跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/07 05:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊宗翰
研究生(外文):Tsung-Han Chuang
論文名稱:碳水化合物基嵌段共聚物在記憶體元件上的應用
論文名稱(外文):Applications of Carbohydrate-Based Block Copolymers in Memory Devices
指導教授:陳文章陳文章引用關係
指導教授(外文):Wen-Chang Chen
口試委員:闕居振童世煌郭霽慶
口試委員(外文):Chu-Chen ChuehShih-Huang TungChi-Ching Kuo
口試日期:2020-06-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:110
中文關鍵詞:麥芽七糖嵌段共聚物電阻型記憶體奈米結構鈣鈦礦光記憶
外文關鍵詞:maltoheptaoseblock copolymerresistive memorynanostructureperovskitephotomemory
DOI:10.6342/NTU202001428
相關次數:
  • 被引用被引用:0
  • 點閱點閱:121
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
具有大量數據存儲的元件為現代社會日常生活之基本需求中,因此記憶體元件的發展引起了極大的研究關注。特別是具有大量官能團的嵌段共聚物,已經廣泛地應用在記憶體元件上,例如電阻式記憶體元件中作為活性層或電晶體型記憶體元件作為捕獲層。麥芽七糖具有豐富的羥基,具有多種功能且為生質材料,例如由於通過外部電場感應的電子在羥基上發生質子化而捕獲電子或配位金屬離子。因此,研究基於麥芽七糖的嵌段共聚物是具有綠色電子元件之應用潛力。在本實驗室以前之研究,已將具有各種良好控制的納米結構的麥芽七糖嵌段聚苯乙烯(MH-b-PI)薄膜用作活性層,用於電阻型記憶體元件,並討論了活性層的奈米結構和記憶行為之間的關係。但是,不同的奈米結構(例如圓柱體和體心立方球體)是通過調節嵌段共聚物的嵌段比來實現。材料本身的差異可能是在探討奈米結構如何影響記憶行為中的一個盲點。因此,在論文的第一部分(第二章)中,我們在記憶體行為與奈米結構之間建立更完整的關係。此外,本實驗室先前也使用麥芽七糖嵌段聚苯乙烯(MH-b-PS)作為電荷捕獲層應用在晶體管型記憶體元件上,以及探討了捕獲層奈米結構與記憶體元件電性能之間的關係。但是,該材料無法吸收光,限制了其在光伏設備(例如光記憶體元件)中的應用。因此,在論文的第二部分(第3章)中,我們將光敏材料鈣鈦礦摻入基於麥芽七糖的嵌段共聚物中以拓展其應用價值。在論文的第三部分(第4章)中,我們更進一步地在麥芽七糖嵌段共聚物當中引入軟鏈段(polyisoprene, PI),製備成可拉伸的光敏感薄膜,應用於光記憶體元件。
The devices with a large data storage are essential in our daily life, the development of memory devices has attracted great research attention. Block copolymers, especially copolymers with a large number of functional groups, have been widely used in memory devices as an active layer or trapping layer, such as resistive-type memory devices and transistor-type memory devices. Maltoheptaose is one of the biomass materials and has abundant hydroxyl groups, which exhibit several functionalities, such as trapping electrons due to the occurrence of protonation on hydroxyl groups via the external electric field-induced electrons or coordinate metal ions. Therefore, block copolymers based on maltoheptaose has potential applications for green electronic devices. In our previously reported literatures, maltoheptaose-block-polystyrene (MH-b-PI) thin films with various well-controlled nanostructures were employed as an active layer for the application of resistive memory devices and investigated the relationship between the nanostructure of the active layer and the memory behaviors. However, the different nanostructures, such as cylinder and body-centered-cubic sphere, were resulted from the block ratio of the block copolymers and might limit the correlation of the nanostructure with the memory behavior. Therefore, in the first part of the thesis (chapter 2), we established a more complete relationship between electrical properties and nanostructure structures based on one chemical structure. Our group have also reported the transistor-type memory devices with maltoheptaose-block-polystyrene (MH-b-PS) as charge trapping layers and the relationship between the nanostructure of trapping layer and electrical performance of memory devices. However, they were unable to absorb light and thus its application in photovoltaic devices is limited, such as photomemoriy devices. Therefore, in the second part of the thesis (chapter 3), we blended a photo-active material, perovskite, into maltoheptaose-based block copolymers to increase the application on photomemory. In the third part of the thesis (chapter 4), we further introduced rubber segments (polyisoprene, PI) into the maltoheptaose block copolymer to prepare a stretchable photo-active thin films for application in stretchable photomemory devices.
