跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 09:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘鈺太
研究生(外文):Yu-Tai Pan
論文名稱:理想颮線受真實台灣地形影響之數值模擬研究
論文名稱(外文):A Study of the impacts of Realistic Taiwan Topography on the structure of Idealized Squall-Line Simulations
指導教授:楊明仁楊明仁引用關係
指導教授(外文):Ming-Jen Yang
口試委員:郭鴻基游政谷王重傑
口試委員(外文):Hung-Chi KuoCheng-Ku YuChung-Chieh Wang
口試日期:2020-06-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:102
中文關鍵詞:颮線台灣地形冷池颮線對稱性福祿數水躍現象
外文關鍵詞:squall-line MCSTaiwan topographycold poolFroude numberhydraulic jump
DOI:10.6342/NTU202002129
相關次數:
  • 被引用被引用:1
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
2019年4月19日,一發展至典型弓狀回波 結構之颮線型中尺度對流系統由西向東侵襲澎湖,隨後抵達台灣本島;此颮線系統 造成台灣西南部多 處強陣風及短時強降雨,更有多處帳棚及鷹架倒塌,危害民眾生命財產安全。原本南北對稱之颮線系統接觸到台灣地形後,在地形迎風側形成南北不對稱性,並且於颮線南端有較強雷達回波。我們推論此颮線南北不對稱性是由於台灣地形北段雪山山脈山脊走向(東北-西南)與南段中央山脈山脊走向(正北-正南)不同所造成;而於地形背風側所產生之颮線不對稱性則來自於北段雪山山脈與南段中央山脈的長寬比(aspect ratio)不同。
為了驗證上述 假說,我們透過 WRF(Weather Research and Forecast)模式進行理想數值模擬 探討颮線系統結構受台灣地形之影響。模擬實驗結果顯示實際觀測個案與我們的理想模擬 結果有許多相似之處。我們並計算低層冷池內的福祿數(Froude number)來當作 颮線是否能通過台灣山脈之標準,發現-2 K的位溫擾動 等值線完全受到台灣 500公尺之等高 線所阻礙。北段雪山山脈之東北-西南走向與南段中央山脈之正北-正南走向是造成整體颮線結構南北不對稱之關鍵,而冷池之厚度與強度也是決定整體颮線強度之關鍵要素。另外,我們發現颮線於地形背風側不對稱性之形成 來自於水躍現象(hydraulic jump)於雪山山脈及南段中央山脈之發生位置與強度不同所致。
我們進行地形高度敏感度實驗以更了解台灣地形對於颮線扮演的角色,另外我們對於低層風切強度也做了一系列之敏感度實驗,嘗試了解不同風切強度對於颮線發展之影響為何,並透過RKW理論討論 颮線之結構演變如何受到地形影響 。
On 19 April 2019, a squall-line mesoscale convective system (MCS) with the characteristics of a leading convective line and trailing stratiform precipitation made landfall over Penghu and then Taiwan later, resulting in strong wind and heavy rainfall. The squall-line structure became asymmetric when it encountered with Taiwan topography with the southern (northern) part showing stronger (weaker) radar echoes. We hypothesized that the asymmetry might result from the impacts of Taiwan terrain on the squall-line MCS; specifically, it may be due to different orientations of the Central Mountain Ridge (CMR) and the Snow Mountain Ridge (SMR) on Taiwan. Additionally, the asymmetry on the lee side may result from the difference of aspect ratio between the northern SMR and the southern CMR.
To verify the above hypothesis, a set of idealized numerical simulations using the Weather Research and Forecasting (WRF) model were performed to examine the impacts of realistic Taiwan topography on a squall-line MCS. Model results show many similarities between the idealized simulations and real-case observations for the squall-line system evolution. The low-level Froude number within the cold pool was estimated to determine whether the squall-line MCS was able to climb over the CMR or SMR. A cold pool with the magnitude of –2K was found to be completely blocked by the terrain with heights of 500 m or above. The north-south orientation of the CMR and northeast-southwest orientation of the SMR constrained the squall-line MCS to develop differently, causing it to become asymmetric and to have stronger radar echoes at the southern end of the system. The depth and intensity of the cold pool were also key factors in determining the squall-line structural evolution. On the other hand, the asymmetry on the lee side might result from the location and the intensity of the leeside hydraulic jump. Terrain height experiments were conducted to better understand the role of the Taiwan terrain height on the squall line development. Wind-shear experiments were performed to investigate how the low-level wind shear affects the storm evolution of the squall-line MCS.
