跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 02:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳奕鋒
研究生(外文):I-Feng Wu
論文名稱:氧化銦錫透明導電薄膜之製備及燒結特性研究
論文名稱(外文):Preparation and Sintering Characteristics of Indium Tin Oxide Transparent Thin Film Patterns
指導教授:廖英志
指導教授(外文):Ying-Chih Liao
口試委員:陳志恆陳奕君許景翔
口試委員(外文):Jyh-Herng ChenI-Chun ChengChing-Hsiang Hsu
口試日期:2020-07-07
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:68
中文關鍵詞:回收氧化銦錫氧化銦錫奈米墨水透明導電薄膜噴墨印刷透明導電線路
外文關鍵詞:Recycled ITOITO nanoparticle inktransparent conductive filminkjet printingtransparent conductive pattern
DOI:10.6342/NTU202002275
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著電子產品的普及,透明導電膜被廣泛利用在各項產品中,如太陽能板、顯示面板等,都需要透明導電膜及透明導電玻璃作為元件。目前產業界中廣泛使用的透明導電膜以氧化銦錫作為原料,氧化銦錫具有良好的透光性以及導電性,為相當優秀的材料,利用濺鍍方式在玻璃基材上沉積出透明導電薄膜。然而,以上製程面臨許多挑戰:銦為稀有金屬,地球含量有限並且有枯竭的可能,並且濺鍍製程需要的設備條件較高,間接造成氧化銦錫透明導電薄膜價格居高不下。因此,近年有氧化銦錫回收製程的興起,將氧化銦錫透明導電玻璃重新回收後再利用。
本研究提出了一種利用氧化銦錫回收製備透明導電薄膜及圖樣並應用於印刷電子元件的技術。首先,將氧化銦錫由廢棄面板中回收,並且純化及球磨減小粒徑至約50 nm,並加入適當分散劑及黏合劑製成分散水力粒徑約145 nm導電墨水,結合刮刀塗布技術製為透明導電薄膜。利用光燒結技術可以有效的避免軟性高分子基材PET於燒結過程中損壞,1000焦耳分為4波段,並且進行4次多段燒結中間間隔時間3秒為最佳的參數,可以使燒結過後的導電薄膜片電阻下降100倍,達到約500 Ω/sq,並且透光度高於90%。製備出的透明導電PET可以承受多次撓曲、並且作為全透明電雙層電容,抑或結合噴墨印刷技術製備為透明導電線路使用。總而言之,本研究提出了一種新的回收氧化銦錫再製備為透明導電薄膜的方法,並且為回收氧化銦錫生命週期再延續技術方面拓展了一條嶄新的道路。
Transparent conductive films (TCFs) are extensively used in various products, such as solar cell module, display panel. With good optical transparency and electrical conductivity, indium tin oxide (ITO) is the most-used material for fabricating TCFs. However, because of the high demand and the scarcity of indium, TCFs are very expensive and indium exhaust problem also emerges recently. Therefore, there are researches which focus on ITO recycled process and further applications.
In this study, we combined ITO recycling process and printing technologies to manufacture transparent conductive films and patterns for flexible printed electronics applications. First, ITO was recycled from waste display panel, and further purification and size reduction process were applied to form ITO nanoparticles with primary particle size roughly 50 nm. Dispersant and binder were added to formulate conductive nanoparticle ink with hydraulic size roughly 145 nm. Then, blade coating was applied to form transparent conductive film on the substrate. Intense pulsed light (IPL) sintering with different parameters were tested to set the best sintering condition to increase the conductivity of TCFs. The best parameter for sintering was 1000 J divided into four small peaks (250 J each) repeated for four times pulses with 3 s time interval. ITO TCFs on PET substrate showed good conductivity (500 Ω/sq) and transparency (>90 %). Also, the TCF could withstand multiple times bending test with small sheet resistance change. TCFs could also applied as electrode for electrical double layer capacitor. Furthermore, by inkjet printing technology, transparent conductive patterns could also be fabricated without traditional etching process.
In summary, this research provides a new guideline for TCFs manufacturing with recycled ITO and provides a new way for reusing end-of-life display panel for transparent conductive films and patterns applications.
