|
1.Hotovy, J., et al., Sputtered ITO for application in thin-film silicon solar cells: Relationship between structural and electrical properties. Applied Surface Science, 2013. 269: p. 81-87. 2.Lien, S.-Y., Characterization and optimization of ITO thin films for application in heterojunction silicon solar cells. Thin Solid Films, 2010. 518(21): p. S10-S13. 3.Choi, J.H., et al., Wide-bandgap CuGaSe2 thin film solar cell fabrication using ITO back contacts. Vacuum, 2015. 120: p. 42-46. 4.Li, X., et al., Thickness of ITO thin film influences on fabricating ZnO nanorods applying for dye-sensitized solar cell. Composites Part B: Engineering, 2015. 74: p. 147-152. 5.Lee, B.H., et al., Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application. Thin Solid Films, 1997. 302(1-2): p. 25-30. 6.Choi, J., et al., Design and characterization of Ga-doped indium tin oxide films for pixel electrode in liquid crystal display. Thin Solid Films, 2013. 527: p. 141-146. 7.Tseng, S.-F., et al., Laser scribing of indium tin oxide (ITO) thin films deposited on various substrates for touch panels. Applied Surface Science, 2010. 257(5): p. 1487-1494. 8.Ahn, M.H., E.-S. Cho, and S.J. Kwon, Effect of the duty ratio on the indium tin oxide (ITO) film deposited by in-line pulsed DC magnetron sputtering method for resistive touch panel. Applied Surface Science, 2011. 258(3): p. 1242-1248. 9.Ohya, T., T. Shimomura, and Y. Yamada, Transparent conductive film and touch panel. 2003, Google Patents. 10.Sahu, D., J.-L. Huang, and S. Mathur. Nanowire based solar cell on multilayer transparent conducting films. in Nanostructured Materials and Nanotechnology V-36th International Conference on Advanced Ceramics and Composites, ICACC 2012. 2013. 11.Jang, J. and J.H. Oh, Fabrication of a highly transparent conductive thin film from polypyrrole/poly (methyl methacrylate) core/shell nanospheres. Advanced Functional Materials, 2005. 15(3): p. 494-502. 12.Moon, J., et al., Transparent conductive film based on carbon nanotubes and PEDOT composites. Diamond and Related Materials, 2005. 14(11-12): p. 1882-1887. 13.Chen, X., et al., Embedded Ag/Ni metal-mesh with low surface roughness as transparent conductive electrode for optoelectronic applications. ACS applied materials & interfaces, 2017. 9(42): p. 37048-37054. 14.Kobayashi, T., et al., Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Applied Physics Letters, 2013. 102(2): p. 023112. 15.Lee, D., et al., High-performance flexible transparent conductive film based on graphene/AgNW/graphene sandwich structure. Carbon, 2015. 81: p. 439-446. 16.Lee, M.-S., et al., Studies on the mechanical stretchability of transparent conductive film based on graphene-metal nanowire structures. Nanoscale Research Letters, 2015. 10(1): p. 27. 17.Tien, H.-W., et al., The production of graphene nanosheets decorated with silver nanoparticles for use in transparent, conductive films. Carbon, 2011. 49(5): p. 1550-1560. 18.Zhang, W., et al., High-efficiency ITO-free polymer solar cells using highly conductive PEDOT: PSS/surfactant bilayer transparent anodes. Energy & Environmental Science, 2013. 6(6): p. 1956-1964. 19.Weiss, D., et al., Handbook of electronic and photonic materials. Mater. Today, 2006. 10: p. 55. 20.Kamat, P.V., N.M. Dimitrijevic, and A. Nozik, Dynamic Burstein-Moss shift in semiconductor colloids. The Journal of Physical Chemistry, 1989. 93(8): p. 2873-2875. 21.Sarkar, A., et al., Studies on electron transport properties and the Burstein-Moss shift in indium-doped ZnO films. Thin Solid Films, 1991. 204(2): p. 255-264. 22.Hamberg, I., et al., Band-gap widening in heavily Sn-doped In 2 O 3. Physical Review B, 1984. 30(6): p. 3240. 23.Mendelsberg, R.J., G. Garcia, and D.J. Milliron, Extracting reliable electronic properties from transmission spectra of indium tin oxide thin films and nanocrystal films by careful application of the Drude theory. Journal of Applied Physics, 2012. 111(6): p. 063515. 24.Marezio, M., Refinement of the crystal structure of In2O3 at two wavelengths. Acta Crystallographica, 1966. 20(6): p. 723-728. 