跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/16 12:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:童舒暘
研究生(外文):SHU-YANG TUNG
論文名稱:岩石水力破裂數值分析模式建立暨初步物理模型試驗
論文名稱(外文):Establishment of Numerical Analysis Model and Preliminary Lab Test for Hydraulic Fracture of Rock
指導教授:王泰典
指導教授(外文):Tai-Tien Wang
口試委員:鄭富書廖志中葉恩肇邱家吉
口試委員(外文):Fu-Shu JengJYH-JONG LIAOEn-Chao YehChia-Chi Chiu
口試日期:2020-06-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:102
中文關鍵詞:水力破裂物理實驗水力破裂數值模擬應力估算裂縫初生裂縫生衍PFC 模擬
外文關鍵詞:Hydraulic fracturing experimentHydraulic fracturing simulationStress state estimationFracture propagationPFC simulation
DOI:10.6342/NTU202003273
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現地應力量測的重要性與日俱增,亦有許多調查現地應力方法,然而現地情況相當複雜,岩石的異質性或者結構本身的異向性甚至於其他因素皆有可能影響現地應力量測,若要充分了解不同影響因素對於量測的影響,需要建立一個簡單的環境,並且能簡便的控制並更改需要觀察的因子,來研究其對現地應力量測影響。建立一套能夠達成此一目的的程序是初始且至關重要的一環,此亦是本研究的目標。
本研究採用了調查現地應力中一個常見的方法——現地水力破裂試驗(Hydraulic Fracturing, HF)的概念,設計出實驗室規模的實驗。岩石水力破裂試驗相對於其他調查方法,通過水壓力紀錄、孔內影像以及岩石材料性質,更容易推估現地應力方向以及大小,然而水力破裂試驗雖可估算出現地應力情形,然而現地岩層情況太過於複雜,無法準確得知結果屬於鑽孔附近處局域之現地應力,或者其能夠代表全域之現地應力,此亦為水力破裂試驗目前需要改善之處,使估算的精度提升。
為了建立能夠探索現地應力影響因素之研究方法,本研究中採用了一邊長為30公分之立方形試體,於中間製作一鑽孔並封堵住上下兩側,將水注入鑽孔內側以進行實驗室尺度之水力破裂實驗,用以了解所建立之實驗系統能否順利執行水力破裂實驗,並且能夠提供之後的數值模分析模式一個驗證之手段;研究中所使用之數值分析軟體為以離散元素法(Discrete Element Method, DEM)為基礎之顆粒流數值模擬軟體(Particle Flow Code, PFC),對相同尺寸之模型進行二維下之模擬,確認數值分析模式的可行性,並且探討不同圍壓下裂縫的生衍模式。於研究最後建立包含物理實驗及數值分析的執行步驟、程序,為往後了解現地應力量測影響因素的研究做為基石。
In-situ stress is an important parameter for civil engineering and will affect the design significantly. There’s different method nowadays of in-situ stress estimation like focal mechanism, inversion of fault slip data, and hydraulic fracturing. However, it’s difficult to estimate the exact in-situ stress. The reason why is that magnitude and orientation of in-situ stress can influence by complex reason, such as heterogeneity of material, structure anisotropy of rock, and terrain. Thus, it’s important to clarify the influence of different reason when conducting the estimation.
Apparently, it’s difficult to clarify the impact of different factors under in-situ condition since the interaction between them. Hence, a simpler situation should be created. A laboratory scale hydraulic fracturing test will be a good solution. By using mortar as experiment material, the control of conditions is possible. Changing different target factors and conducting hydraulic fracturing test could show the influence of corresponding factors through the result. After a series of research, the influence is clarified. But before it, a process of laboratory scale hydraulic fracturing should be established.
In this research, laboratory hydraulic fracturing experiment will be conduct, and fracture will be observed. The fracture initiation and propagation pattern, injection water pressure, and confining stress magnitude will obtain and be record during the physical experiment. After finishing a series of experiment, numerical analysis software PFC (Particle Flow Code) will carry out to simulate the physical experiment for the purpose of obtaining detailed data. A progress including physical experiment, numerical simulation, and calibration of hydraulic fracturing test will then be given.
