跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 09:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李佳欣
研究生(外文):Chia-Hsin Li
論文名稱:偽鹵素基二維鈣鈦礦材料之開發與組成探討
論文名稱(外文):Exploration and Composition Engineering of Two Dimensional (2D) Pseudohalide-based Perovskite
指導教授:闕居振
指導教授(外文):Chu-Chen Chueh
口試委員:李文亞郭宗枋
口試委員(外文):Wen-Ya Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:66
中文關鍵詞:二維鈣鈦礦偽鹵素穩定性顏色可調控性石墨烯鈣鈦礦光感測器
外文關鍵詞:2D perovskitepseudo-halideSCN- anionstabilitycolor-tunabilitygrapheneperovskite photodetector
DOI:10.6342/NTU202000092
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,有機-無機混成鈣鈦礦因其優異的光學及電學性質受到廣泛的關注及研究,儘管其熱穩定性及大氣穩定性仍有待改進。二維層狀鈣鈦礦因其對水氣及熱擁有較佳的耐受性,近來被視為改善此問題之良好方案。其中,理論研究報導在鈣鈦礦晶格中引入硫氰酸根離子以取代原本的鹵素離子可大幅提升其大氣穩定性,增加了鈣鈦礦實際應用的可能性。然而,唯一被廣泛討論的MA2Pb(SCN)2I2隨後在實際元件應用上的穩定性仍然有限。因此,本論文藉離子替換探討一系列二維硫氰酸根鈣鈦礦A2Pb(SCN)2X2(A=甲脒基、甲基胺基、銫離子,X = 溴離子、碘離子)之結構穩定性。當較小的銫離子置於鈣鈦礦晶格時,整體鈣鈦礦結構因較輕微的晶格扭曲而較甲基銨基形成之結構穩定,且擁有較為優異的光響應特質。此外,一系列混合鹵素之鈣鈦礦Cs2Pb(SCN)2(I1-xBrx)2 (x = 1/3, 1/2, 2/3, 1)亦被證明其較純碘(x=0) 鈣鈦礦優異的穩定性,其薄膜顏色亦可透過鹵素調控呈現各式鮮豔色彩。純溴離子組成之Cs2Pb(SCN)2Br2 則為此系列最為穩定之鈣鈦礦,透過吸收圖譜證實超過72小時仍維持穩定之結構。
Cs2Pb(SCN)2Br2 優異的穩定性及光學性質,結合了石墨烯優良的載子遷移率,被應用於石墨烯-鈣鈦礦複合結構之電晶體式光感測器。元件受益於妥善配置的能級、迅速的載子分離而擁有高光響應度(9.51 x 105 A W−1)及快速的響應時間(1.82 s)。除了探究單層結構的硫氰酸基鈣鈦礦,我們試著利用傳統的旋轉塗佈製程探索多層結構的硫氰酸碘鈣鈦礦及硫氰酸溴鈣鈦礦之可能性。所得之均勻薄膜透過X光繞射、吸收光譜、螢光放射光譜檢視,卻可見明顯的相分離情形,證明所製備的薄膜為僅為單層二維鈣鈦礦及立體鈣鈦礦之混合物。為了嘗試其他偽鹵素置換鹵素於硫氰酸基蓋鈦礦結構之可能性,我們另外使用了與碘離子大小相近的氟硼酸根於結構中。然而,所使用的硼氟化鉛之水溶液性質增加了其配置前驅溶液的困難性,無論使用水及二甲基甲醯胺作為前驅溶液之溶劑均無法得到均質之溶液。我們進而將其析出之透明晶體及清澈溶液部分於乾燥處理後,利用粉末X光繞射檢視其結構組成,藉由與初始物比對圖譜,我們發現所得產物為不同比例之初始物混合物,證明製備二維氟硼酸鈣鈦礦之嘗試失敗。本論文成功展示一系列嶄新的二維硫氰酸鈣鈦礦Cs2Pb(SCN)2(I1-xBrx)2 (x = 0, 1/3, 1/2, 2/3, 1),亦藉由石墨烯-鈣鈦礦混合結構之光感測電晶體證明其實際應用的潛力。惟他種偽鹵素鈣鈦礦仍須更進一步之研究。
Organic-inorganic hybrid perovskites have attracted wide research interest for their figure of merit toward practical applications, including the superior optical and electronic properties. Nevertheless, both thermal and ambient stabilities await significant improvement. Two dimensional (2D) layered perovskites were lately reported to offer a solution to thermal/moisture vulnerability. Among these rising 2D perovskites, introducing thiocyanate anion (SCN-) to replace halides in the perovskite lattice was verified to effectively enhance the structural stability through theoretical study. However, the experimental investigation aroused concern about ambient stability of (MA)2Pb(SCN)2I2 (MA=CH3NH3+), the only intensely investigated SCN-based perovskite, thus cast a shadow over its potential in further application. In this