跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/13 12:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林裕豐
研究生(外文):Yu-Feng Lin
論文名稱:凡那比颱風(2010)與臺灣地形交互作用─模擬路徑、強度及降雨不確定性之探討
論文名稱(外文):Typhoon Fanapi (2010) and Its Interaction with Taiwan Terrain – Evaluation of the Uncertainty in Track, Intensity and Rainfall Simulations
指導教授:吳俊傑吳俊傑引用關係
指導教授(外文):Chun-Chieh Wu
口試委員:林博雄廖宇慶吳健銘連國淵游政谷鍾高陛
口試委員(外文):Po-Hsiung LinYu-Chieng LiouChien-Ming WuGuo-Yuan LienCheng-Ku YuKao-Shen Chung
口試日期:2020-07-03
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:119
中文關鍵詞:凡那比颱風臺灣地形不確定性系集模擬系集卡爾曼濾波器
外文關鍵詞:Typhoon FanapiTaiwan topographyuncertaintyensemble simulationensemble Kalman filter
DOI:10.6342/NTU202002410
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用利用Advanced Research WRF模式結合系集卡爾曼濾波器(ensemble Kalman filter;EnKF)資料同化技術,同化2010年國際觀測計畫ITOP(Impact of Typhoons on the Ocean in the Pacific)實驗期間特別的觀測資料,藉由系集模擬以探討臺灣地形對於凡那比颱風(2010)路徑、強度及降雨不確定性的影響。模擬結果顯示,臺灣地形增加了模擬路徑及強度的不確定性,尤其在登陸期間。移動速度較快的系集成員受到地形影響時間較早,當颱風接近地形時出現路徑較早向南偏折及強度提早減弱的現象,造成模擬路徑及強度的標準差在登陸初期突然增加。此外,愈高(愈低)緯度的雨帶軸線分布對應愈高(愈低)緯度的颱風中心位置,颱風離陸時中心位置與雨帶軸線位置在緯度上有很高的相關性。系集成員時間延遲相關分析也顯示,登陸前颱風中心緯度可視為預測颱風離陸時位置的預報因子。然而,臺灣地區降雨模擬的不確定性主要來自於颱風雨帶、環流及地形之間的相互作用,尤其是颱風離陸期間雨帶的分布,該雨帶分布的不確定性與離陸時颱風中心所在的位置有關,同時地形高度引起颱風環流不對稱結構,也會直接影響颱風雨帶生成及發展的位置。另一方面,透過EnKF資料同化過程所獲得的初始場不僅改變了初始渦旋結構,也同化了大氣環境場,在模擬過程中大幅減小了颱風預報路徑及強度的不確定性。
此外,凡那比颱風離陸期間颱風南側雨帶的發展、維持機制及其引起之強降雨事件,可分為初始對流形成及對流胞移入陸地增強的過程。初始對流的形成主要是垂直風切提供位於下風切處的有利環境,配合低層暖濕氣流與下墊面冷池前緣的強迫舉升作用產生。然而,對流胞往陸地移動過程持續增強發展,主要是受到地形及垂直風切引起颱風的不對稱結構,進而造成不對稱氣流增強低層的氣流輻合作用,激發對流發展,同時雨帶上的強對流伴隨颱風環流移入陸地,並受地形強迫舉升的加乘作用,導致臺灣南部地區的強降雨形成。
Using special data from the field program of “Impact of Typhoons on the Ocean in the Pacific” (2010) and an ensemble Kalman filter (EnKF)–based vortex initialization method, this study explores the impact of Taiwan terrain on the uncertainty in forecasting track, intensity, and rainfall of Typhoon Fanapi (2010) based on ensemble simulations. The results show that the presence of Taiwan topography leads to rapid growths of the simulation uncertainty in track and intensity during the landfall period, particularly at the earlier landfall period. The fast moving ensemble members show an earlier southward track deflection as well as weakening of intensity, resulting in a sudden increase of standard deviation in track and intensity. During the period of offshore departure, our analysis suggests that the latitudinal location of the long-lasting and elongated rainband to the south of the tropical cyclone (TC) center has strong dependence on the latitude of the TC center. In addition, the rainfall uncertainty in southern Taiwan is dominated by the uncertainty of simulated TC rainband, and the latitude of