誌謝 I
中文摘要 II
ABSTRACT III
大綱 IV
圖目錄 V
表目錄 VIII
第 1 章 前言 1
1.1 研究動機 1
1.2 目的 2
1.3 預期成果 2
1.4 論文概要 3
1.5 流程圖 4
第 2 章 文獻回顧 5
2.1 現地應力 5
2.2 現地應力調查方法 10
2.3 世界應力圖計畫 17
2.4 局部應力下的裂縫衍生 20
2.5 實驗室水力破裂試驗 22
2.6 數值模擬水力破裂 24
第 3 章 研究方法論 32
3.1 實驗室尺度水力破裂實驗 32
3.2 物理模型 34
3.3 數值模擬 51
第 4 章 結果與討論 64
4.1 物理實驗結果與討論 64
4.2 數值模擬分析結果與討論 70
第 5 章 結果與建議 84
5.1 物理模型實驗 84
5.2 數值模擬分析 84
參考文獻 85
附錄 I 正交實驗設計因子(考慮交互作用項) 89
附錄 II 變異數分析 91
附錄 III 回歸分析 96
附錄 IV 口試回答紀錄暨回覆表 99
1.Adachi, J., Siebrits, E., Peirce, A., Desroches J., 2007. Computer simulation of hydraulic fractures. Int. J. Rock Mech. Min. Sci. 44, 739–757.
2.Al-Busaidi A., Hazzard J. F., Young R. P., 2005. Distinct element modeling of hydraulically fractured Lac du Bonnet granite. J. Geophys. Res. 110, B06302.
3.Barth, A., Reinecker, J., Heidback, O., 2008. Stress derivation from earthquake focal mechanisms, World Stress Map Project – Guidelines, 12.
4.Bell, J.S., Gough, D.I., 1979. Northeast-southwest compressive stress in Alberta: evidence from oil wells. Earth Planet Sci. Lett. 45, 475-482.
5.Bock, H., 1993. Measuring in-situ rock stresses by borehole slotting. In: Hudson, J. A., editor. Comprehensive rock engineering—principles, practice & projects, vol. 3. Oxford: Pergamon Press, 433-443.
6.Cornet, F. H., 1986. Stress determination form hydraulic tests on preexisting fractures - the H. T. P. F. method, Proc. Int. Symp. On Rock Stress and Rock Stress Measurements, 301-312.
7.Cornet, F. H., Burlet, D., 1992. Stress field determinations in France by hydraulic tests in boreholes. J. Geophys. Res. 97, b8, 11829-11849.
8.Cornet, F. H., Valette, B., 1984. In situ stress determination and failure go brittle rock. J. Geophys. Res. 88, 9485-9492.
9.Crampin, S., 1978. Seismic wave propagation through a cracked solid: polarisation as a possible dilatancy diagnostic. Geophys. J. R. Astron Soc, 53, 467-496.
10.Crampin, S., Booth, D. C., Krasnova, M. A., Chesnokov, E. M., Maximov, A. B., Tarasov, N. T., 1986. Shear wave polarisations in the Peter the first range indicating crack-induced anisotropy in a thrust-fault regime. Geophys. J. R. Astron Soc 84, 401-412.
11.Dey, T., Brown, D., 1986. Stress measurements in deep granitic rock mass using hydraulic fracturing and differential strain curve analysis. In: Stephansson, O., editor. Rock stress and rock stress measurements. Centek Publishers, Lulea, 351-357.
12.Falls, S. D., Young, R. P., Carlson, S. R., Chow, T., 1992. Ultrasonic tomography and acoustic emission in hydraulically fractured Lac du Bonnet granite: Journal of Geophysical Research, 97, no. B5, 6867–6884.
13.Goodman, R.E., 1980. Introduction to rock mechanics. Wiley, New York.
14.Guo, T., Zhang, S., Qu, Z., Zhou, T., Xiao, Y., Gao, J., 2014. Experimental study of hydraulic fracturing for shale by stimulated reservoir volume. Fuel 128, 373–380.
15.Haimson, B. C., 1997. Borehole breakouts and core disking as tools for estimating in situ stress in deep hole. In: Sugawara, L., Obara, Y., editor. Proceedings of the international symposium on rock stress, AA Balkema, Rotterdam, 35-42.
16.Haimson, B. C., Cornet, F. H., 2003. ISRM suggested methods for rock stress estimation - Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF), Int. J. Rock Mech. Min. Sci. & Geomech., Abstr., 40, 7-8, 1011-1020.
17.Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J., Reiter, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M.O., Zoback, M.L., Zoback, M.D., 2018. The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics 744,484-498.
18.Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D., Müller, B., 2008. Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics 482, 3-15.
19.Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Mu¨ller, B., Reinecker, J., et al., 2018. The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 744, 484–498.
