跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 16:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許淑嫻
研究生(外文):Shu-Hsien Hsu
論文名稱:以台北市到院前心肺停止資料建構終止心肺復甦術規則
論文名稱(外文):Development of Termination of Resuscitation Rules from Data of Patients with Out of Hospital Cardiac Arrest in Taipei.
指導教授:張淑惠張淑惠引用關係
指導教授(外文):Shu-Hui Chang
口試委員:江文莒陳秀熙
口試委員(外文):Wen-Chu ChiangHsiu-Hsi Chen
口試日期:2020-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:公共衛生碩士學位學程
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:48
中文關鍵詞:到院前心肺停止終止心肺復甦術規則
外文關鍵詞:out of hospital cardiac arresttermination of resuscitation
DOI:10.6342/NTU202002257
相關次數:
  • 被引用被引用:0
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究目的
到院前心肺停止病人 (out of hospital cardiac arrest, OHCA)的存活率很低,西方國家使用終止心肺復甦術規則(termination of resuscitation, TOR),以減少不必要的運輸並重新分配有限的醫療資源。目前國際上之終止心肺復甦術規則尚未於台灣施行,且其預測台灣到院前心肺停止病人死亡的表現無法達到無效醫療定義。故此藉此回顧性研究建立適合台北市之終止心肺復甦術規則。

研究方法
本研究資料來自於2013/1/1-2017/12/31之台北市到院前心肺停止病例登記冊,目的為建立模型以預測到院前心肺停止患者其預後,主要結果為出院死亡,次要結果為出院之不良神經學預後。資料進行單變量分析,找出與主要結果及次要結果相關且具統計意義之自變項。資料進行一次拆分,隨機抽取2/3的資料作為推導組,1/3資料作為驗證組。以推導組資料進行多變量迴歸分析,建構迴歸模型,並利用ROC曲線下面積(area under the curve, AUC),由多個模型中選取最佳模型,並使用驗證組資料對最佳迴歸模型進行驗證。

研究結果
結果顯示,不論依變項為以出院死亡,或依變項為出院不良神經學預後,其最佳迴歸模型為同一個,最佳迴歸模型之自變項包含目擊倒下、到院前電擊、到院前恢復自發性心跳。對出院死亡之預測其推導組之PPV (positive predict value)為97.65 (95%CI: 97.13-98.17),AUC為0.73 (95%CI: 0.71-0.74);於驗證組之PPV為97.37 (95%CI: 96.59-98.14);其AUC為0.72 (95%CI: 0.69-0.74),在推導組或驗證組,其PPV皆<99%,對出院死亡之預測無法達無效醫療定義。對出院不良神經學預後之預測其推導組之PPV為99.24 (95%CI: 98.94-99.54),AUC為0.75 (95%CI: 0.73-0.77);於驗證組之PPV為99.33 (95%CI: 98.93-99.72);其AUC為0.75 (95%CI: 0.73-0.77),在推導組及驗證組,其PPV皆超過99%,對出院不良神經學預後之預測可達無效醫療定義。於全體8,893名患者,若使用此迴歸模型,有3012名患者被預測為不需救治,其中8名CPC1患者及3名CPC2患者,被判定不須救治。

結論
最佳迴歸模型為:目擊倒下、到院前電擊、到院前恢復自發性心跳。此模型對出院不良神經學預測可達無效醫療定義,但對出院死亡之預測無法達無效醫療定義,需進一步對此模型進行外在驗證。
Objective
The survival rate of out-of-hospital cardiac arrest (OHCA) is very low. In western countries, the rule of termination of resuscitation (TOR) is used to reduce unnecessary transportation and reallocate limited medical resources. Currently, this international TOR rule is not implemented in Taiwan and fails to reach the definition of futile medicine in predicting the deaths of OHCA patients in Taiwan. A retrospective study in Taipei city was conducted to establish a suitable TOR rule.

