跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/17 21:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳昱葵
研究生(外文):Yu-Kuei Wu
論文名稱:物質點法分析邊坡崩塌過程與運動機制:以貓空邊坡為例
論文名稱(外文):Material Point Method Analysis of Post-Failure Process and Kinematic Behavior of Landslides
指導教授:楊國鑫楊國鑫引用關係
指導教授(外文):Kuo-Hsin Yang
口試委員:鄧福宸林宏達周南山陳昭維
口試委員(外文):Fu-Chen TengHorn-Da LinNan-Shan ChouChao-Wei Chen
口試日期:2020-07-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:182
中文關鍵詞:物質點法大變形分析邊坡崩塌過程邊坡運動機制土壤運移與堆積
外文關鍵詞:Material point methodLarge deformationFailure processKinematic behaviorRunout distance and deposit height
DOI:10.6342/NTU202002789
相關次數:
  • 被引用被引用:2
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
山崩後土壤運移與堆積的範圍,以及是否會影響到下邊坡的保全對象,為防災與工程實務中所關切的重要議題,然而,針對邊坡災害的研究歷程,傳統極限平衡法僅能用於尋找滑動面與計算安全係數,有限元素法只適合用以模擬小變形的問題。有鑑於此,本研究選用物質點法分析邊坡破壞後之運動行為,如邊坡崩塌過程、山崩速度、土壤運移距離、堆積高度等。
本研究首先選用大型邊坡物理試驗進行數值模型驗證,確定數值分析模式的合理性,模型設定物質點為單相單點與雙相單點,並使用水力耦合進行分析,接著運用此模型進行一系列參數分析,以瞭解不同參數對邊坡破壞後的影響。研究結果說明,物質點法可以有效模擬邊坡崩塌後的行為,邊坡崩塌過程中剪裂帶發展也能精準掌握。除此之外,水力條件(如:土壤滲透係數、土壤飽和狀態)對於邊坡整體變形特徵最具影響力,隨著土壤滲透係數的增加或飽和程度的減少,可明顯有效降低邊坡變形的情形,而土壤凝聚力則能有效控制邊坡崩塌後的穩定。
進一步,本研究挑選台北市貓空兩處邊坡歷史災害進行分析與研究,兩處邊坡皆因2008年9月薔蜜颱風造成崩塌,且崩塌範圍皆涉及至重要保全對象。透過比對兩處邊坡崩塌後之實測地形剖面,發現物質點法能夠準確預測兩處邊坡的運移距離,惟土壤堆積受三維效應的影響,以二維的數值模式模擬會稍微高估山崩後土壤的堆積高度。邊坡崩塌過程中,土壤體積擠壓使孔隙水壓之激發,會加速邊坡的滑動速度,另外,下邊坡之土壤會受上方土體掩埋而堆積至最底部。然而,多組模擬結果顯示,運用不排水分析結果會較不吻合且偏向不安全分析。
There are two important issues of disaster prevention. One is the soil runout distance and deposit height and the other is the influence area of down-slope after landslide. According to the previous studies, the traditional limit equilibrium method focuses on the critical sliding surface and factor of safety. The finite element method is just suitable for simulating pre-failure behavior of landslides. Based on the statement above, this study used the material point method (MPM) to investigate post-failure behavior, including the kinematic behavior and failure process.
The first stage of this research is to verify the proposed numerical model using the physical slope experiment result. The one phase-one point and two phase-one point are used in the numerical model. The fully coupled analysis is also chosen to observe the soil-water interaction. After that, a series of parametric studies to evaluate the influence of soil properties and slope conditions on the post-failure behavior of the slope. The analysis results indicate that the MPM successfully described the large deformation behavior. And it can accurately observe the development of the shear band. Additionally, the hydraulic conditions (i.e. soil permeability and the degree of saturation of soil) significantly influence the slope deformation characteristics. The cohesion of soil has effect on controlling the stability after the landslide.
Finally, two landslide history simulations, which are located in Maokong, Taipei, are introduced. Both slopes were triggered by Typhoon Jangmi in September 2008. The results of the numerical simulation were compared to the topography profiles measured after the collapse of the two slopes. The MPM successfully simulated the runout distance of both landslides specifically. However, because soil accumulation is affected by the three-dimensional effect, the two-dimensional numerical model simulation will slightly overestimate the height of soil accumulation after the landslide. During the failure process, as the soil compresses, the pore water pressure increases and accelerates landslide. The result also shows that the soil masses of down-slope are buried to the bottom by the soil masses of up-slope. And using undrained analysis is not feasible because it limits the drainage condition of the topsoil.
