跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/16 19:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝銓裕
研究生(外文):Chuan-Yu Hsieh
論文名稱:受軸力影響之鋼板混凝土複合牆耐震行為試驗與分析研究
論文名稱(外文):Experimental and Analytical Studies on Seismic Behavior of Steel-Plate Composite Walls with Axial Compression
指導教授:黃尹男黃尹男引用關係
指導教授(外文):Yin-Nan Huang
口試委員:蔡克銓黃世建楊元森
口試委員(外文):Keh-Chyuan TsaiShyh-Jiann HwangYuan-Sen Yang
口試日期:2020-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:339
中文關鍵詞:鋼板混凝土複合牆擬靜態反覆試驗剪力強度高寬比軸壓比有限元素分析影像量測分析
外文關鍵詞:Steel-plate composite wallin-plane cyclic loadingshear strengthaspect ratioaxial compression ratiofinite element method analysisimage-based analysis technology
DOI:10.6342/NTU202003021
相關次數:
  • 被引用被引用:3
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鋼板混凝土複合牆是由兩面鋼面板(Faceplate)與內填混凝土(Infilled Concrete)複合而成,兩者之間的複合作用由焊接於鋼板內側之剪力釘(Shear Stud)與橫向螺桿(Tie Bar)等剪力連接器做為傳遞剪力媒介,並藉由橫向螺桿連結兩面鋼面板使其不分離與保持穩定性,以及避免鋼面板受壓在未降伏前即出現局部挫屈現象。由於鋼板混凝土複合牆具有高側向勁度與強度,早期主要運用於核能電廠結構,近幾年鋼板混凝土複合牆陸續被應用於超高樓核心筒系統,當此類牆體應用於超高樓層的建築物中,會承受極大的軸力,而現今設計規範AISC_341-16 (2016)的公式亦是假設牆體受純剪且未考慮軸力作用下的行為,因此,受軸力影響之鋼板混凝土複合牆耐震行為與剪力強度預測方式亟待研究釐清。
本研究於國家地震工程研究中心台南實驗室進行鋼板混凝土複合牆之擬靜態反覆載重試驗,所使用的試驗儀器為雙軸向動態測試系統(BATS),試驗之試體共有六座,改變的參數為高寬比與軸壓比,試驗結果發現軸力對於鋼板混凝土複合牆的強度影響並不大,但對牆體後強度行為有明顯之影響。另外,本研究比較試驗結果與規範及不同學者提出此類牆體之剪力預測模型以驗證其適用範圍。
依據六座剪力破壞主控之鋼板混凝土複合牆試體尺寸與材料性質,本研究進行有限元素的模擬與分析,並利用試驗結果驗證模型分析之準確性。此外,由於影像量測分析的眾多優點,本研究利用此方法觀察試體之鋼面板於反覆側推作用下的位移場與應變場,進而掌握鋼面板於試驗過程中變形與破壞行為。最後,針對相同尺寸及用鋼量的鋼筋混凝土剪力牆與鋼板混凝複合牆進行剪力強度之比較,以了解不同設計參數對兩者剪力強度之影響。
Steel-Plate Composite Walls (SC walls) are composed of two sheets of steel faceplates, infill concrete and connectors, where the connectors are typically constructed from shear studs and cross-wall tie bars welded to the steel faceplates. The connectors are used to transfer shear between steel faceplates and concrete. In addition, cross-wall tie bars are designed to connect the opposite steel faceplates, provide structural integrity, and prevent the steel faceplates from local buckling before yielding in compression. Having high stiffness and strength, the SC walls were used in safety-related nuclear facilities at first. In recent years, they have been applied to the core of super high-rise buildings. When applied to super high-rise buildings, SC walls will be subjected to great axial force. Besides of that, the shear strength formula of the current design specification AISC_341-16 (2016) assumes that SC walls are subjected to pure in-plane shear, and axial force is not considered in the formula. Therefore, this study evaluates the impact of axial force on seismic behavior of SC walls via large-scale quasi-static tests.
The experiment was conducted at the Tainan laboratory of the National Center for Research on Earthquake Engineering and the experimental equipment was Bi-Axial Testing System (BATS). A total of six wall specimens (for two aspect ratios and three axial compression ratio.) were designed and fabricated. The experimental results indicate the axial force has limited influence on the shear strength, but accelerates post-peak strength degradation of the SC walls. In addition, the current specifications and the equations proposed by different scholars are verified using experimental results of 16 specimens from the past tests and from this experimental program.