致謝 ii
中文摘要 iv
ABSTRACT v
目錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1研究背景 1
1.2研究動機與目的 2
1.3論文架構 2
第二章 文獻回顧 3
2.1 透明導電薄膜 (Transparent conductive film, TCF) 3
2.2 透明導電氧化物(Transparent conductive oxide, TCO) 5
2.2.1 TCO的導電機制 5
2.2.2 TCO的光學性質 8
2.3 氧化銦錫(Indium tin oxide, ITO)性質 10
2.4 氧化銦錫透明導電膜 12
2.5 回收氧化銦錫製程 15
2.6 氧化銦錫導電墨水 16
2.7 燒結技術 19
2.7.1 燒結原理 19
2.7.2 光燒結技術 20
2.7.3脈衝光燒結 22
第三章 實驗系統程序 26
3.1 實驗藥品與儀器介紹 26
3.1.1 實驗藥品 26
3.1.2 實驗儀器 27
3.2 實驗流程 28
3.2.1回收ITO製程 28
3.2.2 ITO墨水製備 29
3.2.3 脈衝光燒結機 30
3.2.4 刮刀塗布機 31
3.2.5 置備導電圖樣 31
第四章 回收氧化銦錫墨水製備導電薄膜及圖樣 33
4.1 ITO性質分析 33
4.1.1 顯示螢幕分解以及氧化銦錫回收製程 33
4.1.2 回收ITO粉末樣態分析 36
4.1.3奈米ITO墨水分散懸浮性 39
4.1.4 ITO奈米粒子吸收光譜 41
4.1.5 ITO薄膜binder添加量 42
4.1.6 ITO薄膜熱燒結性質 43
4.2 脈衝光燒結參數對ITO薄膜電阻之影響 45
4.2.1不同脈衝光燒結以及燒結次數對ITO薄膜片電阻影響 45
4.2.2脈衝光多段燒結次數對片電阻之影響 48
4.2.3脈衝光放光波段對ITO薄膜燒結之影響 50
4.2.4熱燒結、光燒結前後薄膜表面樣態 51
4.3 氧化銦錫墨水應用於薄膜以及圖樣化應用 53
4.3.1軟性可撓式氧化銦錫薄膜 53
4.3.2 軟性ITO透明導電膜用於全透明超級電容之應用 56
4.3.3 利用噴墨技術製備圖樣化氧化銦錫薄膜 58
第五章 結論與未來展望 60
參考資料 61
1.Hotovy, J., et al., Sputtered ITO for application in thin-film silicon solar cells: Relationship between structural and electrical properties. Applied Surface Science, 2013. 269: p. 81-87.
2.Lien, S.-Y., Characterization and optimization of ITO thin films for application in heterojunction silicon solar cells. Thin Solid Films, 2010. 518(21): p. S10-S13.
3.Choi, J.H., et al., Wide-bandgap CuGaSe2 thin film solar cell fabrication using ITO back contacts. Vacuum, 2015. 120: p. 42-46.
4.Li, X., et al., Thickness of ITO thin film influences on fabricating ZnO nanorods applying for dye-sensitized solar cell. Composites Part B: Engineering, 2015. 74: p. 147-152.
5.Lee, B.H., et al., Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application. Thin Solid Films, 1997. 302(1-2): p. 25-30.
6.Choi, J., et al., Design and characterization of Ga-doped indium tin oxide films for pixel electrode in liquid crystal display. Thin Solid Films, 2013. 527: p. 141-146.
7.Tseng, S.-F., et al., Laser scribing of indium tin oxide (ITO) thin films deposited on various substrates for touch panels. Applied Surface Science, 2010. 257(5): p. 1487-1494.
8.Ahn, M.H., E.-S. Cho, and S.J. Kwon, Effect of the duty ratio on the indium tin oxide (ITO) film deposited by in-line pulsed DC magnetron sputtering method for resistive touch panel. Applied Surface Science, 2011. 258(3): p. 1242-1248.
9.Ohya, T., T. Shimomura, and Y. Yamada, Transparent conductive film and touch panel. 2003, Google Patents.