the TC track can be regarded as a good predictor of the rainband’s location at departure time. Considering the fact that the rainband impinging the high mountains in the southern Central Mountain Range generates the greatest accumulated rainfall, positions where the rainband associated circulation and its interaction with topography appear to offer an explanation on the uncertainty of the simulated rainfall. Meanwhile, with EnKF data assimilation, Fanapi’s structures are well developed and the initial environmental conditions show a small variation, leading to the reduction of track and intensity uncertainty as well as the simulated rainfall, i.e., much of the forecasting uncertainty strongly related to the model initialization can be effectively reduced.
In addition, the self-sustaining processes of the studied rainband during Fanapi’s departure period are analyzed in two perspectives. One is the formation of new convective cells to the southwest of TC center. These new convective cells are triggered by low-level flow convergence in the down shear side of vertical wind shear and upward lifting as an oncoming warm, moisture inflow met the leading edge of the cold pool. The other one is the continuous enhancement of convective cells as they move along the convective line toward the inland. These enhanced convective cells embedded in the rainband are developed by moisture jet stream, asymmetric low-level flow convergence induced by both vertical wind shear and Taiwan terrain, and TC circulation. Therefore, the productions of heavy rainfall over southern Taiwan are increased significantly as these convective cells move to the southwest of Taiwan and interact with Taiwan topograpgy.
致謝 I
中文摘要 II
英文摘要 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 前言 1
1.1 文獻回顧 1
1.1.1臺灣地形對颱風影響之相關研究 1
1.1.2 颱風系集模式模擬回顧 3
1.1.3 颱風模擬之不確定性研究 5
1.2 研究動機與目的 7
第二章 凡那比颱風個案介紹 9
2.1 凡那比颱風概述 9
2.2 凡那比颱風結構變化及降雨特性 9
第三章 研究工具與方法 11
3.1數值模式與系集卡爾曼濾波器 11
3.2 實驗設計 12
3.3 不確定性的評估方法 14
3.4 位渦趨勢方程 15
第四章 研究結果 17
4.1 系集預報模擬結果 17
4.1.1 系集預報路徑分析 17
4.1.2 系集預報強度分析 17
4.1.3 模擬降雨特徵分析 18
4.1.4 定量降水預報分析 20
4.1.5系集模擬降雨之誤差分析 22
4.2 臺灣地形對模擬颱風路徑及強度不確定性的影響 24
4.2.1 地形對颱風路徑不確定性的探討 24
4.2.2 地形對颱風強度不確定性的探討 25
4.3 臺灣地形對模擬颱風降雨不確定性的影響 26
4.3.1 降雨模擬之不確定性分析 26
4.3.2 臺灣地形高度對模擬降雨之不確定性分析 29
4.4 資料同化對模擬路徑及強度不確定因素的探討 30
4.4.1 資料同化對初始颱風結構之影響 30
4.4.2資料同化對模擬路徑及強度不確定因素的影響 31
4.4.3初始環境差異對模擬路徑的影響 32
4.5 臺灣地形對凡那比颱風登陸前路徑偏折的探討 33
4.6 利用位渦趨勢方程探討凡那比颱風路徑的變化 35
4.6.1 位渦趨勢分析 35
4.6.2位渦趨勢方程之應用與限制討論 37
第五章 凡那比颱風對臺灣南部地區造成強降雨事件探討 39
5.1 凡那比颱風雨帶的發展及維持機制 39
5.1.1 垂直風切的影響 40
5.1.2 下墊面冷池的影響 41
5.1.3 渦旋羅士比波(Vortex Rossby Wave)的影響 42
5.2 臺灣地形的角色 43
5.3 小結 44
第六章 結論與未來工作 45
參考文獻 49
連國淵,2009:颱風路徑與結構同化研究—系集卡爾曼濾波器。國立臺灣大學大氣科學研究所碩士論文,87頁。