According to the size and material properties of the six wall specimens, experiments are simulated and analyzed by using finite element method in this study. The analytical results are then used to compare to experimental data to verify the accuracy of the finite element analytical models. Moreover, due to the several advantages of the image-based analysis technology, the study uses this method to compute the displacement and strain fields of the steel faceplates of the specimens under displacement-controlled cyclic loading so that the locations and timing for the deformation and rupture of the steel faceplates are identified Finally, shear strengths of RC and SC walls with identical size and reinforcement ratio were compared to better understand the differences between the two types of walls.
審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 xi
表目錄 xxi
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 3
1.3 論文結構 6
第二章 文獻回顧 11
2.1 軸壓比之計算公式 12
2.2 鋼板混凝土複合牆平面內受純剪作用下之剪力強度預測與剪力行為試驗之相關研究 12
2.3 鋼板混凝土複合牆不受軸力在單曲率變形之側推力作用下之相關研究 16
2.3.1 剪力強度預測與剪力行為試驗之研究 16
2.3.2 撓曲強度預測與撓曲行為試驗之研究 24
2.4 鋼板混凝土複合牆受軸力在側推力作用下之相關研究 28
2.4.1 剪力強度預測與剪力行為試驗之研究 28
2.4.2 撓曲強度預測與撓曲行為試驗之研究 35
第三章 試體設計與規劃 58
3.1 試驗目標 58
3.2 試體變因參數 58
3.3 試體設計 59
3.3.1 試體細部設計 60
3.3.1.1 試體高度設計與斷面設計 60
3.3.1.2 試體螺桿間距與預力孔位設計 61
3.3.1.3 牆體其他細部設計 61
3.3.2 試體剪力強度初步估算 62
3.4 試體施作 64
3.5 試驗外加載重程序 65
3.5.1 試體基礎預力加載 65
3.5.2 試體軸力加載 66
3.5.3 反覆載重加載 67
3.6 量測儀器佈置 68
3.6.1 位移計佈置 68
3.6.2 三軸應變計佈置 69
3.6.3 光學量測儀器(NDI)之量測點佈置 70
3.6.4 影像量測分析系統(ImPro Console)佈置 71
3.6.5 攝影器材佈置 71
3.6.6 石膏漆 71
第四章 試驗結果 104
4.1 材料試驗結果 104
4.1.1 混凝土抗壓試驗結果 104
4.1.2 鋼面板與邊界鋼板拉伸試驗結果 105
4.2 反覆載重試驗數據整理 105
4.3 遲滯迴圈比較與破壞結果之探討 106
4.3.1 遲滯迴圈比較 107
4.3.2 破壞結果 109
4.4 能量消散與韌性分析之探討 111
4.4.1 能量消散 111
4.4.2 韌性分析 112
4.5 光學量測儀器(NDI)量測結果與牆體變形貢獻 114
4.5.1 光學量測儀器(NDI)量測結果 114
4.5.2 牆體剪力變形貢獻 115
4.6 石膏漆剝落之分佈 116
4.7 預測模型與試驗結果之剪力強度比較 117
第五章 影像量測分析系統(Impro Console) 174
5.1 影像量測之簡介 174
5.2 影像量測之相關理論與流程 175
5.2.1 相機校正 175
5.2.2 圖樣識別 176
5.2.3 三角定位 177
5.3 影像量測之結果 178
5.3.1 牆體表面位移場 178
5.3.2 影像量測之水平與垂直向位移量驗證 180
5.3.3 牆體表面應變場 182
第六章 有限元素模型分析與結果 220
6.1 有限元素模型之設定 220
6.1.1 選用之有限元素軟體介紹 220
6.1.2 有限元素模型之建立 221
6.1.3 有限元素模型之元素選用與設定 222
6.1.4 接觸條件之設定 223
6.1.5 邊界條件之設定 224
6.2 選用之混凝土材料模型特性分析與評估 225
6.2.1 混凝土材料模型之選用與設定 225
6.2.2 單軸向抗壓試驗分析與評估 227
6.2.3 單軸向一次抗拉與抗壓試驗分析與評估 227
6.2.4 綜合評估混凝土材料特性 228
6.3 選用之鋼板材料模型特性分析與評估 228
6.3.1 鋼板材料模型之選用與設定 229
6.3.2 等向硬化與動態硬化之定義 232
6.3.3 不同鋼材材料的非線性行為 233
6.3.4 MAT_153材料不同參數分析結果 233
6.4 有限元素模型分析結果與試驗結果之比較 234
6.4.1 單向側推分析結果與試驗結果之分析 235
6.4.1.1 混凝土材料MAT_159與鋼材材料MAT_081 235
6.4.1.2 混凝土材料MAT_159與鋼材材料MAT_153 236
6.4.2 反覆載重分析結果與試驗結果之分析 237
6.4.2.1 混凝土材料MAT_084/085與鋼面板材料MAT_081 237