thesis, we first conducted systematical engineering to the SCN-based perovskites, A2Pb(SCN)2X2 (where A = MA+, Cs+, FA+, X = I- or Br-), and revealed the critical limitation to its constituent ions imposed by linear SCN anion. We demonstrated the smaller Cs+ is a favorable cation choice comparing to MA+ because of the trifling structure torsion and that Cs2Pb(SCN)2I2 also possess better photo response in comparison with MA2Pb(SCN)2I2. Moreover, a series of all inorganic mixed halide perovskites Cs2Pb(SCN)2(I1-xBrx)2 (x = 1/3, 1/2, 2/3, 1) with vivid color, was testified to retain better ambient stability than Cs2Pb(SCN)2I2. Also, when Br fully substituted I, the structure was suggested to have the best stability toward real-time stability test conducted for 72 hr.
The advantage of Cs2Pb(SCN)2Br2 with best stability and excellent photons absorption capability, amalgamated with that of graphene with outstanding carrier mobility, was exploited next in a graphene-perovskite hybrid photodetector. The device achieved an outstanding responsivity of 9.52 × 105 A W−1 decent response rise time of 1.86 s with the assistance of the appropriate energy level alignment and rapid charge separation benefit from the built-in electrical field. Other than the exploration on monolayer SCN-based perovskite, the one with multi-layer 2D framework were also investigated through traditional solution-processing approach in both I and Br system. The attempt was proved to be too reckless since the resultant XRD and optical spectra revealed the spin-coated film was composed by mixed phase of single layer SCN perovskites and 3D perovskites of the existed component. To further achieve the pseudohalide-based perovskite, we utilized another pseudo halogen, tetrafluoroborate (BF4-), to formulate the perovskite lattice as the strategy in SCN-based perovskites beause of its similar spatial size with iodide. The dilemma in BF4-based perovskite is the difficulty in processing precursor in that no plausible solvent was able to dissolve the raw materials. The XRD measurement of both precipitate and dried solution was used to examined the constituent in the obtained substance, yet unfortunately to be a mixture of raw materials. In the thesis, we demonstrated a novel series of 2D Cs2Pb(SCN)2(I1-xBrx)2 (x = 0, 1/3, 1/2, 2/3, 1) and verified their practical application in graphene-perovskite hybrid photodetector, yet the validation of another pseudohalide-based perovskite still demand further research effort.