Method
The data in this study are extracted from the Taipei OHCA Register from January 1, 2013 to December 31, 2017. The primary outcome is death from discharge. The secondary outcome is poor neurological outcome of discharge. Univariate analysis was conducted to one-by-one find potential factors related to the primary and secondary outcomes. Our data are randomly split into two subsets, one with 2/3 data is called derivation group and another one with 1/3 data called validation group. Multivariate logistic regression analysis for the data of derivation group was used to construct and find one best regression model with the largest area under the curve (AUC)from several candidate models. Furthermore, this regression model is validated by using the data of validation group.

Result
The result shows that the best regression model is the same both in death from discharge and poor neurological outcome of discharge. The variables of the best regression model include: witness collapse, shock before hospitalization, ROSC before hospitalization. For the prediction of discharge death, the PPV of the derivation group is 97.65 (95%CI: 97.13-98.17), and the AUC is 0.73 (95%CI: 0.71-0.74); the positive predict value (PPV) of the validation group is 97.37 (95%CI: 96.59-98.14) ); ad AUC is 0.72 (95%CI: 0.69-0.74). In both groups, the PPVs are less than 99% in the best model such that the prediction of death from discharge does not meet the futile medicine definition. For the prediction of poor neurological outcome of discharge, the PPV of the derivation group is 99.24 (95%CI: 98.94-99.54), and the AUC is 0.75 (95%CI: 0.73-0.77); the PPV in the validation group is 99.33 (95%CI: 98.93-99.72); its AUC is 0.75 (95%CI: 0.73-0.77). In both derivation group and validation group, predicting poor neurological outcome of discharge using the best model reaches the definition of futile medicine. Once this regression model is used, of all 8,893 patients, 3012 are predicted to terminate resuscitation including 8 CPC1 patients and 3 CPC2 patients judged not to resuscitate.

Conclusion
The four factors, witness collapse, shock before hospitalization, return of spontaneous resuscitation (ROSC) before hospitalization, are selected in the model. Under this model, the prediction of poor neurological outcome of discharge, reaches the definition of futile medicine, but the prediction of death from discharge cannot reach futile medicine. A further external validation for this model is needed in the future.
口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 v
第一章 緒論 1
1.1 實習單位簡介 1
1.2 研究背景 1
1.3 研究動機與目的 2
1.4 名詞解釋及英文縮寫 3
第二章 文獻回顧與探討 5
2.1 終止心肺復甦術規則的演進 5
2.2 終止心肺復甦術規則的建立方式 6
2.3 終止心肺復甦術規則的使用效益 8
2.4 亞洲使用終止心肺復甦術規則的現況 9
第三章 研究設計與方法 10
3.1 研究設計與研究架構 10
3.2 研究族群 10
3.3 研究工具 10
3.4 資料及數據收集方法及流程 10
3.5 資料處理及統計分析方法 11
3.5.1 台北市到院前心肺停止個案基本資料分析 11
3.5.2 單變項分析 12
3.5.3 迴歸模式之建立 12
3.5.4 風險分層 13
3.5.5 最佳迴歸模式使用於全體到院前心肺停止病患之前後差異比較 13
第四章 研究結果 14
4.1 台北市到院前心肺停止個案基本資料分析 14
4.1.1 研究患者特徵 15
4.1.2 年齡切點 17
4.2 單變量分析 18
4.3 最佳迴歸模型 19
4.3.1 選取最佳的迴歸模型 20
4.3.2 模型驗證 26
4.4 風險分層 29
4.5 最佳迴歸模式使用於全體到院前心肺停止病患與否之差異比較 33
第五章 討論 35
5.1 年齡切點選擇 35
5.2 模型對出院死亡的預測未達無效醫療 35
5.3 新模型與通用版的終止心肺復甦術規則之差異 36
5.4 以台北市建立此到院前停止心肺復甦規則之優缺點 38
5.5 台北市目前適用到院前停止心肺復甦規則在臨床上之應用 40
5.6 研究的優勢與貢獻 41
5.7 研究限制 42
第六章 結論與建議 44
6.1 結論 44
6.2 建議 44
第七章 參考文獻 45
1.Nichol, G., et al., Regional variation in out-of-hospital cardiac arrest incidence and outcome. JAMA, 2008. 300(12): p. 1423-31.
2.Berdowski, J., et al., Global incidences of out-of-hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies. Resuscitation, 2010. 81(11): p. 1479-87.