6.4.2.2 混凝土材料MAT_084/085與鋼面板材料MAT_153 238
6.4.2.3 分析試體於內填混凝土與鋼面板剪力貢獻之探討 238
6.4.2.4 軸壓比與高寬比對於牆體剪力強度之影響 240
6.4.2.5 鋼面板於試驗與分析之變形行為比較 242
第七章 RC牆與SC牆之剪力強度比較 306
7.1 鋼筋混凝土剪力牆 306
7.1.1 分析試體斷面介紹 306
7.1.2 剪力強度預測公式 307
7.1.2.1 ACI 318-14規範 307
7.1.2.2 軟化壓拉桿模型(SST) 309
7.2 鋼板混凝土複合牆 311
7.2.1 分析試體斷面介紹 311
7.2.2 剪力強度預測公式 311
7.3 RC牆與SC牆之剪力強度比較 312
7.3.1 分析牆體設計參數 312
7.3.2 分析試體之剪力強度比較 312
7.3.2.1 Case 1 312
7.3.2.2 Case 2 313
7.3.2.3 Case 3 314
7.3.2.4 Case 4 314
7.3.2.5 改變不同參數之剪力強度變化 315
第八章 結論與建議 326
8.1 結論 326
8.1.1 試驗之結論 326
8.1.2 影像量測分析之結論 328
8.1.3 有限元素分析之結論 329
8.1.4 RC牆與SC牆剪力強度比較之結論 330
8.2 建議 331
8.2.1 試驗之建議 331
8.2.2 影像量測分析之建議 331
8.2.3 有限元素分析與剪力強度預測模型之建議 333
參考文獻 334
ACI 318-14 (2014). “Building Code Requirements for Structural Concrete and Commentary.” ACI 318-14, American Concrete Institute, Farmington Hills, Michigan.
AISC 341-16 (2016). “Seismic Provisions for Structural Steel Buildings.” ANSI/AISC 341-16, American Institute of Steel Construction, Chicago, Illinois.
AISC N690s1-15 (2015). “Specification for Safety-Related Steel Structures for Nuclear Facilities.” AISC N690s1-15, American Institute of Steel Construction, Chicago, Illinois.
Booth, P., Varma, A. H., and Seo, J. (2015). “Lateral load capacity of steel plate composite wall structures.” In Transactions of the 23rd International Conference on Structural Mechanics in Reactor Technology, SMiRT (Vol. 23).
Booth, P. N., Bhardwaj, S. R., Tseng, T. C., Seo, J., and Varma, A. H. (2020). “Ultimate shear strength of steel-plate composite (SC) walls with boundary elements.” Journal of Constructional Steel Research, 165, 105810.
Bruneau, M., Varma, A. H., and Hooper, J. (2016). “Composite Plate Shear Walls - Concrete Filled (C-PSW/CF).” Proceedings of the Steel Conference: 2016 NASCC, American Institute of Steel Construction, Chicago.
CEB-FIP (1990). “CEB-FIP Model Code 1990.” Thomas Telford, London.
Coleman, D. K. (2016). “Evaluation of Concrete Modeling in LS-DYNA for Seismic Application.” Thesis for Degree of Master of Science in Engineering, The University of Texas at Austin.
DOE. (2004). “Application of Advanced Construction Technologies to New Nuclear Power Plants. MPR-2610, Rev. 2.” Technical Report U.S. Department of Energy Washington, D.C.
Epackachi, S., Nguyen, N. H., Kurt, E. G., Whittaker, A. S., & Varma, A. H. (2014). “Numerical and experimental investigation of the in-plane behavior of rectangular steel-plate composite walls.” Structures Congress, 2478-2487.
Epackachi, S., Whittaker, A. S., and Huang, Y. N. (2015). “Analytical modeling of rectangular SC wall panels.” Journal of Constructional Steel Research, 105, 49-59.