誌謝………………………………………………………………………………………i
摘要……………………………………………………………………………………...ii
Abstract………………………………………………………………………….............iv
Contents
Table Captions
Figure Captions
Chapter 1. Introduction 1
1.1 Introduction to perovskites 1
1.1.1 Two dimensional (2D) perovskites 1
1.1.2 Pseudo halide perovskites 2
1.2 Photoluminescence mechanism 3
1.2.1 Fluorescence and Phosphorescence 3
1.2.2 Jablonski diagram 4
1.3 Introduction to perovskite photodetectors (PDs) 5
1.3.1 Device structure of photodetectors 5
1.3.2 Graphene-perovskite hybrid PDs 6
1.3.3 Principle operation of hybrid PDs 6
1.3.4 Figure of merits for characterizing PDs 7
1.4 Research Objectives 8
Chapter 2. Stable, Color-Tunable 2D SCN-Based Perovskites: Revealing the Critical Influence of Asymmetric Pseudo-Halide on Constituent Ions 15
2. 1 Introduction 15
2.2 Experiment Section 18
2.2.1 Materials 18
2.2.2 Characterization 19
2.2.3 Device Fabrication and Characterization 20
2.3 Results and discussion 20
2.3.1 Crystal Characterization of A2Pb(SCN)2I2 (A = FA+, MA+, and Cs+) 20
2.3.2 Optical properties of (MA)2Pb(SCN)2I2 and Cs2Pb(SCN)2I2 22
2.3.3 Fabrication and Characterization of Cs2Pb(SCN)2(IxBr1-x)2 26
2.4 Conclusion 29
Chapter 3. Graphene-perovskite hybrid photodetectors with HBC-6ImBr surface modification utilizing 2D Cs2Pb(SCN)2Br2 38
3.1 Introduction 38
3.2 Experiment Section 40
3.2.1 Materials 40
3.2.2 Characterization 40
3.2.3 Device Fabrication and Characterization 41
3.3 Results and discussion 42
3.3.1 Structure design of Graphene-Cs2Pb(SCN)2Br2 photodetector 42
3.3.2 Electronic properties of 2D perovskite Cs2Pb(SCN)2Br2 and graphene 43
3.3.3 Performance of hybrid graphene-perovskite PDs 45
3.4 Conclusion 48
Chapter 4. Tuning composition in psuedo-halide based perovskite 52
4.1 Introduction 52
4.2 Experimental section 53
4.2.1 Materials 53
4.2.2 Characterization 54
4.3 Results and discussion 54
4.3.1 Multi-layer SCN-based perovskite 54
4.3.2 BF4-based perovskite 56
4.4 Conclusion 58
Chapter 5. Conclusion and future work 61
Reference 63
1Yang, S., Fu, W., Zhang, Z., Chen, H. & Li, C.-Z. Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. J. Mater. Chem. A 5, 11462-11482,(2017).
2D’innocenzo, V. et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Comm. 5, 3586,(2014).
3Snaith, H. J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623-3630,(2013).
4Grancini, G. & Nazeeruddin, M. K. Dimensional tailoring of hybrid perovskites for photovoltaics. Nat. Rev. Mater. 1,(2018).
5Yin, G. et al. Precursor Engineering for All-Inorganic CsPbI2Br Perovskite Solar Cells with 14.78% Efficiency. Adv. Func. Mater. 0, 1803269.
6Swarnkar, A. et al. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92-95,(2016).
7Etgar, L. The merit of perovskite''s dimensionality; can this replace the 3D halide perovskite? Environ. Sci. 11, 234-242,(2018).
8Chen, Y. et al. 2D Ruddlesden–Popper perovskites for optoelectronics. Adv. Mater. 30, 1703487,(2018).
9Saparov, B. & Mitzi, D. B. Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chem. Rev. 116, 4558-4596,(2016).
10Raghavan, C. M. et al. Low-Threshold Lasing from 2D Homologous Organic–Inorganic Hybrid Ruddlesden–Popper Perovskite Single Crystals. Nano Lett. 18, 3221-3228,(2018).
11Cohen, B.-E., Wierzbowska, M. & Etgar, L. High efficiency quasi 2D lead bromide perovskite solar cells using various barrier molecules. Sustain. Energy Fuels 1, 1935-1943,(2017).
12Tanaka, K. et al. Image charge effect on two-dimensional excitons in an inorganic-organic quantum-well crystal. Phys. Rev. B 71, 045312,(2005).
13Tanaka, K. et al. Two-dimensional Wannier excitons in a layered-perovskite-type crystal (C6H13NH3) 2PbI4. Solid State Commun. 122, 249-252,(2002).