25.Minami, T., et al., Physics of very thin ITO conducting films with high transparency prepared by DC magnetron sputtering. Thin Solid Films, 1995. 270(1-2): p. 37-42. 26.Zhang, K., et al., Indium tin oxide films prepared by radio frequency magnetron sputtering method at a low processing temperature. Thin Solid Films, 2000. 376(1-2): p. 255-263. 27.Ray, S., et al., Properties of tin doped indium oxide thin films prepared by magnetron sputtering. Journal of Applied Physics, 1983. 54(6): p. 3497-3501. 28.Tiwari, A., Handbook of antimicrobial coatings. 2017: Elsevier. 29.Nyamukamba, P., et al., Synthetic methods for titanium dioxide nanoparticles: a review. Titanium Dioxide—Material for a Sustainable Environment; Yang, D., Ed, 2018: p. 151-175. 30.Endo, M., et al., The production and structure of pyrolytic carbon nanotubes (PCNTs). Journal of Physics and Chemistry of Solids, 1993. 54(12): p. 1841-1848. 31.Barbhuiya, S. and M. Qureshi, Applications of Nanotechnology in Cement and Concrete Science, in Handbook of Research on Diverse Applications of Nanotechnology in Biomedicine, Chemistry, and Engineering. 2015, IGI Global. p. 624-639. 32.Choi, D., S.-J. Hong, and Y. Son, Characteristics of indium tin oxide (ITO) nanoparticles recovered by lift-off method from TFT-LCD panel scraps. Materials, 2014. 7(12): p. 7662-7669. 33.Hong, S.-J., et al., Characteristics of Indium–Tin–Oxide (ITO) Glass Re-Used from Old TFT-LCD Panel. Materials Transactions, 2012: p. 1203261607-1203261607. 34.Verwey, E.J.W., J.T.G. Overbeek, and K. Van Nes, Theory of the stability of lyophobic colloids: the interaction of sol particles having an electric double layer. 1948: Elsevier Publishing Company. 35.Derjaguin, B. and L. Landau, Stability theory of strongly charged lyophobic sols and of the adhesion of strongly charged particles in electrolyte solutions. Acta Physicochim. URSS, 1941. 14: p. 633-662. 36.Goebbert, C., et al., Wet chemical deposition of ATO and ITO coatings using crystalline nanoparticles redispersable in solutions. Thin Solid Films, 1999. 351(1-2): p. 79-84. 37.Mahajeri, M., et al., Evaluation of the film formation and the charge transport mechanism of indium tin oxide nanoparticle films. Thin Solid Films, 2010. 518(12): p. 3373-3381. 38.Mahajeri, M., et al., Production of dispersions with small particle size from commercial indium tin oxide powder for the deposition of highly conductive and transparent films. Thin Solid Films, 2012. 520(17): p. 5741-5745. 39.Hong, S.-J., Y.-H. Kim, and J.-I. Han, Development of ultrafine indium tin oxide (ITO) nanoparticle for ink-jet printing by low-temperature synthetic method. IEEE Transactions on Nanotechnology, 2008. 7(2): p. 172-176. 40.Hwang, M.-s., et al., Inkjet-printing of indium tin oxide (ITO) films for transparent conducting electrodes. Materials Science and Engineering: B, 2011. 176(14): p. 1128-1131. 41.Jeong, J.-A., J. Kim, and H.-K. Kim, Ag grid/ITO hybrid transparent electrodes prepared by inkjet printing. Solar Energy Materials and Solar Cells, 2011. 95(7): p. 1974-1978. 42.Kölpin, N., et al., Conceptional design of nano-particulate ITO inks for inkjet printing of electron devices. Journal of Materials Science, 2013. 48(4): p. 1623-1631. 43.Coble, R., A model for boundary diffusion controlled creep in polycrystalline materials. Journal of Applied Physics, 1963. 34(6): p. 1679-1682. 44.Zhang, H., et al., Enhancing low-temperature and pressureless sintering of micron silver paste based on an ether-type solvent. Journal of Electronic Materials, 2017. 46(8): p. 5201-5208. 45.Cherrington, M., et al., Ultrafast near-infrared sintering of a slot-die coated nano-silver conducting ink. Journal of Materials Chemistry, 2011. 21(21): p. 7562-7564. 46.Jung, I., et al., A simple process for synthesis of Ag nanoparticles and sintering of conductive ink for use in printed electronics. Journal of Electronic Materials, 2012. 41(1): p. 115-121. 47.Liu, J., et al., The low temperature exothermic sintering of formic acid treated Cu nanoparticles for conductive ink. Journal of Materials Science: Materials in Electronics, 2016. 