In conclusion, in chapter 2, we establish a detailed relationship between the nanostructure of the MH-b-PS-based block copolymers and their memory behavior of the resistive memory devices. In chapter 3, we successfully fabricated photomemory devices by using a series of carbohydrate-based block copolymers blended with perovskite, expanding the application of carbohydrate-based block copolymer for photomemory devices, which would be helpful for the development of organic photoelectric memory devices. In chapter 4, we successfully demonstrated an intrinsically stretchable photo-active thin film for photomemory devices.
誌謝 I
摘要 II
Abstract IV
Table Captions XI
Figure Captions XII
Chapter 1 Introduction 1
1.1 Introduction to Block Copolymers 1
1.1.1 Self-Assembly of Block Copolymer 2
1.1.2 Applications of Block Copolymers 3
1.2 Introduction of Organic Memory Devices 5
1.2.1 Classification of Organic Memory 6
1.2.2 Resistive-Type Memory 7
1.2.3 Operation Mechanism of Resistive-Type Memory 9
1.3 Introduction of Photomemory Devices 11
1.3.1 Photoactive Polymer Electret 12
1.3.2 Inorganic/Organic Composites 13
1.3.3 Polymer Nanoparticles or Small Molecules 15
1.4 Introduction of Stretchable Electronic Devices 16
1.4.1 Stretchable Memory Devices 17
1.5 Research Objectives 18
1.6 Tables and Figures 21
Chapter 2 Nanostructure- and Orientation- Controlled Resistive Memory Behaviors of Carbohydrate-block-Polystyrene with Different Molecular Weights via Solvent Annealing 32
2.1 Introduction 32
2.2 Experimental Section 36
2.2.1 Materials 36
2.2.2 Morphology Characterization 36
2.2.3 Fabrication and Characterization of Resistive Memory Devices 37
2.3 Result and Discussion 38
2.3.1 Nanostructured Morphology of MH1.2k-b-PSn Thin films 38
2.3.2 Electrical Characterization of MH-b-PSn-Based Resistive Memory Devices 43
2.3.3 Proposed Mechanism for MH-b-PSn-Based Memory Behavior 48
2.4 Conclusions 50
2.5 Tables and Figures 51
Chapter 3 Carbohydrate-based Block Copolymer/Perovskite Hybrid Film for Photomemory Application 66
3.1 Introduction 66
3.2 Experimental Section 68
3.2.1 Materials 68
3.2.2 Solution Preparation 68
3.2.3 Fabrication of Photo-memory Device 69
3.2.4 Characterization and Measurement 69
3.3 Results and Discussions 70
3.3.1 Optical Properties of Hybrid Thin Films 70
3.3.2 Performance of Perovskite-Based Photomemory 73
3.3.3 Proposed Mechanism 76
3.4 Conclusions 77
3.5 Tables and Figures 79
Chapter 4 Stretchable Maltoheptaose-block-Polyisoprene/Perovskite Hybrid Film for Photomemory Application 87
4.1 Introduction 87
4.2 Experimental Section 88
4.2.1 Materials 88
4.2.2 Solution Preparation 88
4.2.3 Fabrication of Photo-memory Device 89
4.2.4 Characterization and Measurement 89
4.3 Results and Discussions 90
4.3.1 Optical Properties of Hybrid Thin Films 90
4.3.2 Stretchable Photomemory Using the MH-b-PI/Perovskite Thin Film 92
4.4 Conclusions 93
4.5 Tables and Figures 95
Chapter 5 Conclusions and Future Prospects 101
References 104
Matsen, M.; Bates, F. S., J. Chem. Phys. 1997, 106 (6), 2436-2448.