20.Herget, G., 1986. Changes of ground stresses with depth in the Canadian Shield. In: Stephansson, O., editor. Rock stress and rock stress measurements, Centek Publishers, Lulea, 61-68.
21.Hoek, E., and Bieniawski, Z. T., 1965. Brittle fracture propagation in rock under compression, Int. J. Fracture, Mech. 1, 137-155.
22.Hubbert, K. M., Willis, D. G., 1957. Mechanics of hydraulic fracturing. Petroleum Transactions, AIME, T.P. 4597 210, 153-166.
23.Hyett, A. J., Dyke, C. G., Hudson, J. A., 1986. A critical examination of basic concepts associated with the existence and measurement of in situ stress. In: Stephansson, O., editor. Proc. of Rock Stress and Rock Stress Measurement Conference. Stockholm: Centek, 387-396.
24.ISRM, 1979. International society of rock mechanics commission on testing methods, suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int. J. Rock Mech. Min Sci. Geomech. Abstr., 16, 138–140.
25.ISRM, 1978. Suggested Methods for Determining Tensile Strength of Rock Materials Part 2: Suggested Method for determining indirect tensile strength by the Brazil Test. International Journal of Rock Mechanics and Mining Sciences, 15, 99-103.
26.Kaiser, J., 1953. Erkenntnisse und Folgerungen aus der Messung won Geräuschen bei Zugbeanspruchung von metallischen Werkstoffen. Archiv für das Eisenhüttenwesen 24, 43-45.
27.Knoll, P., 1990. The fluid-induced tectonic rock burst of March 13, 1989 in Werra potash mining district of the GDR (first result). Gerlands Beiträge zur Geophysik 99, 239-245.
28.Leeman, E. R., 1964. The measurement of stress in rock-Parts I, II and III. J. S. Air Inst. Min Metal 65, 45-114, 254-284.
29.Leeman, E. R., Hayes, D. J., 1966. A technique for determining the complete state of stress in rock using a single borehole. In: proceedings 1st congress international society of rock mechanics, vol. 2, Lisbon, 17-24.
30.Li, Y., Schmitt, D. R., 1998. Drilling-induced core fractures and in situ stress. K. Geophys. Res. 103(B3), 5225-5239.
31.Matsuki, K., 2008. Anelastic strain recovery compliance of rocks and its application to in situ stress measurement. Int. J. Rock Mech. Min. Sci. 45, 952-965.
32.Matsuki, K., 1991. Three-dimensional in-situ stress measurement with anelastic strain recovery of a rock core. In: Wittke, W., editor. Proc. 7th Int. Congr. Rock Mech., Aachen, 1, 557-560.
33.Pasic, B., Medimurec, N. G., & Matanovic, D., 2007. Wellbore Instability: Causes and Consequences. University of Zagrab, Faculty of Mining, Geology and Petroleum Engineering, Pierottijeva 6, 10000 Zagreb, Croatia.
34.Pendexter, C., Rohn, R. E., 1954. Fracture induced during drilling. J. Pet Technol 6, 15-49.
35.Potyondy, D. O., Cundall, P. A., 2004. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences 41, 1329–1364.
36.Ren, N. K., Hudson, P. J., 1985. Predicting the in-situ state of stress using differential wave velocity analysis. In: Ashworth, E., editor. Proceedings 26th US symposium on rock mechanics, Rapid City, South Dakota, 1235-1244.
37.Sakurai, S., Akutagawa, S., 1994. Back analysis of in-situ stresses in a rock mass taking into account its non-elastic behavior. In: Proceedings ISRM international symposium of integral approach to applied rock mechanics, Santiago, Chile, 1, 135-143.
38.Sakurai, S., Shimizu, N., 1986. Initial stress back analyzed from displacements due to underground excavations. In: Stephansson, O., editor. Rock stress and rock stress measurements. Centek Publishers, Lulea, 679-686.
39.Simmons, G., Siegfried, R. W., Feves, M., 1974. Differential strain analysis: a new method for examining cracks in rocks. J. Geophys. Res., 79, 4383-4385.
40.Sjo¨berg, J., Klasson, H., 2003. Stress measurement in deep boreholes using the Borre (SSPB) probe. Int. J. Rock Mech. Min Sci., 40,1205–23.
41.Stephansson, O., 1983. Rock stress measurement by sleeve fracturing. In: Proceedings 5th congress international society of rock mechanics (ISRM), Melbourne, Balkema, Rotterdam, F129-F137.
