跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/11 21:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪嘉駿
研究生(外文):Jia-Jun Hung
論文名稱:乾沙穩流產生之不連續崩塌與動床作用之研究
論文名稱(外文):Intermittent Avalanching of Dry Sand in Loose Boundary Channels
指導教授:卡艾瑋
指導教授(外文):CAPART HERVE
口試委員:王泰典賴悅仁洪啟耀
口試委員(外文):Tai-Tien WangYueh-Jen LaiChi-Yao HUNG
口試日期:2020-06-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:120
中文關鍵詞:土石流顆粒流不連續崩塌空間-時間之三維繪圖頻率分析OU過程
外文關鍵詞:debris flowgranular flowintermittent avalanchingspace-time plotfrequency analysisOU process
DOI:10.6342/NTU202001535
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
受到位於支流上游集水區崩塌地的豐富材料,本論文主要以實驗探討上游顆粒流對動床渠道之影響。實驗的設計將以最簡單化的現象來進行,以一個長形渠道鋪滿乾砂至安息角,渠道保持接近安息角的角度,以免侵蝕至底床。上游及下游分別有一提供穩定流量的源頭以及三角形的出口。
實驗在上游穩定供砂,但卻出現了不連續崩塌的現象。此外,在實驗中也同時發現了不規律以及規律的的動床變化。為了測量這些變化以及各項數值,於出口處設置了一電子天平,可測得出流量;於渠道的中線處,以雷射光照射,並以相機紀錄影像,隨後利用影像分析得到表面高度的變化。
實驗分析採循序漸進的幾個步驟。首先,將影像分析得到的高度變化繪製成時間、位置與高程的三維圖片。以此表達方式可以初步且快速的辨認在實驗中所觀察到的波動現象。隨後,波經過時的波峰、在崩塌事件之間渠道的底床以及波的週期以分析方式挑出。藉由頻率分析,可得知在渠道各處的分布狀態以及該處之標準差。在此分析中也得到了波峰以及穩定時底床的標準差隨著渠道距離出口長度增長而增加,同時渠道的長度也會使其增加;週期的標準差,只會隨著渠道的長度而增加。在此過程中得到的所有結果及現象,包含標準差、包裹不規則高程變化的規則循環等,都將用於建立預測高程變化的模型。
在分析出流量時,以逐步方式進行分析,獲得之無因次參數呈現正比關係。
在比較實驗與現地的過程中,發現現地得到標準差與實驗峰值的標準差呈現高度相關,有機會以實驗分析結果套入OU過程,模擬現地狀況。
Motivated by landslide-supplied debris flows in headwater catchments, this thesis investigates loose boundary granular flows in steep channels. A simple geometry is adopted, an inclined rectangular sand box filled with a uniform layer of sand is supplied by a constant upstream silo inflow, and discharges through a downstream triangular notch.
Despite these simple conditions, the channel experiences intermittent avalanching, with waves of dry sand propagating down, either regularly or irregularly. To measure the weight of these intermittent flows, an electronic scale is placed downstream and an imaging system composed of a laser stripe and camera is used to measure the evolving elevation profile of the channel centerline.
The analysis is gradually and orderly approached . First of all, the space-time plots are made to observe the roughly motion of collapse. Then the elevation of motion and outflow are divided into peak data, low data and the period. After that, the frequency analysis have been done to have the distribution. By analyzing the frequency, the relation between standard deviation, the distance from the exit and the length of channel are revealed. The standard deviation of peaks increase as the distance and the length, the standard deviation of period increase as the length. In the process of analysis, the phenomenon of envelope, the regular cycle, is also revealed. From the result, a preliminary model can be build.
The outflow is also been analyzed. By comparing with frequency of collapse and steady inflow, the relation between two dimensionless parameters have been revealed as proportional
Comparison between experiment and field indicates that the standard deviation has highly correlated tendency. Thus, it seems possible to connect the experiment to the field by OU process.
致謝 I
摘要 II
Abstract III
Chapter 1 Introduction 1
1.1 Field photo of debris source area 1
1.2 Digital elevation model 3
1.3 Exploration experiments 7
Chapter 2 Experiment 13
2.1 Experimental set-up 13
2.2 Sand material choice and properties 16
2.3 Procedure 19
2.4 Flow observation 19
Chapter 3 Image Analysis 21
3.1 Calibration 21
3.2 Laser line capture 25
Chapter 4 Overview of the experiments 27
4.1 Parameter definition 27
4.2 Experiment cases 28
4.3 Video snapshot 30
Chapter 5 Space-time Analysis 33
5.1 Exit outflow 33
5.2 Inflow influence 41
Chapter 6 Time Evolution Analysis 51
6.1 Outflow evolution 51
6.2 Elevation evolution 58
6.3 Macro view elevation cycle 60
Chapter 7 Long Profile Analysis 63
7.1 Envelope profile 64
7.2 Elevation profile histgram 69
7.2.1 Raw data 69
7.2.2 Peaks and lows 74
7.2.3 Period 86
7.2.4 Difference of peaks and lows 91
Chapter 8 Comparison between runs 100
Chapter 9 Comparison with Field Profiles 105
9.1 Existing ground level analysis 105
9.2 Standard deviation comparison 108
Chapter 10 Conclusion and Future Work 111
10.1 Conclusion 111
10.2 Future work 113
Reference 119
Aalen, O. O. & Gjessing, H. K. (2004), Survival models based on the Ornstein Uhlenbeck process. Lifetime Data Analysis 10:407–423