14Zhao, Y.-Q. et al. Layer-dependent transport and optoelectronic property in two-dimensional perovskite: (PEA)2PbI4. Nanoscale 10, 8677-8688,(2018).
15Yang, R. et al. Oriented Quasi‐2D Perovskites for High Performance Optoelectronic Devices. Adv. Mater. 30, 1804771,(2018).
16Hendon, C. H., Yang, R. X., Burton, L. A. & Walsh, A. Assessment of polyanion (BF4− and PF6-) substitutions in hybrid halide perovskites. J. Mater. Chem. A 3, 9067-9070,(2015).
17Daub, M. & Hillebrecht, H. Synthesis, Single-Crystal Structure and Characterization of (CH3NH3)2Pb(SCN)2I2. Angew. Chem. 54, 11016-11017,(2015).
18Feng, Y., Cheng, J., Zhou, L., Zhou, X. & Xiang, H. Ratiometric optical oxygen sensing: a review in respect of material design. Analyst 137, 4885-4901,(2012).
19Wang, H. & Kim, D. H. Perovskite-based photodetectors: materials and devices. Chem. Soc. Rev. 46, 5204-5236,(2017).
20Lee, Y. et al. High‐Performance Perovskite–Graphene Hybrid Photodetector. Adv. Mater. 27, 41-46,(2015).
21Gong, X. et al. High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm. Science 325, 1665-1667,(2009).
22Lin, Q., Armin, A., Burn, P. L. & Meredith, P. Organohalide Perovskites for Solar Energy Conversion. Acc. Chem. Res 49, 545-553,(2016).
23Correa-Baena, J.-P. et al. The rapid evolution of highly efficient perovskite solar cells. Energy Environ. Sci. 10, 710-727,(2017).
24Petrus, M. L. et al. Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells. Adv. Energy Mater. 7, 1700264,(2017).
25Veldhuis, S. A. et al. Perovskite Materials for Light-Emitting Diodes and Lasers. Adv. Mater. 28, 6804-6834,(2016).
26Kim, Y.-H., Cho, H. & Lee, T.-W. Metal halide perovskite light emitters. Proc. Natl. Acad. Sci. U.S.A 113, 11694-11702,(2016).
27Shan, Q. et al. High Performance Metal Halide Perovskite Light-Emitting Diode: From Material Design to Device Optimization. Small 13, 1701770,(2017).
28Stoumpos, C. C. & Kanatzidis, M. G. The Renaissance of Halide Perovskites and Their Evolution as Emerging Semiconductors. Acc. Chem. Res. 48, 2791-2802,(2015).
29Li, W. et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat. Rev. Mater. 2, 16099,(2017).
30Srimath Kandada, A. R. & Petrozza, A. Photophysics of Hybrid Lead Halide Perovskites: The Role of Microstructure. Acc. Chem. Res. 49, 536-544,(2016).
31Johnston, M. B. & Herz, L. M. Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies. Acc. Chem. Res. 49, 146-154,(2016).
32Manser, J. S., Christians, J. A. & Kamat, P. V. Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chem. Rev. 116, 12956-13008,(2016).
33Tress, W. Perovskite Solar Cells on the Way to Their Radiative Efficiency Limit – Insights Into a Success Story of High Open-Circuit Voltage and Low Recombination. Adv. Energy Mater. 7, 1602358,(2017).
34Park, N.-G., Grätzel, M., Miyasaka, T., Zhu, K. & Emery, K. Towards stable and commercially available perovskite solar cells. Nat. Energy 1, 16152,(2016).
35Wang, Z., Shi, Z., Li, T., Chen, Y. & Huang, W. Stability of Perovskite Solar Cells: A Prospective on the Substitution of the A Cation and X Anion. Angew. Chem. 56, 1190-1212,(2017).
36Swarnkar, A. et al. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92-95,(2016).
37Yan, L. et al. Interface Engineering for All-Inorganic CsPbI2Br Perovskite Solar Cells with Efficiency over 14%. Adv. Mater. 30, 1802509,(2018).
