跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/16 21:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪千惠
研究生(外文):Chien-Hui Hung
論文名稱:礫石層組構特性對逆斷層引致複合地層變形之影響
論文名稱(外文):The Influence of Gravel Fabric on Deformation of Composite Strata Induced by Thrust Faulting
指導教授:林銘郎林銘郎引用關係
指導教授(外文):Ming-Lang Lin
口試委員:楊國鑫黃文昭張光宗
口試委員(外文):Kuo-Hsin YangWen-Chao HuangKuang-Tsung Chang
口試日期:2020-06-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:113
中文關鍵詞:逆斷層礫石層複合地層砂箱試驗離散元素法竹山槽溝五次斷層活動逆推
外文關鍵詞:thrust faultinggravel layercomposite stratasandbox experimentsdiscrete element method(PFC3D)inversion of active faulting of Chushan trench
DOI:10.6342/NTU202001796
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據近年世界著名災害性地震之調查結果,顯示鄰近斷層帶結構物受到地震破壞之原因,除了激發強烈暫態的地震波之外,還有斷層基盤錯動所引致之近地表岩土層變形。過去關於活動斷層引致上覆土層的變形行為與結構互制之研究中,多將覆土材料簡化為圓球狀顆粒的砂層或黏土層,礫石層多變的組構並未被充分考慮。臺灣33條活動斷層中,有29條活動斷層的近地表有礫石層分布,從斷層帶附近之露頭觀察與斷層槽溝開挖,可以證實斷層基盤上覆非均質的複合地層是普遍存在的,且堆積礫石層中含有不同排列方向、不同形狀、不同尺寸的礫石。
本研究探討含有礫石層之複合地層受逆斷層錯動引致的變形行為,利用小尺度物理砂箱試驗與離散元素法數值模擬軟體(PFC3D)分別進行基本行為觀察與定量分析,物理砂箱試驗的成果亦用來校核數值分析中的所需的微觀參數。複合地層變形結果顯示,礫石層中的斷層滑動面傾角較緩且發展距離較小,地表影響範圍與三角剪切帶範圍往上盤擴大。礫石層的組構特性由不同體積含量、不同排列方式與不同長徑比的橢球形礫石顆粒所控制,高礫石體積含量與較大的長徑比使礫石層的斷層滑動面發展距離較小;高礫石體積含量以及礫石的長軸方向與斷層滑動方向愈不一致的情況下會讓三角剪切帶的範圍明顯往上盤擴大,礫石排列方式亦影響礫石最後的長軸方向。此外,礫石的轉動特徵指示了三角剪切帶範圍,具有長徑比的礫石可做為觀察礫石層變形行為的指標,且隨著基盤抬升比愈高,礫石旋轉的範圍往下盤擴大,旋轉角度持續增加。
從竹山槽溝剝片取得竹山槽溝的礫石層組構之後,進一步利用數值分析工具模擬了竹山槽溝北牆的變形演育,斷層滑動面發展順序、地質構造演變過程、礫石層變形前緣的礫石轉動情形、生長地層與地層侵蝕作用可被合理重現。
According to the investigations of well-known disastrous earthquakes in recent years, ground deformation induced by faulting is one of the causes for engineering structure damages in addition to strong ground motion. Previous studies which related to the deformation behavior of overburden soil induced by faulting and its impact on structures often simplify the overburden soil as spherical particles like sandy soil or clay, the complex fabric of gravel layer haven’t been fully considered. However, among the 33 active faults in Taiwan, there are 29 active faults with gravel layer distributed near the ground surface. Moreover, based on the trench excavation results in the fault zone, nonhomogeneous composite strata with gravel deposits in different arrangement, shapes and sizes overlay on the basement fault are common.