Liao, Y.; Chen, W. C.; Borsali, R., Adv. Mater. 2017, 29 (35), 1701645.

Hung, C.-C.; Nakahira, S.; Chiu, Y.-C.; Isono, T.; Wu, H.-C.; Watanabe, K.; Chiang, Y.-C.; Takashima, S.; Borsali, R.; Tung, S.-H., Macromolecules 2018, 51 (13), 4966-4975.

Isono, T.; Kawakami, N.; Watanabe, K.; Yoshida, K.; Otsuka, I.; Mamiya, H.; Ito, H.; Yamamoto, T.; Tajima, K.; Borsali, R., Polym. Chem. 2019, 10 (9), 1119-1129.

Liao, Y.; Goujon, L. J.; Reynaud, E.; Halila, S.; Gibaud, A.; Wei, B.; Borsali, R., Carbohydr. Polym. 2019, 212, 222-228.

Liao, Y.; Liu, K.; Chen, W.-C.; Wei, B.; Borsali, R., Macromolecules 2019, 52 (22), 8751-8758.

Lian, S.-L.; Liu, C.-L.; Chen, W.-C., ACS Appl. Mater. Interfaces 2011, 3 (11), 4504-4511.

Chen, J.-C.; Liu, C.-L.; Sun, Y.-S.; Tung, S.-H.; Chen, W.-C., Soft Matter 2012, 8 (2), 526-535.

Chiu, Y. C.; Otsuka, I.; Halila, S.; Borsali, R.; Chen, W. C., Adv. Funct. Mater. 2014, 24 (27), 4240-4249.

Hung, C. C.; Chiu, Y. C.; Wu, H. C.; Lu, C.; Bouilhac, C.; Otsuka, I.; Halila, S.; Borsali, R.; Tung, S. H.; Chen, W. C., Adv. Funct. Mater. 2017, 27 (13), 1606161.

Liu, G.; Zhuang, X.; Chen, Y.; Zhang, B.; Zhu, J.; Zhu, C.-X.; Neoh, K.-G.; Kang, E.-T., Appl. Phys. Lett. 2009, 95 (25), 327.

Bhansali, U. S.; Khan, M. A.; Cha, D.; AlMadhoun, M. N.; Li, R.; Chen, L.; Amassian, A.; Odeh, I. N.; Alshareef, H. N., ACS Nano 2013, 7 (12), 10518-10524.

Han, S. T.; Zhou, Y.; Roy, V., Adv. Mater. 2013, 25 (38), 5425-5449.

Raeis Hosseini, N.; Lee, J.-S., ACS Nano 2015, 9 (1), 419-426.

Chiang, Y.-C.; Shih, C.-C.; Tung, S.-H.; Chen, W.-C., Polymer 2018, 155, 146-151.

Hsu, L.-C.; Shih, C.-C.; Hsieh, H.-C.; Chiang, Y.-C.; Wu, P.-H.; Chueh, C.-C.; Chen, W.-C., Polym. Chem. 2018, 9 (41), 5145-5154.

Chiang, Y.-C.; Wu, H.-C.; Wen, H.-F.; Hung, C.-C.; Hong, C.-W.; Kuo, C.-C.; Higashihara, T.; Chen, W.-C., Macromolecules 2019, 52 (11), 4396-4404.

Chuang, T.-H.; Chiang, Y.-C.; Hsieh, H.-C.; Isono, T.; Huang, C.-W.; Borsali, R.; Satoh, T.; Chen, W.-C., ACS Appl. Mater. Interfaces.

Möller, S.; Perlov, C.; Jackson, W.; Taussig, C.; Forrest, S. R., Nature 2003, 426 (6963), 166-169.

Ouyang, J.; Chu, C.-W.; Szmanda, C. R.; Ma, L.; Yang, Y., Nat. Mater. 2004, 3 (12), 918-922.

Ling, Q. D.; Song, Y.; Lim, S. L.; Teo, E. Y. H.; Tan, Y. P.; Zhu, C.; Chan, D. S. H.; Kwong, D. L.; Kang, E. T.; Neoh, K. G., Angew. Chem. Int. Ed. 2006, 45 (18), 2947-2951.

Yen, H.-J.; Shan, C.; Wang, L.; Xu, P.; Zhou, M.; Wang, H.-L., Polymers 2017, 9 (1), 25.

Stikemann, A., Technol. Rev. 2002, 105 (7), 31-31.

Prince, B., Emerging memories: technologies and trends. Springer Science & Business Media: 2002.

Ling, Q.-D.; Liaw, D.-J.; Zhu, C.; Chan, D. S.-H.; Kang, E.-T.; Neoh, K.-G., Prog. Polym. Sci. 2008, 33 (10), 917-978.

