跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/04 05:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝庭維
研究生(外文):Ting-Wei Hsieh
論文名稱:使用 Gamma 分布函數之總體水物法的水物終端速度參數化
論文名稱(外文):Bulk Parameterization for Precipitation Particles’ Terminal Velocity for Gamma-type Particle Size Distribution
指導教授:陳正平陳正平引用關係
指導教授(外文):Jen-Ping Chen
口試委員:楊明仁游政谷林沛練
口試委員(外文):Ming-Jen YangCheng-Ku YuPay-Liam Lin
口試日期:2020-07-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:42
中文關鍵詞:終端速度微物理參數化總體水物法
外文關鍵詞:terminal velocitycloud microphysicsbulk parameterization
DOI:10.6342/NTU202004153
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
終端速度是雲物理學中的一個重要物理參數,對水物碰撞合併、重力沉降與凝結或蒸發的通風效應估算有密切關聯。本研究的目的旨在改進使用 gamma 粒徑分布函數的多矩量總體水物法模式中的水物終端速度參數式。針對雨滴部分,本研究基於 Böhm (1992) 的理論值進行參數化,並與 Gunn 與 Kinzer (1949) 比對以驗證參數式之可靠性;另有使用包含本研究參數式的數個參數法進行一維簡單重力沉降模式做數值動力測試。新的參數法相較於目前 WRF 模式中常見使用的終端速度參數式與前人研究成果之參數式更加準確。冰相水物的部分,本研究基於 Böhm (1989, 1992) 的理論值,除了冰相粒子大小與密度外,使用橢圓體近似得額外考慮冰晶形狀的影響。由於實驗研究資料仍不夠完備,冰晶參數法較難與目前實驗相互比對;但本研究將 Böhm (1989) 與目前較新亦較完整,由 Mitchell 與 Heymsfield (2005) 提出的架構進行比較。
Terminal velocity is a key parameter in cloud microphysical processes, including collision coalescence/accretion/aggregation, gravitational sedimentation, ventilation effect of hydrometeors’ condensation/vaporization, etc. The goal of this study is to improve the terminal velocity parameterization for multi-moment hydrometeor microphysical schemes using gamma function as particle size distribution (PSD), which is the most common form of PSD in current bulk microphysical schemes. For raindrops, the semi-theoretical calculation of fall speed suggested by Böhm (1992) was used as the base of the parameterization. The results were compared with the experimental result of Gunn and Kinzer (1949) to check the liability of the parameterization. The new parameterization showed better accuracy compared with earlier formulas, including those used in the WRF model. For ice particles, the new parameterization can well approximate the fall speeds from the calculation framework of Böhm (1989, 1992) which considered not only the size and density dependence but also the shape of ice particles using spheroidal approximation. Verification of ice hydrometeors’ fall speed is difficult because of the lack of comprehensive measurement data. Nevertheless, a comparison was made against the currently most comprehensive parameterization of Mitchell and Heymsfield (2005) that is based on a somewhat different analytical framework. A simple 1-D sedimentation dynamics test for raindrop terminal velocity is conducted to examine the behavior and usability of our parameterization formula.
誌謝..................................................................................i
中文摘要.............................................................................ii
ABSTRACT ...........................................................................iii
TABLE OF CONTENTS....................................................................iv
LIST OF FIGURES......................................................................vi
LIST OF TABLES.....................................................................viii
Chapter 1 Introduction................................................................1
1.1 Raindrops.........................................................................3
1.2 Ice particles.....................................................................5
Chapter 2 Theoretical derivation of fall speeds ......................................7
Chapter 3 Methodology ...............................................................11
3.1 Database for parameterization ...................................................11
3.2 Fitting process..................................................................13
Chapter 4 Results....................................................................15
4.1 Parameterization of terminal velocity............................................15
4.2 Bulk fall speed .................................................................22
4.3 One-dimension simple dynamics test ..............................................24
Chapter 5 Discussion.................................................................28
5.1 Raindrops........................................................................28
5.2 Ice particles....................................................................33
5.3 Incorporation with other microphysical processes in models ......................36
Chapter 6 Conclusion ................................................................38
REFERENCE ...........................................................................40
[1] Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: “Doppler radar characteristics of precipitation at vertical incidence.” Rev. Geophys., 11, 1–35.
[2] Atlas, D., and C. W. Ulbrich, 1977: “Path and Area-Integrated Rainfall Measurement by Microwave Attenuation in the 1–3 cm Band.” J. Appl. Meteor., 16, 1322–1331.
[3] Best, A. C., 1950: “Empirical formulae for the terminal velocity of water drops alling through the atmosphere.” Q. J. R. Meteorol. Soc., 76, 302–311.
[4] Böhm, H. P., 1989: “A General Equation for the Terminal Fall Speed of Solid Hydrometeors.” J. Atmos. Sci., 46, 2419–2427.