A small-scale physical sandbox experiment and discrete element method numerical analysis(PFC3D) are conducted to figure out the basic behavior and do the quantitative analysis. Results from sandbox experiment are also used to calibrate microscopic parameters in numerical analysis. The deformation results of the composite strata show that the fault sliding surface in the gravel layer has a smaller dip angle and a slower development. The triangular shear zone in gravel layer is bigger that extends upward to the hanging wall. The fabric of the gravel layer are controlled by ellipsoidal gravel particles with different volume contents, arrangement and aspect ratios. Higher gravel volumetric content and the larger aspect ratio of gravels make the gravel layer more difficult to deform that developing a shorter fault sliding surface. The volumetric content and the arrangement of gravel mainly affect the range of the triangular shear zone, and the arrangement of gravel also affects the final deposition direction of the gravel. In addition, the rotation characteristics of the gravel indicate the range of the triangular shear zone, and the gravel with an aspect ratio can be used as an indicator the coseismic deformation behavior of the gravel layer. As the uplift ratio increasing, the rotation region of gravel expands into the footwall, and the rotation angle continues to increase.
After obtaining the fabric properties of the gravel layer from the stripping of first excavation result of Chushan trench, a full scaled numerical simulation is conducted to identify the evolution of the north wall of the Chushan trench under repeated thrust faulting. The development sequence of fault sliding surface, the evolution of geological structure, the gravel rotation characteristics at the front of the gravel layer deformation, the growth strata and erosion can be appropriately replicated.
論文口試委員審定書 i
致謝 ii
摘要 iii
ABSTRACT iv
目錄 vi
圖目錄 viii
表目錄 xi
符號表 xii
第1章 緒論 1
1.1 研究動機 1
1.2 研究目的 5
1.3 研究方法與流程 5
第2章 文獻回顧 8
2.1 斷層錯動引致地表變形 8
2.1.1複合地層與礫石層受斷層錯動之案例 11
2.1.2竹山槽溝挖掘調查 14
2.1.3自由場物理砂箱試驗 19
2.1.4自由場小尺度數值分析 21
2.1.5槽溝案例數值分析 24
2.2 礫石層之組構分類與工程特性 26
2.3 礫石層之顆粒力學模擬與應用 27
2.4 綜合討論 29
第3章 研究方法 30
3.1 現地調查與影像辨識 30
3.2 物理砂箱試驗 32
3.2.1砂箱設備 32
3.2.2砂箱試驗材料與性質測定 33
3.2.3砂箱試驗方法與過程 35
3.3 數值分析 37
3.3.1數值分析方法簡介 37
3.3.2數值分析模型與參數設定 42
3.3.3礫石層基本假設 45
3.3.4數值分析試驗規劃 46
第4章 逆斷層引致含礫石層之複合地層變形 47
4.1 現地調查成果 47
4.1.1新城斷層 47
4.1.2三義斷層 48
4.1.3竹山槽溝 49
4.2 物理砂箱試驗 52
4.2.1單一砂層砂箱試驗 52
4.2.2複合地層砂箱試驗 54
4.2.3觀察重點與討論 58
4.3 數值分析比對砂箱試驗 59
4.3.1斷層滑動面發展與地表變形 59
4.3.2礫石旋轉特徵 64
4.3.3三角剪切帶 71
4.4 數值分析參數敏感度 74
4.4.1砂層與礫石層的變形特徵 74
4.4.2礫石層組構特性 77
4.5 地層應變 83
第5章 竹山槽溝北牆變形演育 86
5.1 斷層特性 86
5.2 數值模型與參數 87