38Saidaminov, M. I., Mohammed, O. F. & Bakr, O. M. Low-Dimensional-Networked Metal Halide Perovskites: The Next Big Thing. ACS Energy Lett. 2, 889-896,(2017).
39Chen, S. & Shi, G. Two-Dimensional Materials for Halide Perovskite-Based Optoelectronic Devices. Adv. Mater.29, 1605448,(2017).
40Du, K.-z. et al. Two-Dimensional Lead(II) Halide-Based Hybrid Perovskites Templated by Acene Alkylamines: Crystal Structures, Optical Properties, and Piezoelectricity. Inorg. Chem. 56, 9291-9302,(2017).
41Umeyama, D., Lin, Y. & Karunadasa, H. I. Red-to-black piezochromism in a compressible Pb–I–SCN layered perovskite. Chem. Mat. 28, 3241-3244,(2016).
42Ganose, A. M., Savory, C. N. & Scanlon, D. O. Electronic and defect properties of (CH 3 NH 3) 2 Pb (SCN) 2 I 2 analogues for photovoltaic applications. J. Mater. Chem. A 5, 7845-7853,(2017).
43Younts, R. et al. Efficient Generation of Long‐Lived Triplet Excitons in 2D Hybrid Perovskite. Adv. Mater. 29, 1604278,(2017).
44Ganose, A. M., Savory, C. N. & Scanlon, D. O. (CH3NH3)2Pb(SCN)2I2: a more stable structural motif for hybrid halide photovoltaics? J. Phys. Chem. Lett. 6, 4594-4598,(2015).
45Xiao, Z. et al. Photovoltaic properties of two-dimensional (CH3NH3) 2Pb (SCN) 2I2 perovskite: A combined experimental and density functional theory study. J. Phys. Chem. Lett. 7, 1213-1218,(2016).
46Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. 7, 982-988,(2014).
47Cheng, Z. & Lin, J. Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. Cryst. Eng. Comm. 12, 2646-2662,(2010).
48Kamminga, M. E. et al. Confinement effects in low-dimensional lead iodide perovskite hybrids. Chem. Mater. 28, 4554-4562,(2016).
49Qinghui Liu, Y. W., Ning Sui, Yanting Wang, Xiaochun Chi, Qianqian Wang, Ying Chen, Wenyu Ji, Lu Zou & Hanzhuang Zhang. Exciton Relaxation Dynamics in Photo-Excited CsPbI3 Perovskite Nanocrystals. Sci. Rep. 6, 29442,(2016).
50Waqar Ahmad, J. K., Guangda Niu, and Jiang Tang. Inorganic CsPbI3 Perovskite-Based Solar Cells: A Choice for a Tandem Device. Sol. RRL 1, 1700048,(2017).
51Yin, W.-J., Shi, T. & Yan, Y. Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance. Adv. Mater. 26, 4653-4658,(2014).
52Xiao, Z. et al. Photovoltaic Properties of Two-Dimensional (CH3NH3)2Pb(SCN)2I2 Perovskite: A Combined Experimental and Density Functional Theory Study. J. Phys. Chem. Lett. 7, 1213-1218,(2016).
53Umebayashi, T., Asai, K., Kondo, T. & Nakao, A. Electronic structures of lead iodide based low-dimensional crystals. Phys. Rev. B 67, 155405,(2003).
54Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Lett. 13, 1764-1769,(2013).
55Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613-617,(2015).
56Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183,(2007).
57Sarma, S. D., Adam, S., Hwang, E. & Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407,(2011).
58Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 4, 611,(2010).
59Schwierz, F. Graphene transistors. Nat. Nanotechnol. 5, 487,(2010).
60Kim, R.-H. et al. Stretchable, Transparent Graphene Interconnects for Arrays of Microscale Inorganic Light Emitting Diodes on Rubber Substrates. Nano Lett. 11, 3881-3886,(2011).
61Kim, Y. H. et al. Multicolored organic/inorganic hybrid perovskite light‐emitting diodes. Adv. Mater. 27, 1248-1254,(2015).