Funakoshi, A., Akita, S., Matsumoto, H., Hara, K., Matsuo, I., and Hayashi, N. (1998). “Experimental Study on a Concrete Filled Steel Structure Part. 7 Bending Shear Tests (Outline of the Experimental Program and the Results).” Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, 1063-1064.
Guo, Q. Q., Huang, Z. Y., Zhao, W. Y., Ke, F., and Tan, L. (2015). “Calculation method for shear bearing capacity of steel-concrete composite shear wall.” Journal of Building Structure, 36(6), 145-150.
Hong, S. G., Lee, S. J., and Lee, M. J. (2014) “Steel Plate Concrete Walls for Containment Structures in Korea: In-Plane Shear Behavior.” Infrastructure System for Nuclear Energy, First Edition, 237-257.
Hwang, S. J., and Lee, H. J. (2002). “Strength prediction for discontinuity regions by softened strut-and-tie model.” Journal of Structural Engineering, 128(12), 1519-1526.
JEAC 4618 (2005). “Technical guidelines for seismic design of steel plate reinforced concrete structures-buildings and structures.” Japan Electric Association, Tokyo, Japan.
JEAC_4618 (2009). “Technical code for seismic design of steel plate reinforced concrete structures: Buildings and structures.” Japan Electric Association, Tokyo, Japan.
JGJ 3–2010. (2010). “Technical specification for concrete structures of tall building.” Beijing, China.
Jiaji, W., Fan, Z., Zing C., Wang, J., Fan, J.-S., Tao, M.-X., and Yang, Z. (2016). “Research on effect of axial compression ratio on steel plate concrete composite shear walls.” 37, 29-37.
Ji, X., Cheng, X., Jia, X., and Varma, A. H. (2017). “Cyclic In-Plane Shear Behavior of Double-Skin Composite Walls in High-Rise Buildings.” Journal of Structural Engineering, 143(6), 04017025.
Ji, X., Jiang, F., & Qian, J. (2013). “Seismic behavior of steel tube–double steel plate–concrete composite walls: experimental tests.” Journal of Constructional Steel Research, 86, 17-30.
Kelly, P. (2013). “Solid Mechanics Part II:Engineering Solid Mechanics – small strain”. The University of Auckland.
KEPIC-SNG (2010). “Specification for safety-related steel plate concrete structures for nuclear facilities.” KEPIC-SNG, Board of KEPIC Policy, Structural Committee, Korea Electric Association, Seoul.
Kurt, E. G., Varma, A. H., Booth, P., and Whittaker, A. S. (2016). “In-Plane Behavior and Design of Rectangular SC wall Piers without Boundary Elements.” Journal of Structural Engineering, 142(6), 04016026.
Kurt, E. G., Varma, A. H., Epackachi, S., and Whittaker, A. S. (2015). Rectangular SC wall piers: summary of seismic behavior and design. Structures Congress 1042-1051.
Lai, Z., Varma, A. H., and Zhang, K. (2014). “Noncompact and Slender Rectangular CFT Members: Experimental Database, Analysis, and Design.” Journal of Constructional Steel Research, 101, 455-468.
Miyasaka, E., Ishimura, K., Fujita, T., Miyamoto, Y., and Suzuki, A. (2007). “Dynamic Characteristics of a SC Building in Kashiwazaki NPP Site using Vibration Test - Part 2: Simulation Analysis.”
Nie, J. G., Hu, H. S., Fan, J. S., Tao, M. X., Li, S. Y., and Liu, F. J. (2013). “Experimental study on seismic behavior of high-strength concrete filled double-steel-plate composite walls.” Journal of Constructional Steel Research, 88, 206-219.
Niousha, A., Naito, Y., Miyasaka, E., and Uchiyama, S. (2007). “Dynamic Characteristics of a SC Building in Kashiwazaki NPP Site using Vibration Test – Part 1: Data Analysis and System Identification. ”
Okereke, M., and Keates, S. (2018). “Finite element applications.” Cham: Springer International Publishing AG.
Ozaki, M., Akita, S., Osuga, H., Nakayama, T., and Adachi, N. (2004). “Study on Steel Plate Reinforced Concrete Panels Subjected to Cyclic In-Plane Shear.” Nuclear Engineering and Design, 228(1-3), 225-244.
Park, R. (1988). “Ductility Evaluation from Laboratory and Analytical Testing.” Proceedings of the 9th World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan, 605-616.
