉技術原理 11
2.3.2 應用差分干涉技術於監測地表變位 13
2.4 整合GNSS和InSAR資料進行地表三維變位回復 14
2.4.1 GNSS和InSAR資料整合分析 14
2.4.2 回復地表三維變位之方法研究 15
2.5 小結 17
第三章 研究方法 18
3.1 以DInSAR技術進行LOS方向變位量解算 19
3.1.1 影像套合 19
3.1.2 干涉圖產製 20
3.1.3 地形效應移除 21
3.1.4 相位濾波 22
3.1.5 全相位回復 23
3.1.6 相位轉換變位 24
3.1.7 地形對位校正 24
3.2 GNSS資料處理 25
3.3 隨機場機率模型 27
3.3.1 影像不足而無法完整回復三維變位的逆問題 27
3.3.2 隨機場理論與貝式推論 27
3.3.3 馬可夫隨機場 28
3.3.4 吉布斯隨機場 29
3.4 DInSAR與GNSS資料之改正和整合 30
3.4.1 單一時間之LOS變位量改正 32
3.4.2 單一測站之LOS變位量時間序列擬合 33
3.4.3 地表三維變位隨機場模型建立 33
3.5 小結 35
第四章 實驗成果與分析 36
4.1 資料來源與分析 36
4.1.1 SAR影像資訊與來源 36
4.1.2 GNSS資料來源與處理 39
4.2 模擬實驗驗證 42
4.3 實際資料應用與分析 43
4.3.1 單一時間之LOS變位量改正 44
4.3.2 單一測站之LOS變位量時間序列擬合 51
4.3.3 區域三維變位場建構 53
4.4 成果評估與分析 59
第五章 結論與建議 61
5.1 結論 61
5.2 建議與未來工作 62
參考文獻 64
Anzidei, M., Boschi, E., Cannelli, V., Devoti, R., Esposito, A., Galvani, A., Serpelloni, E., Pietrantonio, G., Riguzzi, F., Sepe, V., and Serpelloni, E., 2009. Coseismic deformation of the destructive April 6, 2009 L''Aquila earthquake (central Italy) from GPS data, Geophysical Research Letters, 36:L17307.
Baek, J., Kim, S.W., Park, H.J., Jung, H.S., Kim, K.D., and Kim, J.W., 2008. Analysis of ground subsidence in coal mining area using SAR interferometry, Geosciences Journal, 12(3):277-284.
Bechor, N.B., and Zebker, H.A., 2006. Measuring two‐dimensional movements using a single InSAR pair. Geophysical Research Letters, 33:L16311.
Bekaert, D.P.S., Segall, P., Wright, T.J., and Hooper, A.J., 2016. A network inversion filter combining GNSS and InSAR for tectonic slip modeling, Journal of Geophysical Research: Solid Earth, 121(3):2069-2086.
Calais, E., Han, J.Y., DeMets, C., and Nocquet, J. M., 2006. Deformation of the North American plate interior from a decade of continuous GPS measurements, Journal of Geophysical Research, 111(B6).
Chen, C.W., and Zebker, H.A., 2000. Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms, Journal of the Optical Society of America A, 17:401-414.
Chen, C.W., and Zebker, H.A., 2001. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization, Journal of the Optical Society of America A, 18:338-351.
Chen, C.W., and Zebker, H.A., 2002. Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models, IEEE Transactions on Geoscience and Remote Sensing, 40:1709-1719.
Colesanti, C., Ferretti, A., Prati, C., and Rocca, F., 2003. Monitoring landslides and tectonic motions with the Permanent Scatterers Technique, Engineering Geology, 68(1-2):3-14.
Cryderman, C., Mah, S.B., and Shufletoski, A., 2015. Evaluation of UAV Photogrammetric Accuracy for Mapping and Earthworks Computations, GEOMATICA, 68(4):309-317.
De Luca, C., Zinno, I., Manunta, M., Lanari, R., and Casu, F., 2017. Large areas surface deformation analysis through a cloud computing P-SBAS approach for massive processing of DInSAR time series, Remote sensing of environment, 202:3-17.
Debella-Gilo, M., and Kääb, A., 2012. Measurement of Surface Displacement and Deformation of Mass Movements Using Least Squares Matching of Repeat High Resolution Satellite and Aerial Images, Remote Sensing, 4(1):43-67.