Bachmann, K., C. Keil, and M. Weissmann, 2019: Impact of radar data assimilation and orography on predictability of deep convection. Q. J. R. Meteorol. Soc., 145, 117–130.

Bender, M. A., R. E. Tuleya, and Y. Kurihara, 1987: A numerical study of the effect of island terrain on tropical cyclones. Mon. Wea. Rev., 115, 130–155.

Brand, S., and J. W. Blelloch, 1974: Changes in the characteristics of typhoons crossing the island of Taiwan. Mon. Wea. Rev., 102, 708–713.

Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 1719–1724.

Chang, C.-P., T.-C. Yeh, and J. M. Chen, 1993: Effects of terrain on the surface structure of typhoons over Taiwan. Mon. Wea. Rev., 121, 734–752.

Chen T.-C., and C.-C. Wu, 2016: The Remote Effect of Typhoon Megi (2010) on the Heavy Rainfall over Northeastern Taiwan. Mon. Wea. Rev., 144, 3109–3131.

Chen, S. Y. S., J. A. Knaff, and F. D. Marks, 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 3190–3208.

Chou, K.-H., C.-C. Wu, and Y. Wang, 2011: Eyewall evolution of typhoons crossing the Philippines and Taiwan: An observational study. Terr. Atmos. Ocean. Sci., 22, 535–548.

Corbosiero, K. L., J. Molinari, A. R. Aiyyer, and M. L. Black, 2006: The structure and evolution of Hurricane Elena (1985). Part II: Convective asymmetries and evidence for vortex Rossby waves. Mon. Wea. Rev., 134, 3073–3091.

Corfidi, S. F., 2003: Cold pools and MCS propagation: Forecasting the motion of downwind-developing MCSs. Wea. Forecasting, 18, 997–1017.

D’Asaro, E. A., and Coauthors, 2014: Impact of typhoons on the ocean in the Pacific. Bull. Amer. Meteor. Soc., 95, 1405–1418.

Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two dimensional model. J. Atmos. Sci., 46, 3077–3107.

Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143–10162.

——, 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343–367.

Fang, X., Y.-H. Kuo, and A. Wang, 2011: The impact of Taiwan topography on the predictability of Typhoon Morakot’s record-breaking rainfall: A high-resolution ensemble simulation. Wea. Forecasting, 26, 613–633.

——, and ——, 2013: Improving Ensemble-Based Quantitative Precipitation Forecasts for Topography-Enhanced Typhoon Heavy Rainfall over Taiwan with a Modified Probability-Matching Technique. Mon. Wea. Rev., 141, 3908–3932.

Fovell, R. G., and P.-H. Tan, 1998: The temporal behavior of numerically simulated multicell-type storms. Part II: The convective cell life cycle and cell regeneration. Mon. Wea. Rev, 126, 551–577.

Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249–2269.

Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 5233–5250.

Hane, C. E., C. J. Kessinger, and P. S. Ray, 1987: The Oklahoma squall line of 19 May 1977. Part II: Mechanisms for maintenance of the region of strong convection. J. Atmos. Sci., 44, 2866–2883.

Hence, D. A., and R. A. Houze Jr., 2011: Vertical structure of hurricane eyewalls as seen by the TRMM Precipitation Radar. J. Atmos. Sci., 68, 1637–1652.

Hong, J. S., C. T. Fong, L. F. Hsiao, Y. C. Yu, and C. Y. Tzeng, 2015: Ensemble typhoon quantitative precipitation forecasts model in Taiwan. Wea. Forecasting, 30, 217-237.

Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.

——, Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.

Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796–811.

Hsu, L.-H., H.-C. Kuo, and R. G. Fovell, 2013: On the geographic asymmetry of typhoon translation speed across the mountainous island of Taiwan. J. Atmos. Sci., 70, 1006–1022.