5.3 模擬結果 92
5.4 小結 101
第6章 結論與建議 103
6.1 結論 103
6.2 建議 105
參考文獻 106
附錄 A 111
王文祥(1999),臺灣西部台地礫石層組織、剪力強度與邊坡穩定關係之研究,國立臺灣大學地質學研究所博士論文。
王景平(2002),地表單斜褶皺與盲斷層之幾何關係探討,國立臺灣大學土木工程學研究所,碩士論文。
朱傚祖、梁勝雄、李建成、陳建良(2012),湖口斷層新釋:上盤活動背衝斷層之新發現及露頭構造分析,經濟部中央地質調查所特刊,第二十六號,第31-51頁。
李健宏、詹佩臻、吳亮均、林銘郎(2018),跨斷層國道三號田寮3號橋與中寮隧道北口段變形機制,中國土木水利工程學會,第30期,第17-28頁。
李健宏(2019),跨活動斷層橋梁基礎互制行為研究,國立臺灣大學土木工程學研究所,博士論文。
林銘郎、鄭富書、王鴻基、王景平、鍾春富、張芳銘、蔡維哲、許永欣、黃俊傑(2004),台北斷層引致之上覆土層變形及其對潛盾隧道之影響,嚴慶齡工業研究中心研究報告,亞新工程顧問公司委託。
柳鈞元(2019),斜移斷層錯動引致上覆土層同震變形行為及對淺基礎結構物之影響,國立臺灣大學土木工程學研究所,碩士論文。
徐家祥(2016),藉離散元素法探討竹山槽溝中斷層引致褶皺之構造演育,國立中央大學應用地質研究所,碩士論文。
翁培軒(2016),平移斷層錯動引致凝聚性覆土地表變形與淺基礎變位特性探討,國立臺灣大學土木工程學研究所,碩士論文。
陳文山、劉力豪、顏一勤、楊小青、李龍昇、游能悌、張徽正、石瑞銓、陳于高、李元希、林偉雄、石同生、盧詩丁(2003),新城斷層的古地震研究,經濟部中央地質調查所特刊,第十四號,第11-24頁。
陳修、顧承宇、陳錦清(1995),不連續變形分析法模擬卵礫石開挖行為之研究,國際卵礫石層地下工程研討會,第31-39頁。
張光宗、陳宥序、鄭敏杰(2014),以數值方法探討卵礫石層的力學行為,中華水土保持學報,第45卷,第2期,第95-102頁。
張有毅(2013),以離心模型試驗及個別元素法評估正斷層和逆斷層錯動地表及地下變形,國立中央大學土木工程學研究所,博士論文。
梁勝雄、陳建良(2016),臺灣中部地景四驚奇,科學研習,第55卷,第4期,第48-57頁。
經濟部中央地質調查所(2012),2012年版台灣活動斷層分佈圖,中央地質調查所特刊,第二十六號。
褚炳麟(1982),台灣地區麓山帶與台地礫石材料性質初步研究,土木水利季刊,第9卷,第2期,第73-86頁。
褚炳麟、潘進明、張國雄(1996),台灣西部卵礫石層現地之大地工程性質,地工技術,第55期,第47-58頁。
褚炳麟、孫漢豪(2014),臺灣西部卵礫石層大地工程性質研究之回顧與展望,台灣岩盤工程研討會。
蔡明欣、陳錦清、王銘德(1995),台灣西部地區卵礫石層現地抗剪強度研究,國際卵礫石層地下工程研討會,第21-30頁。
賴兆偉(2018),加勁基礎受正斷層作用之物理模型試驗研究,國立臺灣科技大學營建工程系,碩士論文。
鍾春富(2007),逆斷層錯動引致上覆土層變形行為及對結構物影響之研究,國立臺灣大學土木工程學研究所,博士論文。
Agisoft PhotoScan Professional (Version 1.2.5) (Software). (2016). Retrieved from http://www.agisoft.com/downloads/installer/
Allmendinger, R. W. (1998). Inverse and forward numerical modeling of trishear fault‐propagation folds. Tectonics, 17(4), 640-656.
Avar, B. B., & Hudyma, N. W. (2019). Earthquake surface rupture: A brief survey on interdisciplinary research and practice from Geology to Geotechnical Engineering. Rock Mechanics and Rock Engineering, 52(12), 5259-5281.
Bray, J. D., Seed, R. B., & Seed, H. B. (1993). 1 g small-scale modelling of saturated cohesive soils. Geotechnical Testing Journal, 16(1), 46-53.
Bray, J. D., Seed, R. B., Cluff, L. S., & Seed, H. B. (1994). Earthquake fault rupture propagation through soil. Journal of Geotechnical Engineering, 120(3), 543-561.
Chang, K. T., & Cheng, M. C. (2014). Estimation of the shear strength of gravel deposits based on field investigated geological factors. Engineering Geology, 171, 70-80.
Chang, Y. L., Chu, B. L., & Lin, S. S. (2003). Numerical simulation of gravel deposits using multi‐circle granule model. Journal of the Chinese Institute of Engineers, 26(5), 681-694.
Chang, K. T., Kang, Y. M., Ge, L., & Cheng, M. C. (2015). Mechanical properties of gravel deposits evaluated by nonconventional methods. Journal of Materials in Civil Engineering, 27(11), 04015032.