Chu, C. W.; Ouyang, J.; Tseng, J. H.; Yang, Y., Adv. Mater. 2005, 17 (11), 1440-1443.

Chen, C.-J.; Yen, H.-J.; Chen, W.-C.; Liou, G.-S., J. Mater. Chem. 2012, 22 (28), 14085-14093.

Zhang, B.; Liu, G.; Chen, Y.; Wang, C.; Neoh, K. G.; Bai, T.; Kang, E. T., ChemPlusChem 2012, 77 (1), 74-81.

Liu, C.-L.; Chen, W.-C., Polym. Chem. 2011, 2 (10), 2169-2174.

Lai, Y.-C.; Ohshimizu, K.; Lee, W.-Y.; Hsu, J.-C.; Higashihara, T.; Ueda, M.; Chen, W.-C., J. Mater. Chem. 2011, 21 (38), 14502-14508.

Pender, L.; Fleming, R., J. Appl. Phys. 1975, 46 (8), 3426-3431.

Segui, Y.; Ai, B.; Carchano, H., J. Appl. Phys. 1976, 47 (1), 140-143.

Hwang, W.; Kao, K., J. Chem. Phys. 1974, 60 (10), 3845-3855.

Wierschem, A.; Niedernostheide, F. J.; Gorbatyuk, A.; Purwins, H. G., Scanning 1995, 17 (2), 106-116.

Waser, R.; Aono, M., Nanoscience And Technology: A Collection of Reviews from Nature Journals, World Scientific: 2010; pp 158-165.

Jana, D.; Roy, S.; Panja, R.; Dutta, M.; Rahaman, S. Z.; Mahapatra, R.; Maikap, S., Nanoscale Res. Lett. 2015, 10 (1), 188.

Chen, C. H.; Wang, Y.; Tatsumi, H.; Michinobu, T.; Chang, S. W.; Chiu, Y. C.; Liou, G. S., Adv. Funct. Mater. 2019, 29 (40), 1902991.

Chen, C.-H.; Wang, Y.; Michinobu, T.; Chang, S.-W.; Chiu, Y.-C.; Ke, C.-Y.; Liou, G.-S., ACS Appl. Mater. Interfaces 2020, 12 (5), 6144-6150.

Chen, J. Y.; Chiu, Y. C.; Li, Y. T.; Chueh, C. C.; Chen, W. C., Adv. Mater. 2017, 29 (33), 1702217.

Ercan, E.; Chen, J.-Y.; Shih, C.-C.; Chueh, C.-C.; Chen, W.-C., Nanoscale 2018, 10 (39), 18869-18877.

Chang, Y. H.; Ku, C. W.; Zhang, Y. H.; Wang, H. C.; Chen, J. Y., Adv. Funct. Mater. 2020.

Jeong, Y. J.; Yun, D.-J.; Kim, S. H.; Jang, J.; Park, C. E., ACS Appl. Mater. Interfaces 2017, 9 (13), 11759-11769.

Shih, C.-C.; Chiang, Y.-C.; Hsieh, H.-C.; Lin, Y.-C.; Chen, W.-C., ACS Appl. Mater. Interfaces 2019, 11 (45), 42429-42437.

Cho, B.; Song, S.; Ji, Y.; Kim, T. W.; Lee, T., Adv. Funct. Mater. 2011, 21 (15), 2806-2829.

Valov, I.; Linn, E.; Tappertzhofen, S.; Schmelzer, S.; van den Hurk, J.; Lentz, F.; Waser, R., Nat. Commun. 2013, 4 (1), 1-9.

Tappertzhofen, S.; Valov, I.; Tsuruoka, T.; Hasegawa, T.; Waser, R.; Aono, M., ACS Nano 2013, 7 (7), 6396-6402.

Lin, W. P.; Liu, S. J.; Gong, T.; Zhao, Q.; Huang, W., Adv. Mater. 2014, 26 (4), 570-606.

Kim, K.; Kim, Y. Y.; Park, S.; Ko, Y.-G.; Rho, Y.; Kwon, W.; Shin, T. J.; Kim, J.; Ree, M., Macromolecules 2014, 47 (13), 4397-4407.

Jung, S.; Kwon, W.; Wi, D.; Kim, J.; Ree, B. J.; Kim, Y. Y.; Kim, W. J.; Ree, M., Macromolecules 2016, 49 (4), 1369-1382.

