|
1Yang, S., Fu, W., Zhang, Z., Chen, H. & Li, C.-Z. Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. J. Mater. Chem. A 5, 11462-11482,(2017). 2D’innocenzo, V. et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Comm. 5, 3586,(2014). 3Snaith, H. J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623-3630,(2013). 4Grancini, G. & Nazeeruddin, M. K. Dimensional tailoring of hybrid perovskites for photovoltaics. Nat. Rev. Mater. 1,(2018). 5Yin, G. et al. Precursor Engineering for All-Inorganic CsPbI2Br Perovskite Solar Cells with 14.78% Efficiency. Adv. Func. Mater. 0, 1803269. 6Swarnkar, A. et al. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92-95,(2016). 7Etgar, L. The merit of perovskite''s dimensionality; can this replace the 3D halide perovskite? Environ. Sci. 11, 234-242,(2018). 8Chen, Y. et al. 2D Ruddlesden–Popper perovskites for optoelectronics. Adv. Mater. 30, 1703487,(2018). 9Saparov, B. & Mitzi, D. B. Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chem. Rev. 116, 4558-4596,(2016). 10Raghavan, C. M. et al. Low-Threshold Lasing from 2D Homologous Organic–Inorganic Hybrid Ruddlesden–Popper Perovskite Single Crystals. Nano Lett. 18, 3221-3228,(2018). 11Cohen, B.-E., Wierzbowska, M. & Etgar, L. High efficiency quasi 2D lead bromide perovskite solar cells using various barrier molecules. Sustain. Energy Fuels 1, 1935-1943,(2017). 12Tanaka, K. et al. Image charge effect on two-dimensional excitons in an inorganic-organic quantum-well crystal. Phys. Rev. B 71, 045312,(2005). 13Tanaka, K. et al. Two-dimensional Wannier excitons in a layered-perovskite-type crystal (C6H13NH3) 2PbI4. Solid State Commun. 122, 249-252,(2002). 14Zhao, Y.-Q. et al. Layer-dependent transport and optoelectronic property in two-dimensional perovskite: (PEA)2PbI4. Nanoscale 10, 8677-8688,(2018). 15Yang, R. et al. Oriented Quasi‐2D Perovskites for High Performance Optoelectronic Devices. Adv. Mater. 30, 1804771,(2018). 16Hendon, C. H., Yang, R. X., Burton, L. A. & Walsh, A. Assessment of polyanion (BF4− and PF6-) substitutions in hybrid halide perovskites. J. Mater. Chem. A 3, 9067-9070,(2015). 17Daub, M. & Hillebrecht, H. Synthesis, Single-Crystal Structure and Characterization of (CH3NH3)2Pb(SCN)2I2. Angew. Chem. 54, 11016-11017,(2015). 18Feng, Y., Cheng, J., Zhou, L., Zhou, X. & Xiang, H. Ratiometric optical oxygen sensing: a review in respect of material design. Analyst 137, 4885-4901,(2012). 19Wang, H. & Kim, D. H. Perovskite-based photodetectors: materials and devices. Chem. Soc. Rev. 46, 5204-5236,(2017). 20Lee, Y. et al. High‐Performance Perovskite–Graphene Hybrid Photodetector. Adv. Mater. 27, 41-46,(2015). 21Gong, X. et al. High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm. Science 325, 1665-1667,(2009). 22Lin, Q., Armin, A., Burn, P. L. & Meredith, P. Organohalide Perovskites for Solar Energy Conversion. Acc. Chem. Res 49, 545-553,(2016). 23Correa-Baena, J.-P. et al. The rapid evolution of highly efficient perovskite solar cells. Energy Environ. Sci. 10, 710-727,(2017). 24Petrus, M. L. et al. Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells. Adv. Energy Mater. 7, 1700264,(2017). 25Veldhuis, S. A. et al. Perovskite Materials for Light-Emitting Diodes and Lasers. Adv. Mater. 28, 6804-6834,(2016). 26Kim, Y.-H., Cho, H. & Lee, T.-W. Metal halide perovskite light emitters. Proc. Natl. Acad. Sci. U.S.A 113, 11694-11702,(2016). 27Shan, Q. et al. High Performance Metal Halide Perovskite Light-Emitting Diode: From Material Design to Device Optimization. Small 13, 1701770,(2017). 28Stoumpos, C. C. & Kanatzidis, M. G. The Renaissance of Halide Perovskites and Their Evolution as Emerging Semiconductors. Acc. Chem. Res. 48, 2791-2802,(2015). 29Li, W. et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat. Rev. Mater. 2, 16099,(2017). 