10.Sahu, D., J.-L. Huang, and S. Mathur. Nanowire based solar cell on multilayer transparent conducting films. in Nanostructured Materials and Nanotechnology V-36th International Conference on Advanced Ceramics and Composites, ICACC 2012. 2013.
11.Jang, J. and J.H. Oh, Fabrication of a highly transparent conductive thin film from polypyrrole/poly (methyl methacrylate) core/shell nanospheres. Advanced Functional Materials, 2005. 15(3): p. 494-502.
12.Moon, J., et al., Transparent conductive film based on carbon nanotubes and PEDOT composites. Diamond and Related Materials, 2005. 14(11-12): p. 1882-1887.
13.Chen, X., et al., Embedded Ag/Ni metal-mesh with low surface roughness as transparent conductive electrode for optoelectronic applications. ACS applied materials & interfaces, 2017. 9(42): p. 37048-37054.
14.Kobayashi, T., et al., Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Applied Physics Letters, 2013. 102(2): p. 023112.
15.Lee, D., et al., High-performance flexible transparent conductive film based on graphene/AgNW/graphene sandwich structure. Carbon, 2015. 81: p. 439-446.
16.Lee, M.-S., et al., Studies on the mechanical stretchability of transparent conductive film based on graphene-metal nanowire structures. Nanoscale Research Letters, 2015. 10(1): p. 27.
17.Tien, H.-W., et al., The production of graphene nanosheets decorated with silver nanoparticles for use in transparent, conductive films. Carbon, 2011. 49(5): p. 1550-1560.
18.Zhang, W., et al., High-efficiency ITO-free polymer solar cells using highly conductive PEDOT: PSS/surfactant bilayer transparent anodes. Energy & Environmental Science, 2013. 6(6): p. 1956-1964.
19.Weiss, D., et al., Handbook of electronic and photonic materials. Mater. Today, 2006. 10: p. 55.
20.Kamat, P.V., N.M. Dimitrijevic, and A. Nozik, Dynamic Burstein-Moss shift in semiconductor colloids. The Journal of Physical Chemistry, 1989. 93(8): p. 2873-2875.
21.Sarkar, A., et al., Studies on electron transport properties and the Burstein-Moss shift in indium-doped ZnO films. Thin Solid Films, 1991. 204(2): p. 255-264.
22.Hamberg, I., et al., Band-gap widening in heavily Sn-doped In 2 O 3. Physical Review B, 1984. 30(6): p. 3240.
23.Mendelsberg, R.J., G. Garcia, and D.J. Milliron, Extracting reliable electronic properties from transmission spectra of indium tin oxide thin films and nanocrystal films by careful application of the Drude theory. Journal of Applied Physics, 2012. 111(6): p. 063515.
24.Marezio, M., Refinement of the crystal structure of In2O3 at two wavelengths. Acta Crystallographica, 1966. 20(6): p. 723-728.
25.Minami, T., et al., Physics of very thin ITO conducting films with high transparency prepared by DC magnetron sputtering. Thin Solid Films, 1995. 270(1-2): p. 37-42.
26.Zhang, K., et al., Indium tin oxide films prepared by radio frequency magnetron sputtering method at a low processing temperature. Thin Solid Films, 2000. 376(1-2): p. 255-263.
27.Ray, S., et al., Properties of tin doped indium oxide thin films prepared by magnetron sputtering. Journal of Applied Physics, 1983. 54(6): p. 3497-3501.
28.Tiwari, A., Handbook of antimicrobial coatings. 2017: Elsevier.
29.Nyamukamba, P., et al., Synthetic methods for titanium dioxide nanoparticles: a review. Titanium Dioxide—Material for a Sustainable Environment; Yang, D., Ed, 2018: p. 151-175.
30.Endo, M., et al., The production and structure of pyrolytic carbon nanotubes (PCNTs). Journal of Physics and Chemistry of Solids, 1993. 54(12): p. 1841-1848.
31.Barbhuiya, S. and M. Qureshi, Applications of Nanotechnology in Cement and Concrete Science, in Handbook of Research on Diverse Applications of Nanotechnology in Biomedicine, Chemistry, and Engineering. 2015, IGI Global. p. 624-639.