Börzsönyi, T., Halsey, T. C. & Ecke, R. E. (2008), Avalanche dynamics on a rough inclined plane. Phys. Rev. E 78, 011306.

Deboeuf, S., Lajeunesse, E., Dauchot, O. & Andreotti, B. (2006), Flow Rule, Self-Channelization, and Levees in Unconfined Granular Flows, Phys. Rev. Lett., 97.

Edwards, A.N. & Gray, J. M. N. T. (2014), Erosion deposition waves in shallow granular free-surface flows, J. Fluid Mech., vol.762, 35-67.

Gray, J. M. N. T., Wieland, M. & Hutter, K. (1999), Free surface flow of cohesionless granular avalanches over complex basal topography. Proc. R. Soc. Lond. A 455, 1841-1874

Hsu, L., Dietrich, W.E., & Sklar, L.S. (2008): Experimental study of bedrock erosion by granular flows. Jour. Geophysical Research, Vol. 113, pp. F02001

Hsu, L. (2010): Bedrock erosion by granular flow. Ph.D. thesis, University of California, Berkeley.

Hung, C. Y. (2015), Boundary erosion by granular flow: Experiments and theory, Ph.D. thesis, National Taiwan University.

Iverson, R. M. (1997), The physics of debris-flows. Rev.Geophys. 35, 245-296.

Iverson, R. M., Logan, M., Lahusen, R. G. & Berti, M. (2010), The perfect debris flow?
Aggregated results from 28 large-scale experiments J. Geophys. Res. 115, F03005.

Iverson, R. M. (2012): Elementary theory of bed-sediment entrainment by debris flows and avalanches. J. Geophys. Res. 117, F03006.

Lagrée, P.Y., Staron, L. & Popinet, S. (2011): The granular column collapse as a continuum:validity of a two-dimensional Navier{Stokes model with a m(I)-rheology. J. Fluid Mech. 686, pp.378-408.

Poulquen, O. (1999) Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11(3), 542–548.

Rocha, F. M., Johnson, C. G. & Gray, J.M.N.T., Self-channelisation and levee formation in monodisperse granular flows, J. Fluid Mech., vol. 876, 591–641.

Tai, Y. C. & Kuo, C. Y. (2012), Modelling shallow debris flows of the Coulomb-mixture type over temporally varying topography. Nat. Hazards Earth Syst. Sci. 12, 269-280.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top