27(12): p. 13280-13287. 48.Wang, L., et al., Enhanced magnetization and suppressed current leakage in BiFeO3 ceramics prepared by spark plasma sintering of sol–gel derived nanoparticles. Physica B: Condensed Matter, 2012. 407(8): p. 1196-1202. 49.Niittynen, J., et al., Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink. Thin Solid Films, 2014. 556: p. 452-459. 50.Kang, J.S., et al., Inkjet printed electronics using copper nanoparticle ink. Journal of Materials Science: Materials in Electronics, 2010. 21(11): p. 1213-1220. 51.Perelaer, J., et al., Plasma and microwave flash sintering of a tailored silver nanoparticle ink, yielding 60% bulk conductivity on cost‐effective polymer foils. Advanced Materials, 2012. 24(29): p. 3993-3998. 52.Khranovskyy, V., et al., Conductivity increase of ZnO: Ga films by rapid thermal annealing. Superlattices and Microstructures, 2007. 42(1-6): p. 379-386. 53.Farah, A.A., et al., Conductivity enhancement of poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate) films post-spincasting. Journal of Applied Physics, 2012. 112(11): p. 113709. 54.Kim, N.-R., et al., Highly conductive ag nanoparticulate films induced by movable rapid thermal annealing applicable to roll-to-roll processing. Journal of The Electrochemical Society, 2011. 158(8): p. K165. 55.Qin, G. and A. Watanabe, Conductive network structure formed by laser sintering of silver nanoparticles. Journal of Nanoparticle Research, 2014. 16(11): p. 2684. 56.Reinhold, I., et al., Argon plasma sintering of inkjet printed silver tracks on polymer substrates. Journal of Materials Chemistry, 2009. 19(21): p. 3384-3388. 57.Joo, M., et al., Comparative studies on thermal and laser sintering for highly conductive Cu films printable on plastic substrate. Thin Solid Films, 2012. 520(7): p. 2878-2883. 58.Ming, L., et al., Selective laser sintering of TiO 2 nanoparticle film on plastic conductive substrate for highly efficient flexible dye-sensitized solar cell application. Journal of Materials Chemistry A, 2014. 2(13): p. 4566-4573. 59.Zenou, M., et al., Laser sintering of copper nanoparticles. Journal of Physics D: Applied Physics, 2013. 47(2): p. 025501. 60.Halonen, E. and E. Heinonen, The effect of laser sintering process parameters on Cu nanoparticle ink in room conditions. 2013. 61.Yu, J.H., et al., Rapid sintering of copper nano ink using a laser in air. International Journal of Precision Engineering and Manufacturing, 2014. 15(6): p. 1051-1054. 62.Kim, M.-K., et al. Laser sintering of inkjet-printed silver nanoparticles on glass and PET substrates. in 10th IEEE International Conference on Nanotechnology. 2010. IEEE. 63.Yung, K., S. Wu, and H. Liem, Synthesis of submicron sized silver powder for metal deposition via laser sintered inkjet printing. Journal of Materials Science, 2009. 44(1): p. 154-159. 64.Kang, J., et al., Sintering of inkjet-printed silver nanoparticles at room temperature using intense pulsed light. Journal of Electronic Materials, 2011. 40(11): p. 2268. 65.Gebel, T., Modification/crystallization of nanolayers on heat sensitive substrates (eg glass/PET) by ultrashort thermal annealing in the millisecond range. proceedings (57th SVC TechCon, Chicago, USA, 2014), 2014. 66.Rebohle, L., S. Prucnal, and D. Reichel, Flash Lamp Annealing. From Basics to Applications/by Lars Rebohle, Slawomir Prucnal, Denise Reichel.-, 2019. 67.Kim, H.-S., et al., Intense pulsed light sintering of copper nanoink for printed electronics. Applied Physics A, 2009. 97(4): p. 791. 68.Kim, Y., et al., Flash lamp annealing of indium tin oxide thin-films deposited on polyimide backplanes. Thin Solid Films, 2017. 628: p. 88-95. 69.Joo, S.-J., et al., A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique. ACS Applied Materials & Interfaces, 2015. 7(10): p. 5674-5684. 70.Lee, D.J., et al., Pulsed light sintering characteristics of inkjet-printed nanosilver films on a polymer substrate. Journal of Micromechanics and Microengineering, 2011. 21(12): p. 125023. 71.Park, S.-H. and H.