42.Stopinski, W., Dmowska, R., 1984. Rock resistivity in the Lubin (Poland) copper mine and its relation to variations of strain field and occurrence of rock bursts. In: Gay, N. C., Wainwright, E. H., editor. Rock bursts and seismicity in mines, the South African Institute of Mining and Metallury, Johannesburg, Symposium Ser. No. 6, 297-307.
43.te Kamp, L., Rummel, F., Zoback, M. D., 1995a. Hydrofrac stress profile to 9 km depth at the German KTB drill site. In: Emmermann, R., Lauterjung, J., Umsonst, T., editor. Contribution to the 8th annual KTB colloquium. Giessen, 19-22.
44.te Kamp, L., Rummel, F., Zoback, M. D., 1995b. Hydrofrac stress profile to 9 km depth at the German KTB drill site. In: Proceedings workshop on rock stress in the North Sea, Trondheim, Norway, NTH and SINTEF Publications, Trondheim, 147-153.
45.Teufel, L. W., 1983. Determination of in-situ stress from inelastic strain recovery measurements of oriented core. Symposium on low permeability gas reservoirs, Denver, Colorado, SPE/DOE 11649: 421-430.
46.Tincelin, M. E., 1951. Research on rock pressure in th iron mines of Lorraine. In: Proceedings conference international sur les Pressions de Terrain et le Soutenement dans les Chantiers d’ Exploitation, 24-28 Avril, Liege, 158-175.
47.Trifu, C. I., 2002. The mechanism of induced seismicity, 159(1-3), 617.
48.Weng, X., Kresse, O., Cohen, C., Wu, R., Gu, H., 2011. Modeling of hydraulic fracture network propagation in a naturally fractured formation. In: Paper SPE 140253 presented at the SPE Hydraulic Fracturing Conference and Exhibition, Woodlands, TX, USA, 24–26 Jan.
49.Yamamoto, K., Kuwahara, Y., Kato, N., Hirasawa, T., 1990. Deformation rate analysis: a new method for in situ stress estimation from inelastic deformation of rock sample under uniaxial compressions. Took Geophys. J33(2), 127-147.
50.Zang, A., Berckhemer, H., Lienert, M., 1996. Crack closure pressures inferred from ultrasonic drill core measurements to 8 km depth in the KTB wells. Geophys. J. Int. 124, 657-674.
51.Zang, A., Stephansson, O., 2010. Stress Field of the Earth’s Crust. Springer, New York, 63–70.
52.Zoback, M. D., Mastin, L. G., Barton, C., 1986. In-situ stress measurements in deep boreholes using hydraulic fracturing, wellborn breakouts, and Stonely wave. In: Stephansson, O., editor. Rock stress and rock stress measurements. Centek Publishers, Lulea, 289-299.
53.Zoback, M. D., Rummel, F., Jung, R., Raleigh, C. B., 1977. Laboratory hydraulic fracturing experiments in intact and pre-fractured rock. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 14(2), 49–58.
54.Zoback, M. L., Zoback, M. D., Adams, J., Assumpcão, M., Bell, S., Bergman, E. A., Blümling, P., Brereton, N. R., Denham, D., Ding, J., Fuchs, K., Gay, N., Gregersen, S., Gupta, H. K., Gvishiani, A., Jacob, K., Klein, R., Knoll, P., Magee, M., Mercier, J. L., Müller, B. C., Paquin, C., Rajendran, K., Stephansson, O., Suares, G., Suter, M., Udias, A., Xu, Z. H., Zhizhin, M., 1989. Global patterns of tectonic stress. Nature, 341, 291-298.
55.葉恩肇、王泰典,2015,宜蘭南部地區孔內地球物理井測以及導水裂隙與現地應力力學關係之研究,科技部補助專題研究計畫成果報告,國家型科技計畫-地質資源特性探勘分項,總計畫「宜蘭地區深層地熱資源調查及加強型地熱系統場址的評估(II)之子計畫六,MOST 104-3113-M-002-001」。
56.葉恩肇、王泰典,2017,宜蘭南部地區孔內地球物理井測以及導水裂隙與現地應力力學關係之研究,科技部補助專題研究計畫成果報告,國家型科技計畫-地質資源特性探勘分項,總計畫「宜蘭平原深層地熱探勘鑽井及地熱系統開發研究-宜蘭平原南部地熱概念模型和精確潛能評估之子計畫六,MOST 106-3113-M-002-002」。
57.吳逸民,2018,震源機制解,臺灣地質知識服務網。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top