|
[1] Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: “Doppler radar characteristics of precipitation at vertical incidence.” Rev. Geophys., 11, 1–35. [2] Atlas, D., and C. W. Ulbrich, 1977: “Path and Area-Integrated Rainfall Measurement by Microwave Attenuation in the 1–3 cm Band.” J. Appl. Meteor., 16, 1322–1331. [3] Best, A. C., 1950: “Empirical formulae for the terminal velocity of water drops alling through the atmosphere.” Q. J. R. Meteorol. Soc., 76, 302–311. [4] Böhm, H. P., 1989: “A General Equation for the Terminal Fall Speed of Solid Hydrometeors.” J. Atmos. Sci., 46, 2419–2427. [5] Böhm, H. P., 1991: “Review of flow characteristics and kinematics of hydrometeors in free fall.” Atmos. Res., 26, 285–302. [6] Böhm, H. P., 1992: “A general hydrodynamic theory for mixed-phase microphysics. Part I: Drag and fall speed of hydrometeors.” Atmos. Res., 27, 253–274. [7] Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: “Experiments in Rainfall Estimation with a Polarimetric Radar in a Subtropical Environment.” J. Appl. Meteor., 41, 674–685. [8] Chen, J. P., and D. Lamb, 1994: “The Theoretical Basis for the Parameterization of Ice Crystal Habits: Growth by Vapor Deposition.” J. Atmos. Sci., 51, 1206–1222. [9] Chen, J. P., I. C. Tsai, and Y. C. Lin, 2013: “A statistical–numerical aerosol parameterization scheme.” Atmos. Chem. Phys., 13, 10483–10504. [10] Chen, J. P., and T. C. Tsai, 2016: “Triple-Moment Modal Parameterization for the Adaptive Growth Habit of Pristine Ice Crystals.” J. Atmos. Sci., 73, 2105–2122. [11] Foote, G. B., and P. S. duToit, 1969: “Terminal velocity of raindrops aloft.” J. Appl. Meteorol., 8, 249–253. [12] Gunn, R., and G. D. Kinzer, 1949: “The Terminal Velocity of Fall For Water Droplets in Stagnant Air.” J. Meteor., 6, 243–248. [13] Ji, W., and P. K. Wang, 1999: “Ventilation Coefficients for Falling Ice Crystals in the Atmosphere at Low–Intermediate Reynolds Numbers.” J. Atmos. Sci., 56, 829–836. [14] Khvorostyanov, V. I., and J. A. Curry, 2002: “Terminal velocities of droplets and crystals: Power laws with continuous parameters over the size spectrum.” J. Atmos. Sci., 59, 1872–1884. [15] Lhermitte, R., 1990: “Attenuation and Scattering of Millimeter Wavelength Radiation by Clouds and Precipitation.” J. Atmos. Oceanic Technol., 7, 464–479. [16] McFarquhar, G. M., T. Hsieh, M. Freer, J. Mascio, and B. F. Jewett, 2015: “The Characterization of Ice Hydrometeor Gamma Size Distributions as Volumes in N0–λ–μ Phase Space: Implications for Microphysical Process Modeling.” J. Atmos. Sci., 72, 892–909. [17] Marshall, J. S., and W. McK. Palmer, 1948: “Shorter Contribution: The Distribution of Raindrops with Size.” J. Meteor., 5, 154-166. [18] Milbrandt, J. A., and R. McTaggart-Cowan, 2010: “Sedimentation-Induced Errors in Bulk Microphysics Schemes.” J. Atmos. Sci., 67, 3931–3948. [19] Mitchell, D. L., and A. J. Heymsfield, 2005: “Refinements in the Treatment of Ice Particle Terminal Velocities, Highlighting Aggregates.” J. Atmos. Sci., 62, 1637–1644. [20] Pruppacher, H.R., and J.D. Klett, 2010: Microphysics of Clouds and Precipitation, Springer, 958 pp. [21] Rogers, R. R., 1989: “Raindrop collision rates”, J. Atmos. Sci., 46, 2469 – 2472. [22] Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics, Elsevier, 304 pp. [23] Testik, F. Y., and A. P. Barros, 2007: “Toward elucidating the microstructure of warm rainfall: A survey.” Rev. Geophys., 45, Z57–Z77. [24] Tokay, A., and D. A. Short, 1996: “Evidence from Tropical Raindrop Spectra of the Origin of Rain from Stratiform versus Convective Clouds.” J. Appl. Meteor., 35, 355–371. [25] Tsai, T. C., and J. P. Chen, 2020: “Multimoment Ice Bulk Microphysics Scheme with Consideration for Particle Shape and Apparent Density. Part I: Methodology and Idealized Simulation.” J. Atmos. Sci., 77, 1821–1850. [26] Ulbrich, C. W., 1983: “Natural Variations in the Analytical Form of the Raindrop Size Distribution.” J. Climate Appl. Meteor., 22, 1764–1775. [27] Willis, P. T., F. Marks, and J. Gottschalck, 1999: “Rain Drop Size Distributions and Radar Rain Measurements in South Florida.” https://www.aoml.noaa.gov/hrd/FlBay/florida_bay_99.html. [28] Yu, C. K., P. R. Hsieh, S. E. Yuter, L. W. Cheng, C. L. Tsai, C. Y. Lin, and Y. Chen, 2016: “Measuring droplet fall speed with a high-speed camera: indoor accuracy and potential outdoor applications.” Atmos. Meas. Tech., 9, 1755–1766.
|