3.Ong, M.E., et al., Pan-Asian Resuscitation Outcomes Study (PAROS): rationale, methodology, and implementation. Acad Emerg Med, 2011. 18(8): p. 890-7.
4.Ong, M.E., et al., Outcomes for out-of-hospital cardiac arrests across 7 countries in Asia: The Pan Asian Resuscitation Outcomes Study (PAROS). Resuscitation, 2015. 96: p. 100-8.
5.Schneiderman, L.J., et al., Medical futility: its meaning and ethical implications. Ann Intern Med, 1990. 112(12): p. 949-54.
6.Marsden, A.K., et al., When is it futile for ambulance personnel to initiate cardiopulmonary resuscitation? BMJ, 1995. 311(6996): p. 49-51.
7.Richman, P.B., et al., Independent evaluation of an out-of-hospital termination of resuscitation (TOR) clinical decision rule. Acad Emerg Med, 2008. 15(6): p. 517-21.
8.Kellermann, A.L., et al., Terminating unsuccessful advanced cardiac life support in the field. Am J Emerg Med, 1987. 5(6): p. 548-9.
9.Mitchell, K.R., et al., Medical futility, treatment withdrawal and the persistent vegetative state. J Med Ethics, 1993. 19(2): p. 71-6.
10.Bailey, E.D., et al., Termination of resuscitation in the prehospital setting for adult patients suffering nontraumatic cardiac arrest. National Association of EMS Physicians Standards and Clinical Practice Committee. Prehosp Emerg Care, 2000. 4(2): p. 190-5.
11.Eisenberg, M.S., et al., Termination of CPR in the prehospital arena. Ann Emerg Med, 1985. 14(11): p. 1106-7.
12.Smith J.P., et al., Guidelines for Discontinuing Prehospital CPR in the Emergency Department-A Review. Ann Emerg Med, 1985. 14: p. 1093-1098.
13.Verbeek, P.R., et al., Derivation of a termination-of-resuscitation guideline for emergency medical technicians using automated external defibrillators. Acad Emerg Med, 2002. 9(7): p. 671-8.
14.Morrison, L.J., et al., Validation of a universal prehospital termination of resuscitation clinical prediction rule for advanced and basic life support providers. Resuscitation, 2009. 80(3): p. 324-8.
15.Morrison, L.J., et al., Validation of a rule for termination of resuscitation in out-of-hospital cardiac arrest. N Engl J Med, 2006. 355(5): p. 478-87.
16.Ong, M.E., et al., Comparison of termination-of-resuscitation guidelines for basic life support: defibrillator providers in out-of-hospital cardiac arrest. Ann Emerg Med, 2006. 47(4): p. 337-43.
17.Ruygrok, M.L., et al., Validation of 3 termination of resuscitation criteria for good neurologic survival after out-of-hospital cardiac arrest. Ann Emerg Med, 2009. 54(2): p. 239-47.
18.Sasson, C., et al., Prehospital termination of resuscitation in cases of refractory out-of-hospital cardiac arrest. JAMA, 2008. 300(12): p. 1432-8.
19.Skrifvars, M.B., et al., Comparison of Helsinki and European Resuscitation Council "do not attempt to resuscitate" guidelines, and a termination of resuscitation clinical prediction rule for out-of-hospital cardiac arrest patients found in asystole or pulseless electrical activity. Resuscitation, 2010. 81(6): p. 679-84.
20.Morrison, L.J., et al., Part 3: ethics: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation, 2010. 122(18 Suppl 3): p. S665-75.
21.Shibahashi, K., et al., A potential termination of resuscitation rule for EMS to implement in the field for out-of-hospital cardiac arrest: An observational cohort study. Resuscitation, 2018. 130: p. 28-32.
22.Goto Y., et al., Termination-of-resuscitation rule for emergency department physicians treating out-of-hospital cardiac arrest patients: an observational cohort study. Crit Care, 2013. 17(5): p. R235.
23.Auerbach, P.S., et al., An analysis of ambulance accidents in Tennessee. JAMA, 1987. 258(11): p. 1487-90.