32.Choi, D., S.-J. Hong, and Y. Son, Characteristics of indium tin oxide (ITO) nanoparticles recovered by lift-off method from TFT-LCD panel scraps. Materials, 2014. 7(12): p. 7662-7669.
33.Hong, S.-J., et al., Characteristics of Indium–Tin–Oxide (ITO) Glass Re-Used from Old TFT-LCD Panel. Materials Transactions, 2012: p. 1203261607-1203261607.
34.Verwey, E.J.W., J.T.G. Overbeek, and K. Van Nes, Theory of the stability of lyophobic colloids: the interaction of sol particles having an electric double layer. 1948: Elsevier Publishing Company.
35.Derjaguin, B. and L. Landau, Stability theory of strongly charged lyophobic sols and of the adhesion of strongly charged particles in electrolyte solutions. Acta Physicochim. URSS, 1941. 14: p. 633-662.
36.Goebbert, C., et al., Wet chemical deposition of ATO and ITO coatings using crystalline nanoparticles redispersable in solutions. Thin Solid Films, 1999. 351(1-2): p. 79-84.
37.Mahajeri, M., et al., Evaluation of the film formation and the charge transport mechanism of indium tin oxide nanoparticle films. Thin Solid Films, 2010. 518(12): p. 3373-3381.
38.Mahajeri, M., et al., Production of dispersions with small particle size from commercial indium tin oxide powder for the deposition of highly conductive and transparent films. Thin Solid Films, 2012. 520(17): p. 5741-5745.
39.Hong, S.-J., Y.-H. Kim, and J.-I. Han, Development of ultrafine indium tin oxide (ITO) nanoparticle for ink-jet printing by low-temperature synthetic method. IEEE Transactions on Nanotechnology, 2008. 7(2): p. 172-176.
40.Hwang, M.-s., et al., Inkjet-printing of indium tin oxide (ITO) films for transparent conducting electrodes. Materials Science and Engineering: B, 2011. 176(14): p. 1128-1131.
41.Jeong, J.-A., J. Kim, and H.-K. Kim, Ag grid/ITO hybrid transparent electrodes prepared by inkjet printing. Solar Energy Materials and Solar Cells, 2011. 95(7): p. 1974-1978.
42.Kölpin, N., et al., Conceptional design of nano-particulate ITO inks for inkjet printing of electron devices. Journal of Materials Science, 2013. 48(4): p. 1623-1631.
43.Coble, R., A model for boundary diffusion controlled creep in polycrystalline materials. Journal of Applied Physics, 1963. 34(6): p. 1679-1682.
44.Zhang, H., et al., Enhancing low-temperature and pressureless sintering of micron silver paste based on an ether-type solvent. Journal of Electronic Materials, 2017. 46(8): p. 5201-5208.
45.Cherrington, M., et al., Ultrafast near-infrared sintering of a slot-die coated nano-silver conducting ink. Journal of Materials Chemistry, 2011. 21(21): p. 7562-7564.
46.Jung, I., et al., A simple process for synthesis of Ag nanoparticles and sintering of conductive ink for use in printed electronics. Journal of Electronic Materials, 2012. 41(1): p. 115-121.
47.Liu, J., et al., The low temperature exothermic sintering of formic acid treated Cu nanoparticles for conductive ink. Journal of Materials Science: Materials in Electronics, 2016. 27(12): p. 13280-13287.
48.Wang, L., et al., Enhanced magnetization and suppressed current leakage in BiFeO3 ceramics prepared by spark plasma sintering of sol–gel derived nanoparticles. Physica B: Condensed Matter, 2012. 407(8): p. 1196-1202.
49.Niittynen, J., et al., Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink. Thin Solid Films, 2014. 556: p. 452-459.
50.Kang, J.S., et al., Inkjet printed electronics using copper nanoparticle ink. Journal of Materials Science: Materials in Electronics, 2010. 21(11): p. 1213-1220.
51.Perelaer, J., et al., Plasma and microwave flash sintering of a tailored silver nanoparticle ink, yielding 60% bulk conductivity on cost‐effective polymer foils. Advanced Materials, 2012. 24(29): p. 3993-3998.