Huang, K.-C., and C.-C. Wu, 2018: The impact of idealized terrain on upstream tropical cyclone track. J. Atmos. Sci., 75, 3887–3909.

Huang, C.‐Y., I.‐H. Wu, and L. Feng, 2016: A numerical investigation of the convective systems in the vicinity of southern Taiwan associated with Typhoon Fanapi (2010): Formation mechanism of double rainfall peaks. J. Geophys. Res. Atmos., 121, 12647–12676.

Huang, Y.-H., C.-C. Wu, and Y. Wang, 2011: The influence of island topography on typhoon track deflection. Mon. Wea. Rev., 139, 1708-1727.
Jian, G.‐J., and C.‐C. Wu, 2008:A numerical study of the track deflection of super‐Typhoon Haitang (2005) prior to its landfall in Taiwan. Mon.Wea. Rev., 136, 598–615.

Lee, C.-S., L.-R. Huang, H.-S. Shen, and S.-T. Wang, 2006: A climatology model for forecasting typhoon rainfall in Taiwan. Nat. Hazards, 37, 87–105.

Lin, K.-J., S.-C. Yang, and S. S. Chen, 2018: Reducing TC Position Uncertainty in an Ensemble Data Assimilation and Prediction System: A Case Study of Typhoon Fanapi (2010). Wea. Forecasting, 33, 561–582.

Lin, Y.-F., C.-C. Wu, T.-H. Yen, Y.-H. Huang, and G.-Y. Lien, 2020: Typhoon Fanapi (2010) and its interaction with Taiwan terrain - Evaluation of the uncertainty in track, intensity and rainfall simulations. J. Meteor. Soc. Japan, 98, 93-113.

Lin, Y.-L., R. L. Deal, and M. S. Kulie, 1998: Mechanisms of cell regeneration, development, and propagation within a two-dimensional multicell storm. J. Atmos. Sci., 55, 1867–1886.

——, S. Chiao, T. A. Wang, M. L. Kaplan, and R. P. Weglarz, 2001: Some common ingredients for heavy orographic rainfall. Wea. Forecasting, 16, 633-660.

Liou, Y., T. Chen Wang, and P. Huang, 2016: The Inland Eyewall Reintensification of Typhoon Fanapi (2010) Documented from an Observational Perspective Using Multiple-Doppler Radar and Surface Measurements. Mon. Wea. Rev., 144, 241–261.

Lonfat, M., F. D. Marks, and S. S. Chen 2004:Precipitation distribution intropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) microwave imager: A global perspective, Mon. Wea. Rev., 132, 1645–1660.

Marchok, T., R. Rogers, and R. Tuleya, 2007: Validation schemes for tropical cyclone quantitative precipitation forecasts: Evaluation of operational models for U.S. landfalling cases. Wea. Forecasting, 22, 726–746.

Meng, Z., and F. Zhang, 2008a: Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3DVAR in a real-data case study. Mon. Wea. Rev., 136, 522–540.

——, and ——, 2008b: Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part IV: Comparison with 3DVAR in a month-long experiment. Mon. Wea. Rev., 136, 3671–3682.

Mitchell, H. L., P. L. Houtekamer, and G. Pellerin, 2002: Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Wea. Rev., 130, 2791– 2808.

Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663–16682.

Munsell, E. B., and F. Zhang, 2014: Prediction and uncertainty of Hurricane Sandy (2012) explored through a real-time cloud-permitting ensemble analysis and forecast system assimilating airborne Doppler radar observations. J. Adv. Model. Earth Syst., 6, 38–58.

——,——, and D. P. Stern, 2013:Predictability and dynamics of a non-intensifying tropical storm: Erika (2009). J. Atmos. Sci., 70, 2505–2524.