30Srimath Kandada, A. R. & Petrozza, A. Photophysics of Hybrid Lead Halide Perovskites: The Role of Microstructure. Acc. Chem. Res. 49, 536-544,(2016). 31Johnston, M. B. & Herz, L. M. Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies. Acc. Chem. Res. 49, 146-154,(2016). 32Manser, J. S., Christians, J. A. & Kamat, P. V. Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chem. Rev. 116, 12956-13008,(2016). 33Tress, W. Perovskite Solar Cells on the Way to Their Radiative Efficiency Limit – Insights Into a Success Story of High Open-Circuit Voltage and Low Recombination. Adv. Energy Mater. 7, 1602358,(2017). 34Park, N.-G., Grätzel, M., Miyasaka, T., Zhu, K. & Emery, K. Towards stable and commercially available perovskite solar cells. Nat. Energy 1, 16152,(2016). 35Wang, Z., Shi, Z., Li, T., Chen, Y. & Huang, W. Stability of Perovskite Solar Cells: A Prospective on the Substitution of the A Cation and X Anion. Angew. Chem. 56, 1190-1212,(2017). 36Swarnkar, A. et al. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92-95,(2016). 37Yan, L. et al. Interface Engineering for All-Inorganic CsPbI2Br Perovskite Solar Cells with Efficiency over 14%. Adv. Mater. 30, 1802509,(2018). 38Saidaminov, M. I., Mohammed, O. F. & Bakr, O. M. Low-Dimensional-Networked Metal Halide Perovskites: The Next Big Thing. ACS Energy Lett. 2, 889-896,(2017). 39Chen, S. & Shi, G. Two-Dimensional Materials for Halide Perovskite-Based Optoelectronic Devices. Adv. Mater.29, 1605448,(2017). 40Du, K.-z. et al. Two-Dimensional Lead(II) Halide-Based Hybrid Perovskites Templated by Acene Alkylamines: Crystal Structures, Optical Properties, and Piezoelectricity. Inorg. Chem. 56, 9291-9302,(2017). 41Umeyama, D., Lin, Y. & Karunadasa, H. I. Red-to-black piezochromism in a compressible Pb–I–SCN layered perovskite. Chem. Mat. 28, 3241-3244,(2016). 42Ganose, A. M., Savory, C. N. & Scanlon, D. O. Electronic and defect properties of (CH 3 NH 3) 2 Pb (SCN) 2 I 2 analogues for photovoltaic applications. J. Mater. Chem. A 5, 7845-7853,(2017). 43Younts, R. et al. Efficient Generation of Long‐Lived Triplet Excitons in 2D Hybrid Perovskite. Adv. Mater. 29, 1604278,(2017). 44Ganose, A. M., Savory, C. N. & Scanlon, D. O. (CH3NH3)2Pb(SCN)2I2: a more stable structural motif for hybrid halide photovoltaics? J. Phys. Chem. Lett. 6, 4594-4598,(2015). 45Xiao, Z. et al. Photovoltaic properties of two-dimensional (CH3NH3) 2Pb (SCN) 2I2 perovskite: A combined experimental and density functional theory study. J. Phys. Chem. Lett. 7, 1213-1218,(2016). 46Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. 7, 982-988,(2014). 47Cheng, Z. & Lin, J. Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. Cryst. Eng. Comm. 12, 2646-2662,(2010). 48Kamminga, M. E. et al. Confinement effects in low-dimensional lead iodide perovskite hybrids. Chem. Mater. 28, 4554-4562,(2016). 49Qinghui Liu, Y. W., Ning Sui, Yanting Wang, Xiaochun Chi, Qianqian Wang, Ying Chen, Wenyu Ji, Lu Zou & Hanzhuang Zhang. Exciton Relaxation Dynamics in Photo-Excited CsPbI3 Perovskite Nanocrystals. Sci. Rep. 6, 29442,(2016). 50Waqar Ahmad, J. K., Guangda Niu, and Jiang Tang. Inorganic CsPbI3 Perovskite-Based Solar Cells: A Choice for a Tandem Device. Sol. RRL 1, 1700048,(2017). 51Yin, W.-J., Shi, T. & Yan, Y. Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance. Adv. Mater. 26, 4653-4658,(2014). 52Xiao, Z. et al. Photovoltaic Properties of Two-Dimensional (CH3NH3)2Pb(SCN)2I2 Perovskite: A Combined Experimental and Density Functional Theory Study. J. Phys. Chem. Lett. 7, 1213-1218,(2016). 53Umebayashi, T., Asai, K., Kondo, T. & Nakao, A. Electronic structures of lead iodide based low-dimensional crystals. Phys. Rev. B 67, 155405,(2003). 54Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Lett. 13, 1764-1769,(2013). 55Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613-617,(2015). 56Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183,(2007). 57Sarma, S. D., Adam, S., Hwang, E. & Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407,(2011). 58Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 4, 611,(2010). 59Schwierz, F. Graphene transistors. Nat. Nanotechnol. 5, 487,(2010). 60Kim, R.-H. et al. Stretchable, Transparent Graphene Interconnects for Arrays of Microscale Inorganic Light Emitting Diodes on Rubber Substrates. Nano Lett. 11, 3881-3886,(2011). 61Kim, Y. H. et al. Multicolored organic/inorganic hybrid perovskite light‐emitting diodes. Adv. Mater. 27, 1248-1254,(2015). 62Wang, X., Zhi, L. & Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323-327,(2008). 63Sun, S., Gao, L. & Liu, Y. Enhanced dye-sensitized solar cell using graphene-TiO 2 photoanode prepared by heterogeneous coagulation. Appl. Phys. Lett. 96, 083113,(2010). 64Xia, F., Mueller, T., Lin, Y.-m., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839,(2009). 65Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 4, 297,(2010). 66Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308-1308,(2008). 67Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363,(2012). 68Chang, H. et al. A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure. Nanoscale 3, 258-264,(2011). 69Chang, P.-H. et al. Ultrahigh responsivity and detectivity graphene–perovskite hybrid phototransistors by sequential vapor deposition. Sci. Rep. 7, 46281,(2017). 70Li, F. et al. Ambipolar solution-processed hybrid perovskite phototransistors. Nat. Comm. 6, 8238,(2015). 71Gong, M. et al. High-Performance All-Inorganic CsPbCl3 Perovskite Nanocrystal Photodetectors with Superior Stability. ACS Nano 13, 1772-1783,(2019). 72Cheng, T.-C. et al. Surface modification of graphene using HBC-6ImBr in solution-processed OLEDs. J. Appl. Phys. 123, 024303,(2018). 73Kufer, D. et al. Hybrid 2D–0D MoS2–PbS quantum dot photodetectors. Adv. Mater. 27, 176-180,(2015). 74Shao, Y. et al. Stable Graphene-Two-Dimensional Multiphase Perovskite Heterostructure Phototransistors with High Gain. Nano Lett. 17, 7330-7338,(2017). 75Tan, Z. et al. Two-Dimensional (C4H9NH3)2PbBr4 Perovskite Crystals for High-Performance Photodetector. J. Am. Chem. Soc. 138, 16612-16615,(2016). 76Jiang, Q. et al. Pseudohalide‐induced moisture tolerance in perovskite CH3NH3Pb (SCN) 2I thin films. Angew. Chem. 54, 7617-7620,(2015). 77Tai, Q. et al. Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nat. Comm. 7, 11105,(2016). 78Chen, Y., Li, B., Huang, W., Gao, D. & Liang, Z. Efficient and reproducible CH3NH3PbI3−x(SCN)x perovskite based planar solar cells. Chem. Comm. 51, 11997-11999,(2015). 79Koh, A. R., Hwang, B., Roh, K. C. & Kim, K. The effect of the ionic size of small quaternary ammonium BF 4 salts on electrochemical double layer capacitors. Phys. Chem. Chem. Phys 16, 15146-15151,(2014). 80Chen, J. et al. Hole‐Conductor‐Free Fully Printable Mesoscopic Solar Cell with Mixed‐Anion Perovskite CH3NH3PbI(3−x)(BF4)x. Adv. Energy Mater. 6, 1502009,(2016). 81Zhang, J., Wu, S., Liu, T., Zhu, Z. & Jen, A. K. Y. Boosting Photovoltaic Performance for Lead Halide Perovskites Solar Cells with BF4− Anion Substitutions. Adv. Func. Mater.,(2019). 82Halder, A. et al. Pseudohalide (SCN–)-Doped MAPbI3 Perovskites: A Few Surprises. J. Phys. Chem. Lett. 6, 3483-3489,(2015). 83Zhang, X. et al. Vertically Oriented 2D Layered Perovskite Solar Cells with Enhanced Efficiency and Good Stability. Small 13,(2017). 84Nagane, S. & Ogale, S. CH3NH3Pb (BF4)3 and (C4H9NH3)2Pb(BF4)4 Family of 3D and 2D Perovskites without and with Iodide and Bromide Ions Substitution. J. Phys. Chem. Lett. 7, 4757-4762,(2016). 85Du, X. et al. High-quality CsPbBr3 perovskite nanocrystals for quantum dot light-emitting diodes. RSC Adv. 7, 10391-10396,(2017).
|