跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/22 21:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉佩欣
研究生(外文):Pei-Hsin Liu
論文名稱:北極層狀雲逆相位之形成機制
論文名稱(外文):Mechanism of Phase Inversion in Arctic Stratiform Clouds
指導教授:陳正平陳正平引用關係
指導教授(外文):Jen-Ping Chen
口試委員:隋中興吳健銘陳維婷蘇世顥
口試委員(外文):Chung-Hsiung SuiChien-Ming WuWei-Ting ChenShih-Hao Su
口試日期:2020-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:64
中文關鍵詞:北極層狀雲北極混合態雲逆相位冰晶核化古典冰晶理論沙塵捕獲
外文關鍵詞:Arctic stratiform cloudsArctic mixed-phase cloudsphase inversionice nucleationclassical nucleation theorydust trap
DOI:10.6342/NTU202003247
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
北極層狀雲通常有逆相位的結構(即雲頂為液態、下方為混合態或冰態的結構),並且可以持續很長的時間。先前的研究認為逆相位結構是由冰晶的重力沉降和持續在高空生成液態雲的結果,而浸入核化被認為是北極層狀雲中最主要的冰晶核化過程。然而,冰核的作用以及其和不同環境因素之間的非線性過程對此逆相位現象的的影響尚未得到充分的了解。冰晶核化過程受到溫度、飽和度、冰核的種類和數量濃度影響。在雲的上層中,有任何不利於這些因子的條件都會使冰晶核化速率減小,從而能夠保持逆相位的結構。本研究利用WRF模式搭配詳盡的冰晶核化方案,試圖找出北極層狀雲中逆相位結構的微物理機制。該冰晶核化方案可以預報不同種類冰核在三個相態間的轉換,並考慮了不同的冰晶核化途徑以及隨著降水粒子的沉降。本研究模擬的個案在2008年3月4日到3月5日期間於阿拉斯加州巴羅鎮的ARM計畫中所觀測到。沙塵和煤灰為兩個主要測試的冰核種類,並利用MERRA-2中的氣溶膠再分析資料來提供模式的初始和邊界條件。模式結果顯示此個案的雲主要是因為鋒面上升運動而產生。沙塵和煤灰都成功模擬出逆相位結構,但在煤灰的實驗中,沒有任何水雲到達巴羅,顯示在這個個案中沙塵可能是主要的冰核。在雲中,沙塵主要透過異質凝華核化產生冰晶,而非如前人研究中所認為的浸入核化。但是因為冰晶核化速率很低,且重力沉降移除了沙塵,使生成的冰晶數量相對較少,而導致華格納-白吉隆-芬代生過程十分緩慢,從而可以讓雲水藉由舉升絕熱冷卻持續形成。此外,一旦沙塵進入雲滴中,冰核就只能透過浸入核化產生冰晶,但在這模擬的個案條件中,此核化過程效率較低。在本研究中,北極層狀雲的逆相位結構機制是由於冰核數量有限,且部分陷入較不易核化的水雲中,以及通過重力沉降移除的沙塵所導致的。
Arctic stratiform clouds (ASC) often exhibit a phase inversion structure (i.e., liquid top and mixed- or ice-phase below), and can persist for quite a long time. Previous studies indicated that the phase inversion structure is the result of persistent liquid cloud generation aloft, and gravitational sedimentation of ice precipitation that formed dominantly by immersion freezing; however, the role of ice nuclei (IN) and nonlinear effect of different environmental factors on phase inversion was not fully addressed before. Ice nucleation processes are affected by temperature, saturation, and the species and number concentration of IN. Unfavorable conditions in any of these factors at the upper part of the cloud can minimize the ice nucleation rate there and thus maintain the phase inversion. This study aims to find out the microphysics mechanism for ASC phase inversion by using the Weather Research and Forecasting (WRF) model coupled with a detailed ice nucleation scheme. This ice nucleation scheme considers prognostic IN species, their conversion between different phases, and different routes of ice nucleation and the sedimentation with precipitation particles. The 2008 Mar 04-05 case observed with an Atmospheric Radiation Measurement (ARM) facility at Barrow, Alaska, is simulated. Dust and soot are considered as the two main IN, using the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) aerosol reanalysis data for providing initial and boundary conditions. The simulation result reveals that clouds formed because of the upward motion associated with a frontal system. Simulations with either dust or soot particles can both reproduce the phase inversion structure, but no liquid cloud can arrive Barrow in the soot run, inferring that dust may be the dominant IN in this case. In the cloud, ice particles nucleated from dust mainly through deposition nucleation rather than immersion as suggested in earlier studies. However, due to low ice nucleation rate and gravitational removal, the amount of ice particles that produced is relatively low, which yielded a slow Wegener–Bergeron–Findeisen conversion to allow the sustentation of cloud water during adiabatic cooling; this results in a persistent liquid cloud aloft. Furthermore, once dust particles get into the cloud drops, ice nucleation can only proceed via immersion freezing, which is rather inefficient comparing to deposition nucleation under the simulated conditions. The limited amount of dust together with the trap of dust in an inefficient nucleation phase and the nucleation scavenging of dust by falling ice precipitation serve as the main mechanism of ASC phase inversion in this study.