[5] Böhm, H. P., 1991: “Review of flow characteristics and kinematics of hydrometeors in free fall.” Atmos. Res., 26, 285–302.
[6] Böhm, H. P., 1992: “A general hydrodynamic theory for mixed-phase microphysics. Part I: Drag and fall speed of hydrometeors.” Atmos. Res., 27, 253–274.
[7] Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: “Experiments in Rainfall Estimation with a Polarimetric Radar in a Subtropical Environment.” J. Appl. Meteor., 41, 674–685.
[8] Chen, J. P., and D. Lamb, 1994: “The Theoretical Basis for the Parameterization of Ice Crystal Habits: Growth by Vapor Deposition.” J. Atmos. Sci., 51, 1206–1222.
[9] Chen, J. P., I. C. Tsai, and Y. C. Lin, 2013: “A statistical–numerical aerosol parameterization scheme.” Atmos. Chem. Phys., 13, 10483–10504.
[10] Chen, J. P., and T. C. Tsai, 2016: “Triple-Moment Modal Parameterization for the Adaptive Growth Habit of Pristine Ice Crystals.” J. Atmos. Sci., 73, 2105–2122.
[11] Foote, G. B., and P. S. duToit, 1969: “Terminal velocity of raindrops aloft.” J. Appl. Meteorol., 8, 249–253.
[12] Gunn, R., and G. D. Kinzer, 1949: “The Terminal Velocity of Fall For Water Droplets in Stagnant Air.” J. Meteor., 6, 243–248.
[13] Ji, W., and P. K. Wang, 1999: “Ventilation Coefficients for Falling Ice Crystals in the Atmosphere at Low–Intermediate Reynolds Numbers.” J. Atmos. Sci., 56, 829–836.
[14] Khvorostyanov, V. I., and J. A. Curry, 2002: “Terminal velocities of droplets and crystals: Power laws with continuous parameters over the size spectrum.” J. Atmos. Sci., 59, 1872–1884.
[15] Lhermitte, R., 1990: “Attenuation and Scattering of Millimeter Wavelength Radiation by Clouds and Precipitation.” J. Atmos. Oceanic Technol., 7, 464–479.
[16] McFarquhar, G. M., T. Hsieh, M. Freer, J. Mascio, and B. F. Jewett, 2015: “The Characterization of Ice Hydrometeor Gamma Size Distributions as Volumes in N0–λ–μ Phase Space: Implications for Microphysical Process Modeling.” J. Atmos. Sci., 72, 892–909.
[17] Marshall, J. S., and W. McK. Palmer, 1948: “Shorter Contribution: The Distribution of Raindrops with Size.” J. Meteor., 5, 154-166.
[18] Milbrandt, J. A., and R. McTaggart-Cowan, 2010: “Sedimentation-Induced Errors in Bulk Microphysics Schemes.” J. Atmos. Sci., 67, 3931–3948.
[19] Mitchell, D. L., and A. J. Heymsfield, 2005: “Refinements in the Treatment of Ice Particle Terminal Velocities, Highlighting Aggregates.” J. Atmos. Sci., 62, 1637–1644.
[20] Pruppacher, H.R., and J.D. Klett, 2010: Microphysics of Clouds and Precipitation, Springer, 958 pp.
[21] Rogers, R. R., 1989: “Raindrop collision rates”, J. Atmos. Sci., 46, 2469 – 2472.
[22] Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics, Elsevier, 304 pp.
[23] Testik, F. Y., and A. P. Barros, 2007: “Toward elucidating the microstructure of warm rainfall: A survey.” Rev. Geophys., 45, Z57–Z77.
[24] Tokay, A., and D. A. Short, 1996: “Evidence from Tropical Raindrop Spectra of the Origin of Rain from Stratiform versus Convective Clouds.” J. Appl. Meteor., 35, 355–371.
[25] Tsai, T. C., and J. P. Chen, 2020: “Multimoment Ice Bulk Microphysics Scheme with Consideration for Particle Shape and Apparent Density. Part I: Methodology and Idealized Simulation.” J. Atmos. Sci., 77, 1821–1850.
[26] Ulbrich, C. W., 1983: “Natural Variations in the Analytical Form of the Raindrop Size Distribution.” J. Climate Appl. Meteor., 22, 1764–1775.
[27] Willis, P. T., F. Marks, and J. Gottschalck, 1999: “Rain Drop Size Distributions and Radar Rain Measurements in South Florida.” https://www.aoml.noaa.gov/hrd/FlBay/florida_bay_99.html.
[28] Yu, C. K., P. R. Hsieh, S. E. Yuter, L. W. Cheng, C. L. Tsai, C. Y. Lin, and Y. Chen, 2016: “Measuring droplet fall speed with a high-speed camera: indoor accuracy and potential outdoor applications.” Atmos. Meas. Tech., 9, 1755–1766.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top