誌謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VII
表目錄 XII
第一章、緒論 1
1.1研究動機與目的 1
1.2研究方法 3
1.3研究內容與架構 4
第二章、文獻回顧 6
2.1坡地災害 6
2.1.1坡地災害類型 6
2.1.2土壤邊坡滑動主要性質 8
2.2數值模擬方法比較 10
2.2.1極限平衡法 10
2.2.2有限元素法 11
2.2.3離散元素法 12
2.2.4小結 13
2.3物質點法之相關研究應用 14
第三章、物質點法介紹 25
3.1背景起源 25
3.2運算原理 26
3.2.1控制方程式 27
3.2.1離散化 31
3.2.2計算週期 39
3.3組成律模型 42

第四章、數值模型驗證與參數分析 44
4.1物理模型試驗 44
4.1.1物理模型試驗配置 44
4.1.2物理模型試驗結果 47
4.2數值模型建置 52
4.2.1幾何模型 52
4.2.2材料參數設定 53
4.2.3網格及邊界條件設定 56
4.3驗證結果 59
4.3.1破壞過程之地表面比對 59
4.3.2邊坡滑動速度與位移量 63
4.4參數分析 66
4.4.1參數分析項目 66
4.4.2參數分析結果討論 69
4.4.3參數敏感趨勢 77
第五章、案例一:貓纜T-16塔柱邊坡 80
5.1案例介紹 80
5.1.1地理位置 81
5.1.2地形與地質概況 82
5.1.3水文特性 93
5.1.4崩塌原因 95
5.2數值模型建置 96
5.2.1邊坡幾何模型 96
5.2.2土壤材料參數設定 97
5.2.3網格及邊界條件設定 101
5.2.4模型初始條件 102
5.3數值模擬結果 103
5.3.1崩塌後地表面比對 103
5.3.2崩塌過程與力學機制 105
5.3.3邊坡滑動速度與位移 112
5.3.4邊坡排水條件之比較 122
第六章、案例二:新光路邊坡 127
6.1案例介紹 127
6.1.1地理位置 128
6.1.2地形與地質概況 128
6.1.3水文特性 135
6.1.4崩塌原因 135
6.2數值模型建置 136
6.2.1邊坡幾何模型 136
6.2.2土壤材料參數設定 137
6.2.3網格及邊界條件設定 139
6.2.4模型初始條件 140
6.3數值模擬結果 141
6.3.1崩塌後地表面比對 141
6.3.2崩塌過程與力學機制 145
6.3.3邊坡滑動速度與位移 151
6.3.4邊坡排水條件之比較 161
6.4模擬結果之佐證 167
第七章、結論與建議 170
7.1結論 170
7.2工程實務之建議 172
7.3未來研究之建議 172
參考文獻 173
問題與回覆 177
Anura3D MPM Research Community. (2019). Anura3D MPM Software Scientific Manual.
Anura3D MPM Research Community. (2019). Anura3D MPM Software Tutorial Manual.
Beyer, W. (1964). Zur Bestimmung der Wasserdurchlassigkeit von Kieson und Sanduen aus der Kornverteilung [On the determination of hydraulic conductivity of gravels and sands from grain‐size distribution]. Wasserwirtschaft Wassertechnik, 14, 165- 169.
Conte, E., Pugliese, L., and Troncone, A. (2019). Post-failure stage simulation of a landslide using the material point method. Engineering Geology, 253, 149-159.
Ceccato, F. (2014). Study of large deformation geomechanical problems with the Material Point Method. Ph.D. thesis, University of Padua, Italy.
Fern, J., Rohe, A., Soga, K., and Alonso, E. (2019). The Material Point Method for Geotechnical Engineering: A Practical Guide. CRC Press of Taylor & Francis Group.
FHWA-IF-02-034. (2002). GEOTECHNICAL ENGINEERING CIRCULAR NO. 5 Evaluation of Soil and Rock Properties. GeoSyntec Consultants. U.S.
Ghasemi, P., Cuomo, S., Perna, A. D., Martinelli, M., and Calvello, M. (2019). MPM-analysis of landslide propagation observed in flume test. 2th Material Point Method for Modelling Soil-Water-Structure Interaction, Cambridge.
Hazen, A. (1892). Some physical properties of sands and gravels, with special reference to their use in filtration. Massachusetts State Board of Health, 24th Annual Report, 539–556.
Hungr, O., Leroueil, S., and Picarelli, L. (2013). The Varnes classification of landslide types, an update. Landslides, 11 (2), 167-194
Kozeny, J. (1927). Uber Kapillare Leitung der Wasser in Boden. Royal Academy of Science, Vienna, Proc. Class I, 136, 271-306.
Kulhawy, F.H., and Mayne, P.W. (1990). Manual on Estimating Soil Properties for Foundation Design. Electric Power Research Institute, Palo Alto, California.
Koyama, T., Irie, K., Nagano, K., and Nishiyama, S. (2012). DDA simulations for slope failure/collapse experiment caused by torrential rainfall. Advances in Discontinuous Numerical Methods and Applications in Geomechanics and Geoengineering, 119-125.
Lee, W.I., Martinelli, M., and Shieh, C. L. (2019). Numerical Analysis of the Shiaolin Landslide Using Material Point Method. 7th International Symposium on Geotechnical Safety and Risk, Taipei.
Lin, H. D., Huang, J. R., Wang, W. C., and Chen, C. W. (2019). Study of an unsaturated slope failure due to rainfall infiltration in wenshan district of taipei city. Journal of GeoEngineering, 14(4), 277-286.