Dewitte, O., Jasselette, J.C., Cornet, Y., Van Den Eeckhaut, M., Collignon, A., Poesen, J., and Demoulin, A., 2008. Tracking landslide displacements by multi-temporal DTMs: A combined aerial stereophotogrammetric and LIDAR approach in western Belgium, Engineering Geology, 99(1-2):11-22.
Ferretti, A., Guarnieri, A.M., Prati, C., and Rocca, F., 2007. InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation, ESA Publications, Noordwijk, Netherlands, 215 p.
Ferretti, A., Prati, C., and Rocca, F., 2001. Permanent Scatterers in SAR Interferometry, IEEE Transactions On Geoscience and Remote Sensing, 39(1):8-20.
Fialko, Y., Simons, M., and Agnew, D., 2001. The complete (3‐D) surface displacement field in the epicentral area of the 1999 Mw7.1 Hector Mine Earthquake, California, from space geodetic observations, Geophysical Research Letters, 28(16):3063-3066.
Fialko, Y., 2004. Evidence of fluid‐filled upper crust from observations of postseismic deformation due to the 1992 Mw7.3 Landers earthquake, Journal of Geophysical Research, 109:B08401.
Fialko, Y., 2006. Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system, Nature, 441:968-971.
Fuhrmann, T., Caro Cuenca, M., Knöpfler, A., Van Leijen, F.J., Mayer, M., Westerhaus, M., Hanssen, R.F., and Heck, B., 2015. Estimation of small surface displacements in the Upper Rhine Graben area from a combined analysis of PS-InSAR, levelling and GNSS data. Geophysical Journal International, 203(1):614-631.
Gabriel, A.K., and Goldstein, R.M., 1988. Crossed orbit interferometry: theory and experimental results from SIR-B, International Journal of Remote Sensing, 9(5):857-872.
Gabriel, A.K., Goldstein, R.M., and Zebker, H.A., 1989. Mapping small elevation changes over large areas: Differential radar interferometry, Journal of Geophysical Research, 94(B7):9183-9191.
Galerkin, B.G., 1915. On electrical circuits for the approximate solution of the Laplace equation. Vestnik Inzhenerov i Tekhnikov, 19:897-908.
Goldstein, R.M. and Werner, C.L., 1998. Radar interferogram filtering for geophysical applications. Geophysical Research Letters, 25(21):4035-4038.
Graham, L.C., 1974. Synthetic interferometer radar for topographic mapping, IEEE, 62(6):763-768.
Grandin, R., Klein, E., Metois, M., Vigny, C., 2016. Three-dimensional displacement field of the 2015 Mw8.3 Illapel earthquake (Chile) from across-and along-track Sentinel-1 TOPS interferometry, Geophysical Research Letters, 43(6):2552-2561.
Gudmundsson, S., Sigmundsson, F., and Carstensen, J.M., 2002. Three-dimensional surface motion maps estimated from combined interferometric synthetic aperture radar and GPS data, Journal of Geophysical Research, 107(B10):2250.
Heunecke, O., Glabsch, J., and Schuhbäck, S., 2011. Landslide Monitoring Using Low Cost GNSS Equipment – Experiences from Two Alpine Testing Sites, Journal of Civil Engineering and Architecture, 5(8):661-669.
Hilley, G.E., Bürgmann, R., Ferretti, A., Novali, F., and Rocca, F., 2004. Dynamics of Slow-Moving Landslides from Permanent Scatterer Analysis, Science, 304(5679):1952-1955.
Hooper, A., Zebker, H., Segall, P., and Kampes B., 2004. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers, Geophysical Research Letters, 31:L23611.
Hu, J., Li, Z.W., Ding, X.L., Zhu, J.J., and Sun, Q., 2013. Derivation of 3-D coseismic surface displacement fields for the 2011 Mw 9.0 Tohoku-Oki earthquake from InSAR and GPS measurements, Geophysical Journal International, 192(2):573-585.
Lavecchia, G., Castaldo, R., De Nardis, R., De Novellis, V., Ferrarini, F., Pepe, S., Brozzetti, F., Solaro, G., Cirillo, D., Bonano, M., Boncio, P., Casu, F., De Luca, C., Lanari, R., Manunta, M., Manzo, M., Pepe, A., Zinno, I., Tizzani, P., 2016. Ground deformation and source geometry of the 24 August 2016 Amatrice earthquake (Central Italy) investigated through analytical and numerical modeling of DInSAR measurements and structural‐geological data, Geophysical Research Letters, 43(24):12-389.
Lee, J.S., Papathanassiou, K.P., Ainsworth, T.L. Grunes, M.R. and Reigber, A., 1998. A new technique for noise filtering of sar interferometric phase images. IEEE Transactions on Geoscience and Remote Sensing, 36(5):1456-1465.