24.Morrison, L.J., et al., Evaluating paramedic comfort with field pronouncement: development and validation of an outcome measure. Acad Emerg Med, 2003. 10(6): p. 633-7.
25.Gray, W.A., et al., Unsuccessful emergency medical resuscitation--are continued efforts in the emergency department justified? N Engl J Med, 1991. 325(20): p. 1393-8.
26.Suchard, J.R., et al., Medicare expenditures on unsuccessful out-of-hospital resuscitations. J Emerg Med, 1999. 17(5): p. 801-5.
27.Chiang W.C., et al., Predictive performance of universal termination of resuscitation rules in an Asian community: are they accurate enough? Emerg Med J, 2015. 32: p. 318-323.
28.Eliastam M., et al., Cardiac arrest in the emergency medical service system: Guidelines for resuscitation. JACEP, 1977. 6: p. 525-529
29.Eisenberg M.S., et al., The ACLS score: Predicting survival from out-of-hospital cardiac arrest. JAMA, 1981. 246: p. 50-52.
30.Aprahamian C., et al., Decision making in prehospital sudden cardiac arrest. Ann Emerg Med, 1988. 15: p. 445-449.
31.Morrison, L.J., et al., Derivation and evaluation of a termination of resuscitation clinical prediction rule for advanced life support providers. Resuscitation, 2007. 74(2): p. 266-75.
32.Group., S.K.S., A New Rule for Terminating Resuscitation of Out-of-Hospital Cardiac Arrest Patients in Japan: A Prospective Study. J Emerg Med, 2017. 53: p. 345-352.
33.Gray W.A., et al., In-hospital resuscitation following unsuccessful prehospital Advanced Cardiac Life Support: ‘heroic efforts’ or an exercise in futility? Ann Emerg Med, 1988. 17: p. 589–594.
34.Suchard J.R., et al., Medicare expenditures on unsuccessful out-of-hospital resuscitations. J Emerg Med, 1999. 17: p. 801-805.
35.Council., J.R., Japan resuscitation council resuscitation guidelines 2015. 1st edn. Tokyo: Health Shuppansha, 2016.
36.Shibahashi, K., et al., A potential termination of resuscitation rule for EMS to implement in the field for out-of-hospital cardiac arrest: An observational cohort study. Resuscitation, 2018. 130: p. 28-32.
37.Chiang W.C., et al., EMS in Taiwan: Past, present, and future. Resuscitation, 2009. 80(1): p. 9-13.
38.Ko P.C., et al., Impact of community-wide deployment of biphasic waveform automated external defibrillators on out-of-hospital cardiac arrest in Taipei. Resuscitation, 2004. 63: p. 167-174.
39.Shin, S.D., et al., Comparison of emergency medical services systems across Pan-Asian countries: a Web-based survey. Prehosp Emerg Care, 2012. 16(4): p. 477-96.
40.Lloyd-Jones D., et al., Heart disease and stroke statistics– 2010 update: a report from the American Heart Association. Circulation 2010. 121: p. e46–215.
41.Kajino K., et al., Current termination of resuscitation (TOR) guidelines predict neurologically favorable outcome in Japan. Resuscitation, 2013. 84: p. 54-59.
42.Hu S.C., et al., Study of patients arriving byambulance in Taipei City. .JFormos Med Assoc, 1993. 92: p. 25-32.
43.Chen C.C., et al., Spatial Variation and Resuscitation Process Affecting Survival after Out-of-Hospital Cardiac Arrests (OHCA). PLoS One, 2015. 10(12).
44.Ro Y.S., et al., Temporal trends in out-of-hospital cardiac arrest survival outcomes between two metropolitan communities: Seoul-Osaka resuscitation study. BMJ, 2015. 5.
45.Wong, M.K., et al., Trends in short-and long-term survival among out-of-hospital cardiac arrest patients alive at hospital arrival. Circulation, 2014. 130: p. 1883-1890.
46.Kitamura, T., et al., Nationwide improvements in survival from out-of-hospital cardiac arrest in Japan. Circulation, 2012. 126: p. 2834-2843.
47.Peberdy M.A., et al., Part 9: post-cardiac arrest care: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Circulation 2010. 122: p. S768–86.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top