Paulay, T., and Priestley, M. N. (1992). “Seismic design of reinforced concrete and masonry buildings.”
Takeuchi, M., Narikawa, M., Matsuo, I., Hara, K., and Usami, S. (1998). “Study on a Concrete Filled Structure for Nuclear Power Plants.” Nuclear Engineering and Design, 179(2), 209-223.
Varma, A. H., Malushte, S. R., Sener, K. C., and Lai, Z. (2014). “Steel-Plate Composite (SC) Walls for Safety Related Nuclear Facilities: Design for In-Plane Forces and Out-of-Plane Moments.” Nuclear Engineering and Design, 269, 240-249.
Varma, A. H., Zhang, K., Chi, H., Booth, P. and Baker, T. (2011). “In-Plane Shear Behavior of SC Composite Walls: Theory vs. Experiment.” Transactions, SMiRT-21, New Delhi, India.
Wittmann, F. H., Rokugo, K., Brühwiler, E., Mihashi, H., and Simonin, P. (1988). “Fracture Energy and Strain Softening of Concrete as Determined by Means of Compact Tension Specimens.” Materials and Structures, 21(1), 21-32.
Yang, Y. S., Huang, C. W., and Wu, C. L. (2012). “A simple image‐based strain measurement method for measuring the strain fields in an RC‐wall experiment.” Earthquake engineering & structural dynamics, 41(1), 1-17.
Huang, Y. and Mahin, S. A. (2010). “Simulating the inelastic seismic behavior of steel braced frames including the effects of low-cycle fatigue.” University of California, Berkeley.
卜凡民、聶建國與樊健生 (2013)。高軸壓比下中高剪跨比雙鋼筋-混凝土組合剪力牆抗震性能試驗研究。建築結構學報,34(4),91-98。
何其安 (2016)。有邊界構材之鋼板混凝土複合牆之耐震行為與分析研究。國立臺灣大學工學院土木工程學系碩士論文,臺北市。
林柏劭 (2017)。含邊界構材之鋼板混凝土複合牆反覆載重試驗研究。國立臺灣大學工學院土木工程學系碩士論文,臺北市。
陳柏安 (2015)。低矮型鋼板混凝土複合牆之耐震性能試驗與分析。國立臺灣大學工學院土木工程學系碩士論文,臺北市。
陳威志 (1999)。梁翼切削與弱梁柱交會區共存型梁柱接頭韌性行為研究。國立臺灣大學工學院土木工程學系碩士論文,臺北市。
高翊書 (2019)。受軸力影響之鋼板混凝土複合牆耐震行為分析研究。國立臺灣大學工學院土木工程學系碩士論文,臺北市。
馬愷澤、闕昂與劉伯權 (2015)。雙層鋼板混凝土組合剪力牆滯回性能研究。建築科學與工程學報,32(04),39-45。
翁樸文、李翼安、蔡仁傑、與黃世建 (2016)。低矮型鋼筋混凝土剪力牆之側力位移曲線預測。結構工程,31(1),37-60。
曹君婕 (2018)。鋼筋混凝土剪力牆破壞與倒塌行為研究。國立臺灣大學工學院土木工程學系碩士論文,臺北市。
張明康 (2017)。有邊界構材之鋼板混凝土複合牆之剪力行為分析研究。國立臺灣大學工學院土木工程學系碩士論文,臺北市。
國家地震工程研究中心 (2018)。台灣結構耐震評估測推分析法(TEASPA V3.1),臺北市。
黃仲偉、紀乃文、陳北亭、楊元森與林詠彬 (2016)。影像量測於結構監測之應用。土木水利,43(1),66-74。
黃晨暐 (2017)。光學檢測自動化之穩定性改善與系統開發。國立臺北科技大學土木工程系土木與防災研究所碩士論文,臺北市。
詹家昕 (2018)。含邊界構材之鋼板混凝土複合剪力牆側力位移曲線模型之研究。國立臺灣大學工學院土木工程學系碩士論文,臺北市。
鄭與錚 (2016)。有邊界構材之鋼板混凝土複合牆之耐震行為與試驗研究。國立臺灣大學工學院土木工程學系碩士論文,臺北市。
鄭錦銅、張詠欽與張惠雲 (2019)。低降伏鋼板與混凝土複合剪力牆耐震性能研究。工程永續與土木防災研討會論文集。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