謝誌……………………………………………………………………………i
中文摘要…………………………………………………………………………...ii
ABSTRACT …………………………………………………………………………..iii
目錄……………………………………………………………………………v
圖目錄…………………………………………………………………………viii
表目錄…………………………………………………………………………xvi
Chapter 1 緒論 17
1.1 前言 17
1.2 文獻回顧 18
1.3 研究動機 21
Chapter 2 模式架構與實驗設計 22
2.1 WRF 數值模式簡介 22
2.2 實驗設計 23
2.2.1 控制組實驗設計 23
2.2.2 暖胞設定 24
2.2.3 台灣地形設定 24
2.2.4 模式初始探空設定 25
2.2.5 敏感度實驗設計 26
Chapter 3 研究方法 27
3.1 福祿數 (Froude number) 27
3.2 冷池移速、冷池厚度及高度 28
3.3 空間相關係數 (Spatial correlation coefficient) 29
Chapter 4 控制組實驗結果 30
4.1 2019 年 4 月 19 日觀測資料分析 30
4.2 控制組模擬結果與 分析 31
4.2.1 模擬颮線水平結構分析 31
4.2.2 模擬颮線垂直剖面分析 33
4.3 福祿數、 RKW 理論及冷池移速分析 35
4.3.1 福祿數 (Froude number) 35
4.3.2 RKW理論分析 35
4.3.3 冷池移速分析 36
4.4 與 2019 年 4 月 19 日之個案做比較 37
4.5 提出科學假說 (Hypothesis) 39
Chapter 5 敏感度實驗結果 41
5.1 地形高度敏感度實驗 41
5.2 空間相關係數分析 43
5.3 低層風切敏感度實驗 44
5.4 初步探討 RKW 理論與地形之間的關 係 45
Chapter 6 討論 48
Chapter 7 結論 52
附錄…………………………………………………………………………..54
附錄A: 暖胞延後置入避免背風側重力波對流干擾之技術細節 54
附錄B: 水躍現象之細節討論 55
附錄C: 空間相關係數不確定性之探討 56
附錄D: 理論密度流速與陣風鋒面移速之比較 57
參考文獻…………………………………………………………………………..58
表…………………………………………………………………………..62
圖…………………………………………………………………………..65
1. 吳宗堯、陳泰然、謝信良、喬鳳倫、陳正改、蕭長庚及朱曙光,1984: 台灣地區春至初夏之局部性豪雨及其對水稻災害之初步分析。大氣科學 11 29-44。
2. 謝信良與陳正改,1985: 台灣地區氣象災害之調查研究。國科會防災科技研究報告73-40號,66頁。
3. 鄧仁星與陳景森, 1990:台灣地區颮線環境之分析。 大氣科學 18 149-157。
4. 陳泰然、周鴻祺、林宗嵩及楊進賢, 1996:台灣海峽北部與鄰近地區春夏中尺度對流系統之氣候特徵。 大氣科學 24 145-164。
5. 林宗嵩、陳泰然, 1997: 台灣北部與鄰近地區春夏季節中尺度對流系統發展的環境條件探討。 大氣科學 25 379-396
6. 陳泰然、周鴻祺、紀水上、黃心怡、楊進賢,2011: 台灣與其他地區暖季弓形回波之特徵與環境條件。大氣科學,40,49-68
7. 林昌鴻, 2013: 颮線與山脈地形的交互作用 :理想模擬研究。國立中央大學大氣物理研究所碩士論文 81頁 。
8. 鐘宜娟, 2014: 使用 WRF理想模組討論颮線系統與山脈地形之交互作用 -水收支及降水效率研究。國立中央大學大氣物理研究所碩士論文 72頁 。
9. Adams-Selin, R. D., S. C. van den Heever, and R. H. Johnson, 2013a: Impact of graupel parameterization schemes on idealized bow echo simulations. Mon. Wea. Rev., 141, 1241–1262.
10. Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202–225.