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF TABLES vii
LIST OF FIGURES viii
Chapter 1 Introduction 1
Chapter 2 Data and Methodology 5
2.1 Observation 5
2.2 Model 5
2.2.1 Model settings 5
2.2.2 Aerosol settings 6
2.2.3 Experiment design 8
2.3 Case overview 9
2.4 Analysis method 9
Chapter 3 Results 11
3.1 Ice nucleation with dust or soot 11
3.2 Comparison with ARM observations 12
Chapter 4 Phase inversion mechanism investigation 15
4.1 Soot 15
4.2 Dust 16
4.2.1 Ice nucleation process 17
.4.2.1.1 Deposition nucleation versus immersion freezing 17
.4.2.1.2 Immersion due to activation or collection 18
4.2.2 The WBF efficiency and liquid persistence 20
.4.2.2.1 WBF characteristic time 20
.4.2.2.2 Sensitivity of dust number concentration 22
Chapter 5 Discussion and Conclusion 24
REFERENCE 28
TABLES 34
FIGURES 37
Bigg, E. K., 1953: The supercooling of water. Proceedings of the Physical Society. Section B, 66, 688.
Bosilovich, M., R. Lucchesi, and M. Suarez, 2015: MERRA-2: File specification.
Breider, T. J., L. J. Mickley, D. J. Jacob, Q. Wang, J. A. Fisher, R. Y. W. Chang, and B. Alexander, 2014: Annual distributions and sources of Arctic aerosol components, aerosol optical depth, and aerosol absorption. Journal of Geophysical Research: Atmospheres, 119, 4107-4124.
Brooks, S. D., K. Suter, and L. Olivarez, 2014: Effects of chemical aging on the ice nucleation activity of soot and polycyclic aromatic hydrocarbon aerosols. The Journal of Physical Chemistry A, 118, 10036-10047.
Chen, J.-P., 1994: Theory of deliquescence and modified Köhler curves. Journal of the atmospheric sciences, 51, 3505-3516.
Chen, J.-P., and T.-C. Tsai, 2016: Triple-moment modal parameterization for the adaptive growth habit of pristine ice crystals. Journal of the Atmospheric Sciences, 73, 2105-2122.
Chen, J.-P., A. Hazra, and Z. Levin, 2008: Parameterizing ice nucleation rates using contact angle and activation energy derived from laboratory data. Atmospheric Chemistry and Physics, 8, 7431-7449.
Cheng, C.-T., W.-C. Wang, and J.-P. Chen, 2010: Simulation of the effects of increasing cloud condensation nuclei on mixed-phase clouds and precipitation of a front system. Atmospheric Research, 96, 461-476.
Cotton, R., and P. Field, 2002: Ice nucleation characteristics of an isolated wave cloud. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 128, 2417-2437.
Curry, J. A., J. L. Schramm, W. B. Rossow, and D. Randall, 1996: Overview of Arctic cloud and radiation characteristics. Journal of Climate, 9, 1731-1764.
de Boer, G., T. Hashino, and G. J. Tripoli, 2010: Ice nucleation through immersion freezing in mixed-phase stratiform clouds: Theory and numerical simulations. Atmospheric Research, 96, 315-324.
de Boer, G., H. Morrison, M. Shupe, and R. Hildner, 2011: Evidence of liquid dependent ice nucleation in high‐latitude stratiform clouds from surface remote sensors. Geophysical Research Letters, 38.
DeMott, P. J., 1990: An exploratory study of ice nucleation by soot aerosols. Journal of applied meteorology, 29, 1072-1079.
Diehl, K., and S. Wurzler, 2004: Heterogeneous drop freezing in the immersion mode: Model calculations considering soluble and insoluble particles in the drops. Journal of the atmospheric sciences, 61, 2063-2072.
Dusek, U., and Coauthors, 2010: Enhanced organic mass fraction and decreased hygroscopicity of cloud condensation nuclei (CCN) during new particle formation events. Geophysical Research Letters, 37.
Fan, J., M. Ovtchinnikov, J. M. Comstock, S. A. McFarlane, and A. Khain, 2009: Ice formation in Arctic mixed‐phase clouds: Insights from a 3‐D cloud‐resolving model with size‐resolved aerosol and cloud microphysics. Journal of Geophysical Research: Atmospheres, 114.
Herich, H., and Coauthors, 2009: Water uptake of clay and desert dust aerosol particles at sub-and supersaturated water vapor conditions. Physical Chemistry Chemical Physics, 11, 7804-7809.