Li, X., Wu, Y., He, S. and Su, L. (2016). Application of the material point method to simulate the post-failure runout processes of theWangjiayan landslide. Engineering Geology, 212, 1-9.
Llano-Sema, M. A., Farias, M. M., and Pedroso, D. M. (2016). An assessment of the material point method for modelling large scale run-out processes in landslides. Landslides, 13, 1057-1066.
Moriwaki, H., Inokuchi, T., Hattanji, T., Sassa, K., Ochiai, H., and Wang, G. (2004). Failure processes in a full-scale landslide experiment using a rainfall simulator. Landslides, 1(4), 277-288.
Qarinur, M. (2015). Landslide runout distance prediction based on mechanism and cause of soil or rock mass movemen. Journal of the Civil Engineering Forum, 1(1), 29-36.
Schmertmann, J. H. (1970). Static cone to compute static settlement over sand. J. Soil Mech. Found. Div. ASCE 96 (SM3), 1011-1043.
Slichter, C. S. (1899). Theoretical investigation of the motion of ground waters. Washington, D.C.: U.S. Dept. of the Interior, Geological Survey, Water Resources Division, Ground Water Branch.
Soga, K., Alonso, E., Yerro, A., Kumar, K., and Bandara, S. (2016). Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method. Géotechnique, 66(3), 248-273.
Sun, Y., Yang, J., and Song, G. (2015). Runout analysis of landslides using material point method. Iop Conference Series: Earth and Environmental Science, 26.
Varnes, D. J. (1978). Slope Movement Types and Processes. In Special Report 176: Landslides: Analysis and Control, editors R.L. Schuster and R.J. Krizek, TRB, National Research Council, Washington, D.C., 11-33.
Vardon, P. J., Wang, B., and Hicks, M. A. (2017). Slope failure with the material point method: an investigation of post-peak material behaviour. 15th International Association for Computer Methods and Advances in Geomechanics, Wuhan.
Vardon, P. J., Wang, B., and Hicks, M. A. (2017). Slope failure simulations with MPM. Procedia Engineering, 175, 258-264.
Wang, B., Vardon, P. J., and Hicks, M. A. (2016). Investigation of retrogressive and progressive slope failure mechanisms using the material point method. Computers and Geotechnics, 78, 88-98.
Wang, B., Vardon, P. J., and Hicks, M. A. (2018). Rainfall-induced slope collapse with coupled material point method. Engineering Geology, 239, 1-12.
Yang, K. H., Uzuoka, R., Thuo, J. N., Lin, G. L., and Nakai, Y. (2016). Coupled hydro-mechanical analysis of two unstable unsaturated slopes subject to rainfall infiltration. Engineering Geology, 216, 13-30.
廖瑞堂 (2001),山坡地護坡工程設計,科技圖書股份有限公司,臺灣。
費立沅 (2009),臺灣坡地災害與地質敏感區的關係,地質,28(1),16-22。
行政院農業委員會水土保持局 (2017),水土保持手冊-工程篇。
經濟部中央地質調查所、青山工程顧問有限公司 (2018),潛在大規模崩塌之調查即觀測技術手冊。
駱建成 (2019),多階加勁邊坡於泥岩邊坡保護數值分析,碩士論文,國立臺灣大學工學院土木工程學系。
林冠良 (2015),滲流與應力耦合分析探討降雨導致不飽和邊坡不穩定之機制,碩士論文,國立臺灣科技大學營建工程學系。
黃芷柔 (2018),滲流與應力耦合分析探討降雨導致不飽和邊坡不穩定之機制,實務專題研究報告,國立臺灣科技大學營建工程學系。
陳水龍、林群富 (2006),利用有限元素法與極限平衡法進行九份國小邊坡穩定分析,技術學刊,21(4),383-392。
台北市土木技師公會、台北市大地技師公會、台北市水土保持技師公會、台北市結構工程工業技師公會 (2008),台北市文山區萬壽路75巷政大御花園薔蜜風災土石崩塌鑑定報告,台北市政府。
游裕偉、傅文鵬 (2017),臺北市貓空纜車T16塔柱下邊坡整治工程,地工技術。
林德貴、張國欽、鄒瑞卿 (2018),台北貓空纜車T16-墩柱邊坡(T16-邊坡)複合型整治工程之效益評估,中華水土保持學報,49(4),214-232。
行政院農業委員會水土保持局 (2008),97年卡玫基颱風重大土石災例速報。
長碩工程顧問有限公司 (2009),薔蜜颱風文山萬壽路75巷47號後側坡地崩塌搶修工程-地質補充鑽探作業成果報告書,臺北市政府產業發展局。
青山工程顧問有限公司 (2009),文山區新光路2段74巷旁邊坡崩塌搶修及復舊防治工程-第二期整治工程調查及分析計算書,臺北市政府工務局新建工程處。
青山工程顧問有限公司 (2009),文山區新光路2段74巷旁邊坡崩塌搶修及復舊防治工程-地質調查成果報告,臺北市政府工務局新建工程處。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top