62Wang, X., Zhi, L. & Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323-327,(2008).
63Sun, S., Gao, L. & Liu, Y. Enhanced dye-sensitized solar cell using graphene-TiO 2 photoanode prepared by heterogeneous coagulation. Appl. Phys. Lett. 96, 083113,(2010).
64Xia, F., Mueller, T., Lin, Y.-m., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839,(2009).
65Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 4, 297,(2010).
66Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308-1308,(2008).
67Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363,(2012).
68Chang, H. et al. A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure. Nanoscale 3, 258-264,(2011).
69Chang, P.-H. et al. Ultrahigh responsivity and detectivity graphene–perovskite hybrid phototransistors by sequential vapor deposition. Sci. Rep. 7, 46281,(2017).
70Li, F. et al. Ambipolar solution-processed hybrid perovskite phototransistors. Nat. Comm. 6, 8238,(2015).
71Gong, M. et al. High-Performance All-Inorganic CsPbCl3 Perovskite Nanocrystal Photodetectors with Superior Stability. ACS Nano 13, 1772-1783,(2019).
72Cheng, T.-C. et al. Surface modification of graphene using HBC-6ImBr in solution-processed OLEDs. J. Appl. Phys. 123, 024303,(2018).
73Kufer, D. et al. Hybrid 2D–0D MoS2–PbS quantum dot photodetectors. Adv. Mater. 27, 176-180,(2015).
74Shao, Y. et al. Stable Graphene-Two-Dimensional Multiphase Perovskite Heterostructure Phototransistors with High Gain. Nano Lett. 17, 7330-7338,(2017).
75Tan, Z. et al. Two-Dimensional (C4H9NH3)2PbBr4 Perovskite Crystals for High-Performance Photodetector. J. Am. Chem. Soc. 138, 16612-16615,(2016).
76Jiang, Q. et al. Pseudohalide‐induced moisture tolerance in perovskite CH3NH3Pb (SCN) 2I thin films. Angew. Chem. 54, 7617-7620,(2015).
77Tai, Q. et al. Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nat. Comm. 7, 11105,(2016).
78Chen, Y., Li, B., Huang, W., Gao, D. & Liang, Z. Efficient and reproducible CH3NH3PbI3−x(SCN)x perovskite based planar solar cells. Chem. Comm. 51, 11997-11999,(2015).
79Koh, A. R., Hwang, B., Roh, K. C. & Kim, K. The effect of the ionic size of small quaternary ammonium BF 4 salts on electrochemical double layer capacitors. Phys. Chem. Chem. Phys 16, 15146-15151,(2014).
80Chen, J. et al. Hole‐Conductor‐Free Fully Printable Mesoscopic Solar Cell with Mixed‐Anion Perovskite CH3NH3PbI(3−x)(BF4)x. Adv. Energy Mater. 6, 1502009,(2016).
81Zhang, J., Wu, S., Liu, T., Zhu, Z. & Jen, A. K. Y. Boosting Photovoltaic Performance for Lead Halide Perovskites Solar Cells with BF4− Anion Substitutions. Adv. Func. Mater.,(2019).
82Halder, A. et al. Pseudohalide (SCN–)-Doped MAPbI3 Perovskites: A Few Surprises. J. Phys. Chem. Lett. 6, 3483-3489,(2015).
83Zhang, X. et al. Vertically Oriented 2D Layered Perovskite Solar Cells with Enhanced Efficiency and Good Stability. Small 13,(2017).
84Nagane, S. & Ogale, S. CH3NH3Pb (BF4)3 and (C4H9NH3)2Pb(BF4)4 Family of 3D and 2D Perovskites without and with Iodide and Bromide Ions Substitution. J. Phys. Chem. Lett. 7, 4757-4762,(2016).
85Du, X. et al. High-quality CsPbBr3 perovskite nanocrystals for quantum dot light-emitting diodes. RSC Adv. 7, 10391-10396,(2017).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top