Chen, W. S., Yang, C. C., Yen, I. C., Lee, L. S., Lee, K. J., Yang, H. C., ... & Shih, T. S. (2007). Late Holocene paleoseismicity of the southern part of the Chelungpu fault in central Taiwan: Evidence from the Chushan excavation site. Bulletin of the Seismological Society of America, 97(1B), 1-13.
Chu, B. L., Jou, Y. W., & Weng, M. C. (2010). A constitutive model for gravelly soils considering shear-induced volumetric deformation. Canadian Geotechnical Journal, 47(6), 662-673.
Cole Jr, D. A., & Lade, P. V. (1984). Influence zones in alluvium over dip-slip faults. Journal of Geotechnical Engineering, 110(5), 599-615.
Erslev, E. A. (1991). Trishear fault-propagation folding. Geology, 19(6), 617-620.
Garcia, F. E., & Bray, J. D. (2018). Distinct element simulations of earthquake fault rupture through materials of varying density. Soils and Foundations, 58(4), 986-1000.
Garcia, F. E., & Bray, J. D. (2018). Distinct element simulations of shear rupture in dilatant granular media. International Journal of Geomechanics, 18(9), 04018111.
Huang, W. J., Chen, W. S., Lee, Y. H., Yang, C. C., Lin, M. L., Chiang, C. S., ... & Lu, S. T. (2016). Insights from heterogeneous structures of the 1999 Mw 7.6 Chi‐Chi earthquake thrust termination in and near Chushan excavation site, Central Taiwan. Journal of Geophysical Research: Solid Earth, 121(1), 339-364.
Itasca, Consulting Group INC. 2014. PFC3D 5.0 Particle Flow Code in 3 Dimensions. User's Guide, Minneapolis.
Kelley, V. C. (1955). Monoclines of the Colorado Plateau. Geological Society of America Bulletin, 66(7), 789-804.
Kelson, K. I., Kang, K. H., Page, W. D., Lee, C. T., & Cluff, L. S. (2001). Representative styles of deformation along the Chelungpu fault from the 1999 Chi-Chi (Taiwan) earthquake: geomorphic characteristics and responses of man-made structures. Bulletin of the Seismological Society of America, 91(5), 930-952.
Kübler, S., Friedrich, A. M., Gold, R. D., & Strecker, M. R. (2018). Historical coseismic surface deformation of fluvial gravel deposits, Schafberg fault, Lower Rhine Graben, Germany. International Journal of Earth Sciences, 107(2), 571-585.
Li, C. H., Lin, M. L., & Huang, W. C. (2019). Interaction between pile groups and thrust faults in a physical sandbox and numerical analysis. Engineering Geology, 252, 65-77.
Lin, M. L., Chung, C. F. and Jeng, F. S. (2006). Deformation of overburden soil induced by thrust fault slip. Engineering Geology, 88, 70-89.
Lin, S. Y., Lin, P. S., Luo, H. S., & Juang, C. H. (2000). Shear modulus and damping ratio characteristics of gravelly deposits. Canadian Geotechnical Journal, 37(3), 638-651.
Mortazavi Zanjani, M., & Soroush, A. (2019). Numerical modelling of fault rupture propagation through layered sands. European Journal of Environmental and Civil Engineering, 23(9), 1139-1155.
Tali, N., Lashkaripour, G. R., Moghadas, N. H., & Ghalandarzadeh, A. (2019). Centrifuge modeling of reverse fault rupture propagation through single-layered and stratified soil. Engineering Geology, 249, 273-289.
Woo, S. M., Guo, W. S., Yu, K., & Moh, Z. C. (1982). Engineering problems of gravel deposits in Taiwan. In Engineering and Construction in Tropical and Residual Soils, 500-518, ASCE.
Yang, Y. R., Hu, J. C., & Lin, M. L. (2014). Evolution of coseismic fault-related folds induced by the Chi–Chi earthquake: A case study of the Wufeng site, Central Taiwan by using 2D distinct element modeling. Journal of Asian Earth Sciences, 79, 130-143.
Zehnder, A. T., & Allmendinger, R. W. (2000). Velocity field for the trishear model. Journal of Structural Geology, 22(8), 1009-1014.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