Li, S.Z., 2001. Markov Random Field Modeling in Image Analysis, Springer-Verlag, Berlin, Germany, 371 p.
Lin, Q., Vesecky, J.F., Zebker, H.A., 1992. New approaches in Interferometric SAR, IEEE Transactions on Geoscience and Remote Sensing, 30(3):560-567.
Malet, J.P., Maquaire, O., and Calais, E., 2002. The use of Global Positioning System techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France), Geomorphology, 43(1-2):33-54.
Mazzoldi, A., Rinaldi, A.P., Borgia, A., and Rutqvist, J., 2012. Induced seismicity within geological carbon sequestration projects: Maximum earthquake magnitude and leakage potential from undetected faults, International Journal of Greenhouse Gas Control, 10:434-442.
Michel, R., Avouac, J.P., and Taboury, J., 1999. Measuring ground displacements from SAR amplitude images: application to the Landers earthquake, Geophysical Research Letters, 26 (7) :875-878.
Motagh, M., Walter, T.R., Sharifi, M.A., Fielding, E., Schenk, A., Anderssohn, J., and Zschau, J., 2008. Land subsidence in Iran caused by widespread water reservoir overexploitation, Geophysical Research Letters, 35:L16403.
Oskin, M.E., Arrowsmith, J.R., Corona, A.H., Elliott, A.J., Fletcher, J.M., Fielding, E.J., Gold, P.O., González-García, J.J., Hudnut, K.W., Liu-Zeng, J., and Teran, O.J., 2012. Near-Field Deformation from the El Mayor–Cucapah Earthquake Revealed by Differential LIDAR, Science, 335(6069):702-705.
Pérez, O.J., Bilham, R., Bendick, R., Velandia, J.R., Hernández, N., Moncayo, C., Hoyer, M., and Kozuch, M., 2001. Velocity field across the Southern Caribbean Plate Boundary and estimates of Caribbean/South‐American Plate Motion using GPS Geodesy 1994–2000, Geophysical Research Letters, 28(15):2987-2990.
Perski, Z., 1998. Applicability of ERS-1 and ERS-2 InSAR for land subsidence monitoring in the Silesian coal mining region, Poland, International Archives of Photogrammetry and Remote Sensing, 32:555-558.
Rodriguez, E., and Martin, J.M., 1992. Theory and design of interferometric synthetic aperture radars, IEE Proceedings-F, 139(2):147-159.
Rudy, A.C., Lamoureux, S.F., Treitz, P., Short, N., and Brisco, B., 2018. Seasonal and multi-year surface displacements measured by DInSAR in a High Arctic permafrost environment, International journal of applied earth observation and geoinformation, 64:51-61.
Sella, G.F., Dixon, T. H., and Mao, A., 2002. REVEL: A model for Recent plate velocities from space geodesy, Journal of Geophysical Research, 107(B4):2081.
Smittarello, D., Cayol, V., Pinel, V., Froger, J.L., Peltier, A., and Dumont, Q., 2019. Combining InSAR and GNSS to Track Magma Transport at Basaltic Volcanoes, Remote Sensing, 11(19):2236.
Stumpf, A., Malet, J.P., Allemand, P., and Ulrich, P., 2014. Surface reconstruction and landslide displacement measurements with Pléiades satellite images, ISPRS Journal of Photogrammetry and Remote Sensing, 95:1-12.
Wang, C., Mao, X., and Wang, Q., 2016. Landslide displacement monitoring by a fully polarimetric SAR offset tracking method, Remote Sensing, 8(8):624.
Wells, D.L., and Coppersmith, K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bulletin of the Seismological Society of America, 84(4): 974–1002.
Wright, T.J., Parsons, B.E., and Lu, Z., 2004. Toward mapping surface deformation in three dimensions using InSAR, Geophysical Research Letters, 31:L01607.
Zebker, H.A., and Goldstein, R.M., 1986. Topographic mapping from interferometric synthetic aperture radar observations, Journal of Geophysical Research, 91(B5):4993–4999.
Zebker, H.A., Rosen, P.A., Goldstein, R.M., Gabriel, A. K., and Werner, C.L., 1994. On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake, Journal of Geophysical Research, 99(B10):19617-19634.
GPSLAB,2019。URL:http://gps.earth.sinica.edu.tw/,中央研究院地質調查研究所,台北市(最後取用日期:2019年10月27日)。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top