Hoose, C., J. E. Kristjánsson, J.-P. Chen, and A. Hazra, 2010: A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model. Journal of the Atmospheric Sciences, 67, 2483-2503.
Hung, H.-M., K.-C. Wang, and J.-P. Chen, 2015: Adsorption of nitrogen and water vapor by insoluble particles and the implication on cloud condensation nuclei activity. Journal of Aerosol Science, 86, 24-31.
Konovalov, I. B., and Coauthors, 2018: Estimation of black carbon emissions from Siberian fires using satellite observations of absorption and extinction optical depths. Atmospheric Chemistry and Physics, 18, 14889-14924.
Lin, Y. C., 2015: Numerical Simulation of Dust-Cloud Interactions Using Regional Models, Department of Atmospheric Sciences, National Taiwan University, 1-218 pp.
Liu, J., S. Fan, L. W. Horowitz, and H. Levy, 2011: Evaluation of factors controlling long‐range transport of black carbon to the Arctic. Journal of Geophysical Research: Atmospheres, 116.
Lupi, L., and V. Molinero, 2014: Does hydrophilicity of carbon particles improve their ice nucleation ability? The Journal of Physical Chemistry A, 118, 7330-7337.
Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. Journal of Applied Meteorology, 31, 708-721.
Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. Journal of Climate, 21, 3642-3659.
Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes. Monthly weather review, 137, 991-1007.
Morrison, H., G. de Boer, G. Feingold, J. Harrington, M. D. Shupe, and K. Sulia, 2012: Resilience of persistent Arctic mixed-phase clouds. Nature Geoscience, 5, 11.
Okamoto, H., K. Sato, and Y. Hagihara, 2010: Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signals. Journal of Geophysical Research: Atmospheres, 115.
Paukert, M., and C. Hoose, 2014: Modeling immersion freezing with aerosol‐dependent prognostic ice nuclei in Arctic mixed‐phase clouds. Journal of Geophysical Research: Atmospheres, 119, 9073-9092.
Peng, J., and Coauthors, 2017: Ageing and hygroscopicity variation of black carbon particles in Beijing measured by a quasi-atmospheric aerosol evolution study (QUALITY) chamber. Atmospheric Chemistry and Physics, 17, 10333.
Petters, M., and S. Kreidenweis, 2007: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity.
Prenni, A. J., P. J. Demott, D. C. Rogers, S. M. Kreidenweis, G. M. Mcfarquhar, G. Zhang, and M. R. Poellot, 2009: Ice nuclei characteristics from M-PACE and their relation to ice formation in clouds. Tellus B: Chemical and Physical Meteorology, 61, 436-448.
Prenni, A. J., and Coauthors, 2007: Can ice-nucleating aerosols affect Arctic seasonal climate? Bulletin of the American Meteorological Society, 88, 541-550.
Pruppacher, H. R., and J. D. Klett, 1980: Microphysics of clouds and precipitation. Nature, 284, 88-88.
Qiu, S., X. Dong, B. Xi, and J. L. Li, 2015: Characterizing Arctic mixed‐phase cloud structure and its relationship with humidity and temperature inversion using ARM NSA observations. Journal of Geophysical Research: Atmospheres, 120, 7737-7746.
Randles, C., and Coauthors, 2016: Technical Report Series on Global Modeling and Data Assimilation.
Sedlar, J., M. D. Shupe, and M. Tjernström, 2012: On the relationship between thermodynamic structure and cloud top, and its climate significance in the Arctic. Journal of Climate, 25, 2374-2393.
Shupe, M. D., and J. M. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. Journal of Climate, 17, 616-628.
Shupe, M. D., S. Y. Matrosov, and T. Uttal, 2006: Arctic mixed-phase cloud properties derived from surface-based sensors at SHEBA. Journal of the atmospheric sciences, 63, 697-711.
Shupe, M. D., and Coauthors, 2008: A focus on mixed-phase clouds: The status of ground-based observational methods. Bulletin of the American Meteorological Society, 89, 1549-1562.
Solomon, A., M. D. Shupe, P. Persson, and H. Morrison, 2011: Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion. Atmospheric Chemistry & Physics Discussions, 11.
Sorjamaa, R., and A. Laaksonen, 2007: The effect of H 2 O adsorption on cloud-drop activation of insoluble particles: a theoretical framework.
Tanaka, T. Y., and M. Chiba, 2006: A numerical study of the contributions of dust source regions to the global dust budget. Global and Planetary Change, 52, 88-104.
Tsai, I. C., J. P. Chen, Y. C. Lin, C. C. K. Chou, and W. N. Chen, 2015: Numerical investigation of the coagulation mixing between dust and hygroscopic aerosol particles and its impacts. Journal of Geophysical Research: Atmospheres, 120, 4213-4233.
Whitby, K. T., 1978: The physical characteristics of sulfur aerosols. Sulfur in the Atmosphere, Elsevier, 135-159.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top