-S. Kim, Flash light sintering of nickel nanoparticles for printed electronics. Thin Solid Films, 2014. 550: p. 575-581. 72.Chung, W.-H., et al., In situ monitoring of a flash light sintering process using silver nano-ink for producing flexible electronics. Nanotechnology, 2012. 24(3): p. 035202. 73.Park, S.-H., et al., Two-step flash light sintering process for crack-free inkjet-printed Ag films. Journal of Micromechanics and Microengineering, 2012. 23(1): p. 015013. 74.Yim, C., A. Sandwell, and S.S. Park, Hybrid copper–silver conductive tracks for enhanced oxidation resistance under flash light sintering. ACS Applied Materials & Interfaces, 2016. 8(34): p. 22369-22373. 75.Hwang, H.-J. and H.-S. Kim, Ultra-high speed fabrication of TiO2 photoanode by flash light for dye-sensitized solar cell. Journal of Nanoscience and Nanotechnology, 2015. 15(7): p. 5028-5034. 76.Ullah, M., M. Ali, and S.B.A. Hamid, SURFACTANT-ASSISTED BALL MILLING: A NOVEL ROUTE TO NOVEL MATERIALS WITH CONTROLLED NANOSTRUCTURE-A REVIEW. Reviews on Advanced Materials Science, 2014. 37. 77.Reindl, A., et al., The influence of dispersing and stabilizing of indium tin oxide nanoparticles upon the characteristic properties of thin films. Thin Solid Films, 2009. 517(5): p. 1624-1629. 78.Wolf, N., et al., Stabilization of aluminum doped zinc oxide nanoparticle suspensions and their application in organic solar cells. Thin Solid Films, 2014. 564: p. 213-217. 79.Straue, N., et al., Preparation and soft lithographic printing of nano-sized ITO-dispersions for the manufacture of electrodes for TFTs. Journal of Materials Science, 2009. 44(22): p. 6011-6019. 80.Agbo, C., et al., A review on the mechanism of pigment dispersion. Journal of Dispersion Science and Technology, 2018. 39(6): p. 874-889. 81.Yeom, H.-Y., et al., A study of the effect of process oxygen on stress evolution in dc magnetron-deposited tin-doped indium oxide. Thin Solid Films, 2002. 411(1): p. 17-22. 82.Guillén, C. and J. Herrero, Polycrystalline growth and recrystallization processes in sputtered ITO thin films. Thin Solid Films, 2006. 510(1-2): p. 260-264. 83.Morikawa, H. and M. Fujita, Crystallization and electrical property change on the annealing of amorphous indium-oxide and indium-tin-oxide thin films. Thin Solid Films, 2000. 359(1): p. 61-67. 84.Alam, M. and D. Cameron, Investigation of annealing effects on sol–gel deposited indium tin oxide thin films in different atmospheres. Thin Solid Films, 2002. 420: p. 76-82. 85.Jung, Y.S., A spectroscopic ellipsometry study on the variation of the optical constants of tin-doped indium oxide thin films during crystallization. Solid State Communications, 2004. 129(8): p. 491-495. 86.Niittynen, J., et al., Comparison of laser and intense pulsed light sintering (IPL) for inkjet-printed copper nanoparticle layers. Scientific Reports, 2015. 5: p. 8832. 87.Liu, Y., et al., Sol–gel synthesis of nanoporous NiCo2O4 thin films on ITO glass as high-performance supercapacitor electrodes. Ceramics International, 2016. 42(9): p. 11411-11416. 88.Miura, N., S. Oonishi, and K.R. Prasad, Indium tin oxide/carbon composite electrode material for electrochemical supercapacitors. Electrochemical and Solid State Letters, 2004. 7(8): p. A247. 89.Dam, D.T. and J.-M. Lee, Capacitive behavior of mesoporous manganese dioxide on indium–tin oxide nanowires. Nano Energy, 2013. 2(5): p. 933-942. 90.Liu, S., et al., A simple two-step electrochemical synthesis of graphene sheets film on the ITO electrode as supercapacitors. Journal of Applied Electrochemistry, 2011. 41(7): p. 881. 91.Wang, G., et al., LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors. ACS Nano, 2012. 6(11): p. 10296-10302. 92.Singh, R. and C.C. Tripathi, Study of graphene based flexible supercapacitors with different gel electrolytes. Materials Today: Proceedings, 2018. 5(1): p. 943-949. 93.Khoh, W.-H. and J.-D. Hong, Solid-state asymmetric supercapacitor based on manganese dioxide/reduced-graphene oxide and polypyrrole/reduced-graphene oxide in a gel electrolyte. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014. 456: p. 26-34.
|