11. Chu, C. and Y. Lin, 2000: Effects of Orography on the Generation and Propagation of Mesoscale Convective Systems in a Two-Dimensional Conditionally Unstable Flow. J. Atmos. Sci., 57, 3817–3837
12. Chen, S. and Y. Lin, 2005: Effects of Moist Froude Number and CAPE on a Conditionally Unstable Flow over a Mesoscale Mountain Ridge. J. Atmos. Sci., 62, 331–350
13. Durran, D. R., 1986: Another look at downslope windstorms. Part I: The development of analogs to supercritical flow in an infinitely deep, continuously stratified fluid. J. Atmos. Sci., 43, 2527–2543
14. French, A. J., and M. D. Parker, 2014: Numerical simulations of bow echo formation following a squall line–supercell merger. Mon. Wea. Rev., 142, 4791–4822.
15. Frame, J., and P. Markowski, 2006: The interaction of simulated squall lines with idealized mountain ridges. Mon. Wea. Rev., 134, 1919–1941.
16. Fovell, R.G. and P. Tan, 1998: The Temporal Behavior of Numerically Simulated Multicell-Type Storms. Part II: The Convective Cell Life Cycle and Cell Regeneration. Mon. Wea. Rev., 126, 551–577.
17. Hong, S. and H. Pan, 1996: Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model. Mon. Wea. Rev., 124, 2322–2339.
18. Kirshbaum, D.J. and D.M. Schultz, 2018: Convective Cloud Bands Downwind of Mesoscale Mountain Ridges. J. Atmos. Sci., 75, 4265–4286.
19. Lin, Y. and L.E. Joyce, 2001: A Further Study of the Mechanisms of Cell Regeneration, Propagation, and Development within Two-Dimensional Multicell Storms. J. Atmos. Sci., 58, 2957–2988.
20. Lin, H., K.J. Noone, J. Ström, and A.J. Heymsfield, 1998: Dynamical Influences on Cirrus Cloud Formation Process. J. Atmos. Sci., 55, 1940–1949.
21. Letkewicz, C. E., and M. D. Parker, 2011: Impact of environmental variations on simulated squall lines interacting with terrain. Mon. Wea. Rev., 139, 3163–3183.
22. Lombardo, K. and T. Kading, 2018: The Behavior of Squall Lines in Horizontally Heterogeneous Coastal Environments. J. Atmos. Sci., 75, 1243–1269.
23. Miglietta, M. M., and R. Rotunno, 2009: Numerical simulations of conditionally unstable flows over a mountain ridge. J. Atmos. Sci., 66, 1865–1885.
24. Reeves, H.D. and Y. Lin, 2007: The Effects of a Mountain on the Propagation of a Preexisting Convective System for Blocked and Unblocked Flow Regimes. J. Atmos. Sci., 64, 2401–2421.
25. Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463–485.
26. Teng, J.-H., C.-S. Chen, T.-C. C. Wang, and Y.-L. Chen, 2000: Orographic effects on a squall line system over Taiwan. Mon. Wea. Rev., 128, 1123–1138.
27. Tai, S., Y. Liou, J. Sun, and S. Chang, 2017: The Development of a Terrain-Resolving Scheme for the Forward Model and Its Adjoint in the Four-Dimensional Variational Doppler Radar Analysis System (VDRAS). Mon. Wea. Rev., 145, 289–306.
28. Weisman, M.L., 1993: The Genesis of Severe, Long-Lived Bow Echoes. J. Atmos. Sci., 50, 645–670.
29. Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361–382.
30. Weisman, M.L., 1992: The Role of Convectively Generated Rear-Inflow Jets in the Evolution of Long-Lived Mesoconvective Systems. J. Atmos. Sci., 49, 1826–1847.
31. Wang, C.-C., G. T.-J. Chen, T.-C. Chen, and K. Tsuboki, 2005: A numerical study on the effects of Taiwan topography on a convective line during the mei-yu season. Mon. Wea. Rev., 133, 3217–3242.
32. Yang, M.-J., and R. A. Houze, Jr., 1995a: Multicell squall line structure as a manifestation of vertically trapped gravity waves. Mon. Wea. Rev., 123, 641–661.
33. Yang, M.-J., and R.A. Houze, 1995b: Sensitivity of Squall-Line Rear Inflow to Ice Microphysics and Environmental Humidity. Mon. Wea. Rev., 123, 3175–3193.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top