Nystrom, R.G., F. Zhang, E. B. Munsell, S. A. Braun, J. A. Sippel, Y. Weng, and K. Emanuel, 2018:Predictability and Dynamics of Hurricane Joaquin (2015) Explored through Convection-Permitting Ensemble Sensitivity Experiments. J. Atmos. Sci., 75, 401-424.

Reasor, P. D., R. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 2949–2969.

Rotunno, R. J., B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463–485.

Tao, D., and F. Zhang, 2014: Effect of environmental shear, seasurface temperature, and ambient moisture on the formation and predictability of tropical cyclones: An ensemble-mean perspective. J. Adv. Model. Earth Syst., 6, 384–404.

Tao, W. K., and Coauthors, 2011: High-resolution numerical simulation of the extreme rainfall associated with Typhoon Morakot. Part I: Comparing the impact of microphysics and PBL parameterizations with observations. Terr. Atmos. Oceanic Sci., 22, 673–696.

Torn, R. D., 2016: Evaluation of Atmosphere and Ocean Initial Condition Uncertainty and Stochastic Exchange Coefficients on Ensemble Tropical Cyclone Intensity Forecasts. Mon. Wea. Rev., 144, 3487-3506.

Toth, Z., and E. Kalnay, 1997: Ensemble Forecasting at NCEP: The breeding method. Mon. Wea. Rev., 125, 3297–3318.

Wang, C.-C., H.-C. Kuo, Y.-H. Chen, H.-L. Huang, C.-H. Chung, and K. Tsuboki, 2012: Effects of asymmetric latent heating on typhoon movement crossing Taiwan: The case of Morakot (2009) with extreme rainfall. J. Atmos. Sci., 69, 3172–3196.

——, Y.-H. Chen, H.-C. Kuo, and S.-Y. Huang, 2013: Sensitivity of typhoon track to asymmetric latent heating/rainfall induced by Taiwan topography: A numerical study of Typhoon Fanapi (2010). J. Geophys. Res. Atmos., 118, 3292–3308.

Wang, S.-T., 1980: Prediction of the behavior and intensity of typhoons in Taiwan and its vicinity (in Chinese). Chinese National Science Council Research Rep. 108, 100 pp.

Wang, Y., 2002a: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59, 1213–1238.

——, 2002b: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59, 1239–1262.

Wang, Y., Y. Wang, and H. Fudeyasu, 2009: The role of Typhoon Songda (2004) in producing distantly located heavy rainfall in Japan. Mon. Wea. Rev., 137, 3699–3716.

Whitaker J. S., and T. M. Hamill, 2002: Ensemble Data Assimilation without Perturbed Observations. Mon. Wea. Rev., 130, 1913–1924.

Wu, C.-C., 2001: Numerical simulation of Typhoon Gladys (1994) and its interaction with Taiwan terrain using the GFDL hurricane model. Mon. Wea. Rev., 129, 1533–1549.

——, and Y.-H. Kuo, 1999: Typhoons affecting Taiwan: Current understanding and future challenges. Bull. Amer. Meteor. Soc., 80, 67–80.

——, T.‐H. Yen, Y.‐H. Kuo, and W. Wang, 2002:Rainfall simulation associated with Typhoon Herb (1996) near Taiwan. Part I: The topographic effect. Wea. Forecasting, 17, 1001–1015.

——, K.-H. Chou, H.-J. Cheng, and Y. Wang, 2003: Eyewall contraction, breakdown, and reformation in a landfalling typhoon. Geophys. Res. Lett., 30, 1887.

——, H.-J. Cheng, Y. Wang, and K.-H. Chou, 2009: A numerical investigation of the eyewall evolution in a landfalling typhoon. Mon. Wea. Rev., 137, 21-40.

——, G.-Y. Lien, J.-H. Chen, and F. Zhang, 2010: Assimilation of tropical cyclone track and structure based on the ensemble Kalman filter (EnKF). J. Atmos. Sci., 67, 3806–3822.

——, Y.-H. Huang, and G.-Y. Lien, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008) – Part I: Assimilation of T-PARC data based on the Ensemble Kalman Filter (EnKF). Mon. Wea. Rev., 140, 506-527.