52.Khranovskyy, V., et al., Conductivity increase of ZnO: Ga films by rapid thermal annealing. Superlattices and Microstructures, 2007. 42(1-6): p. 379-386.
53.Farah, A.A., et al., Conductivity enhancement of poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate) films post-spincasting. Journal of Applied Physics, 2012. 112(11): p. 113709.
54.Kim, N.-R., et al., Highly conductive ag nanoparticulate films induced by movable rapid thermal annealing applicable to roll-to-roll processing. Journal of The Electrochemical Society, 2011. 158(8): p. K165.
55.Qin, G. and A. Watanabe, Conductive network structure formed by laser sintering of silver nanoparticles. Journal of Nanoparticle Research, 2014. 16(11): p. 2684.
56.Reinhold, I., et al., Argon plasma sintering of inkjet printed silver tracks on polymer substrates. Journal of Materials Chemistry, 2009. 19(21): p. 3384-3388.
57.Joo, M., et al., Comparative studies on thermal and laser sintering for highly conductive Cu films printable on plastic substrate. Thin Solid Films, 2012. 520(7): p. 2878-2883.
58.Ming, L., et al., Selective laser sintering of TiO 2 nanoparticle film on plastic conductive substrate for highly efficient flexible dye-sensitized solar cell application. Journal of Materials Chemistry A, 2014. 2(13): p. 4566-4573.
59.Zenou, M., et al., Laser sintering of copper nanoparticles. Journal of Physics D: Applied Physics, 2013. 47(2): p. 025501.
60.Halonen, E. and E. Heinonen, The effect of laser sintering process parameters on Cu nanoparticle ink in room conditions. 2013.
61.Yu, J.H., et al., Rapid sintering of copper nano ink using a laser in air. International Journal of Precision Engineering and Manufacturing, 2014. 15(6): p. 1051-1054.
62.Kim, M.-K., et al. Laser sintering of inkjet-printed silver nanoparticles on glass and PET substrates. in 10th IEEE International Conference on Nanotechnology. 2010. IEEE.
63.Yung, K., S. Wu, and H. Liem, Synthesis of submicron sized silver powder for metal deposition via laser sintered inkjet printing. Journal of Materials Science, 2009. 44(1): p. 154-159.
64.Kang, J., et al., Sintering of inkjet-printed silver nanoparticles at room temperature using intense pulsed light. Journal of Electronic Materials, 2011. 40(11): p. 2268.
65.Gebel, T., Modification/crystallization of nanolayers on heat sensitive substrates (eg glass/PET) by ultrashort thermal annealing in the millisecond range. proceedings (57th SVC TechCon, Chicago, USA, 2014), 2014.
66.Rebohle, L., S. Prucnal, and D. Reichel, Flash Lamp Annealing. From Basics to Applications/by Lars Rebohle, Slawomir Prucnal, Denise Reichel.-, 2019.
67.Kim, H.-S., et al., Intense pulsed light sintering of copper nanoink for printed electronics. Applied Physics A, 2009. 97(4): p. 791.
68.Kim, Y., et al., Flash lamp annealing of indium tin oxide thin-films deposited on polyimide backplanes. Thin Solid Films, 2017. 628: p. 88-95.
69.Joo, S.-J., et al., A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique. ACS Applied Materials & Interfaces, 2015. 7(10): p. 5674-5684.
70.Lee, D.J., et al., Pulsed light sintering characteristics of inkjet-printed nanosilver films on a polymer substrate. Journal of Micromechanics and Microengineering, 2011. 21(12): p. 125023.
71.Park, S.-H. and H.-S. Kim, Flash light sintering of nickel nanoparticles for printed electronics. Thin Solid Films, 2014. 550: p. 575-581.
72.Chung, W.-H., et al., In situ monitoring of a flash light sintering process using silver nano-ink for producing flexible electronics. Nanotechnology, 2012. 24(3): p. 035202.
73.Park, S.-H., et al., Two-step flash light sintering process for crack-free inkjet-printed Ag films. Journal of Micromechanics and Microengineering, 2012. 23(1): p. 015013.