——, S.-G. Chen, S.-C. Lin, T.-H. Yen, and T.-C. Chen, 2013: Uncertainty and Predictability of Tropical Cyclone Rainfall Based on Ensemble Simulations of Typhoon Sinlaku (2008). Mon. Wea. Rev., 141, 3517–3538.

——, T.-H. Li, and Y.-H. Huang, 2015: Influence of Mesoscale Topography on Tropical Cyclone Tracks: Further Examination of the Channeling Effect. J. Atmos. Sci., 72, 3032–3050.

Wu, L., and B. Wang, 2000: A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon. Wea. Rev., 128, 1899–1911.

Xie, B., and F. Zhang, 2012: Impacts of typhoon track, island topography and monsoon flow on the heavy rainfalls in Taiwan associated with Morakot (2009). Mon. Wea. Rev., 140, 3379–3394.

Xin, L., G. Reuter, and B. Larochelle, 1997: Reflectivity-rain rate relationships for convective rainshowers in Edmonton. Atmos. Ocean, 35, 513-521.

Yang, M.-J., D.-L. Zhang, and H.-L. Huang, 2008: A modeling study of Typhoon Nari (2001) at landfall. Part I: Topographic effects. J. Atmos. Sci., 65, 3095–3115.

——, Y.-C. Wu, and Y.-C. Liou, 2018: The Study of Inland Eyewall Reformation of Typhoon Fanapi (2010) Using Numerical Experiments and Vorticity Budget Analysis. J. Geophys. Res. Atmos., 123, 9604–9623.

Yeh, T.-C., and R. L. Elsberry, 1993a: Interaction of typhoons with the Taiwan orography. Part I: Upstream track deflections. Mon. Wea. Rev., 121, 3193–3212.

——, and ——, 1993b: Interaction of typhoons with the Taiwan orography. Part II: Continuous and discontinuous tracks across the island. Mon. Wea. Rev., 121, 3213–3233.

Yen, T.-H., C.-C. Wu, and G.-Y. Lien, 2011: Rainfall simulations of Typhoon Morakot with controlled translation speed based on EnKF data assimilation. Terr. Atmos. Oceanic Sci., 22, 647– 660.

Yu, C.-K., and L.-W. Cheng, 2008: Radar observations of intense orographic precipitation associated with Typhoon Xangsane (2000). Mon. Wea. Rev., 136, 497–521.

——, and ——, 2013: Distribution and mechanisms of orographic precipitation associated with typhoon Morakot (2009). J. Atmos. Sci., 70, 2894–2915.

——, and C.-L. Tsai, 2017: Structural changes of an outer tropical cyclone rain band encountering the topography of northern Taiwan. Quart. J. Roy. Meteor. Soc., 143, 1107–1122.

Zhang, Z., and T. N. Krishnamurti, 1997: Ensemble forecasting of hurricane tracks. Bull. Amer. Meteor. Soc., 78, 2785–2795.

Zhang, F., and C. Snyder, 2007: Ensemble-based data assimilation. Bull. Amer. Meteor. Soc., 88, 565–568.

——, and J. A. Sippel, 2009: Effects of moist convection on hurricane predictability. J. Atmos. Sci., 66, 1944–1961.

——, Z. Meng, and A. Aksoy, 2006: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect model experiments. Mon. Wea. Rev., 134, 722–736.

——, Y. Weng, Y.-H. Kuo, J. S. Whitaker, and B. Xie, 2010: Predicting Typhoon Morakot’s catastrophic rainfall with a convection permitting mesoscale ensemble system. Wea. Forecasting, 25, 1816–1825.

——, and D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975–983.

Zhu, T., and D.-L. Zhang, 2006: Numerical simulation of Hurricane Bonnie (1998). Part II: Sensitivity to varying cloud microphysical processes. J. Atmos. Sci., 63, 109–126.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top