74.Yim, C., A. Sandwell, and S.S. Park, Hybrid copper–silver conductive tracks for enhanced oxidation resistance under flash light sintering. ACS Applied Materials & Interfaces, 2016. 8(34): p. 22369-22373.
75.Hwang, H.-J. and H.-S. Kim, Ultra-high speed fabrication of TiO2 photoanode by flash light for dye-sensitized solar cell. Journal of Nanoscience and Nanotechnology, 2015. 15(7): p. 5028-5034.
76.Ullah, M., M. Ali, and S.B.A. Hamid, SURFACTANT-ASSISTED BALL MILLING: A NOVEL ROUTE TO NOVEL MATERIALS WITH CONTROLLED NANOSTRUCTURE-A REVIEW. Reviews on Advanced Materials Science, 2014. 37.
77.Reindl, A., et al., The influence of dispersing and stabilizing of indium tin oxide nanoparticles upon the characteristic properties of thin films. Thin Solid Films, 2009. 517(5): p. 1624-1629.
78.Wolf, N., et al., Stabilization of aluminum doped zinc oxide nanoparticle suspensions and their application in organic solar cells. Thin Solid Films, 2014. 564: p. 213-217.
79.Straue, N., et al., Preparation and soft lithographic printing of nano-sized ITO-dispersions for the manufacture of electrodes for TFTs. Journal of Materials Science, 2009. 44(22): p. 6011-6019.
80.Agbo, C., et al., A review on the mechanism of pigment dispersion. Journal of Dispersion Science and Technology, 2018. 39(6): p. 874-889.
81.Yeom, H.-Y., et al., A study of the effect of process oxygen on stress evolution in dc magnetron-deposited tin-doped indium oxide. Thin Solid Films, 2002. 411(1): p. 17-22.
82.Guillén, C. and J. Herrero, Polycrystalline growth and recrystallization processes in sputtered ITO thin films. Thin Solid Films, 2006. 510(1-2): p. 260-264.
83.Morikawa, H. and M. Fujita, Crystallization and electrical property change on the annealing of amorphous indium-oxide and indium-tin-oxide thin films. Thin Solid Films, 2000. 359(1): p. 61-67.
84.Alam, M. and D. Cameron, Investigation of annealing effects on sol–gel deposited indium tin oxide thin films in different atmospheres. Thin Solid Films, 2002. 420: p. 76-82.
85.Jung, Y.S., A spectroscopic ellipsometry study on the variation of the optical constants of tin-doped indium oxide thin films during crystallization. Solid State Communications, 2004. 129(8): p. 491-495.
86.Niittynen, J., et al., Comparison of laser and intense pulsed light sintering (IPL) for inkjet-printed copper nanoparticle layers. Scientific Reports, 2015. 5: p. 8832.
87.Liu, Y., et al., Sol–gel synthesis of nanoporous NiCo2O4 thin films on ITO glass as high-performance supercapacitor electrodes. Ceramics International, 2016. 42(9): p. 11411-11416.
88.Miura, N., S. Oonishi, and K.R. Prasad, Indium tin oxide/carbon composite electrode material for electrochemical supercapacitors. Electrochemical and Solid State Letters, 2004. 7(8): p. A247.
89.Dam, D.T. and J.-M. Lee, Capacitive behavior of mesoporous manganese dioxide on indium–tin oxide nanowires. Nano Energy, 2013. 2(5): p. 933-942.
90.Liu, S., et al., A simple two-step electrochemical synthesis of graphene sheets film on the ITO electrode as supercapacitors. Journal of Applied Electrochemistry, 2011. 41(7): p. 881.
91.Wang, G., et al., LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors. ACS Nano, 2012. 6(11): p. 10296-10302.
92.Singh, R. and C.C. Tripathi, Study of graphene based flexible supercapacitors with different gel electrolytes. Materials Today: Proceedings, 2018. 5(1): p. 943-949.
93.Khoh, W.-H. and J.-D. Hong, Solid-state asymmetric supercapacitor based on manganese dioxide/reduced-graphene oxide and polypyrrole/reduced-graphene oxide in a gel electrolyte. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014. 456: p. 26-34.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top