Yu, A.-D.; Kurosawa, T.; Chou, Y.-H.; Aoyagi, K.; Shoji, Y.; Higashihara, T.; Ueda, M.; Liu, C.-L.; Chen, W.-C., ACS Appl. Mater. Interfaces 2013, 5 (11), 4921-4929.

Verbakel, F.; Meskers, S. C.; Janssen, R. A., Chem. Mater. 2006, 18 (11), 2707-2712.

Narasimhan Arunagirinathan, R.; Gopikrishna, P.; Das, D.; Iyer, P. K., ACS Appl. Electron. Mater. 2019, 1 (4), 600-607.

Suga, T.; Sakata, M.; Aoki, K.; Nishide, H., ACS Macro Lett. 2014, 3 (8), 703-707.

Suga, T.; Aoki, K.; Yashiro, T.; Nishide, H., Macromol Rapid Commun 2016, 37 (1), 53-59.

Otsuka, I.; Isono, T.; Rochas, C.; Halila, S.; Fort, S. b.; Satoh, T.; Kakuchi, T.; Borsali, R., ACS Macro Lett. 2012, 1 (12), 1379-1382.

Otsuka, I.; Tallegas, S.; Sakai, Y.; Rochas, C.; Halila, S.; Fort, S.; Bsiesy, A.; Baron, T.; Borsali, R., Nanoscale 2013, 5 (7), 2637-2641.

Isono, T.; Ree, B. J.; Tajima, K.; Borsali, R.; Satoh, T., Macromolecules 2018, 51 (2), 428-437.

Chiu, Y. C.; Sun, H. S.; Lee, W. Y.; Halila, S.; Borsali, R.; Chen, W. C., Adv. Mater. 2015, 27 (40), 6257-6264.

Bosworth, J. K.; Paik, M. Y.; Ruiz, R.; Schwartz, E. L.; Huang, J. Q.; Ko, A. W.; Smilgies, D.-M.; Black, C. T.; Ober, C. K., ACS Nano 2008, 2 (7), 1396-1402.

Paik, M. Y.; Bosworth, J. K.; Smilges, D.-M.; Schwartz, E. L.; Andre, X.; Ober, C. K., Macromolecules 2010, 43 (9), 4253-4260.

Mokarian-Tabari, P.; Collins, T. W.; Holmes, J. D.; Morris, M. A., ACS Nano 2011, 5 (6), 4617-4623.

Seppala, J. E.; Lewis III, R. L.; Epps III, T. H., ACS Nano 2012, 6 (11), 9855-9862.

Sinturel, C.; Vayer, M. n.; Morris, M.; Hillmyer, M. A., Macromolecules 2013, 46 (14), 5399-5415.

Kim, S.; Li, W.; Fredrickson, G. H.; Hawker, C. J.; Kramer, E. J., Soft Matter 2016, 12 (27), 5915-5925.

Choi, Y. J.; Byun, M. H.; Park, T. W.; Choi, S.; Bang, J.; Jung, H.; Cho, J.-H.; Kwon, S.-H.; Kim, K. H.; Park, W. I., ACS Appl. Nano Mater. 2019, 2 (3), 1294-1301.


Xiao, Z.; Dong, Q.; Bi, C.; Shao, Y.; Yuan, Y.; Huang, J., Adv. Mater. 2014, 26 (37), 6503-6509.
Lan, S.; Yang, H.; Zhang, G.; Wu, X.; Chen, Q.; Chen, L.; Chen, H.; Guo, T., ACS Appl. Mater. Interfaces 2017, 9 (24), 20679-20685.

Datt, R.; Bagui, A.; Siddiqui, A.; Sharma, R.; Gupta, V.; Yoo, S.; Kumar, S.; Singh, S. P., Sci. Rep. 2019, 9 (1), 8529.

\Wienhold, K. S.; Körstgens, V.; Grott, S.; Jiang, X.; Schwartzkopf, M.; Roth, S. V.;Müller-Buschbaum, P., ACS Appl. Mater. Interfaces 2019, 11 (45), 42313-42321.

Khim, D.; Baeg, K.-J.; Kim, J.; Kang, M.; Lee, S.-H.; Chen, Z.; Facchetti, A.; Kim, D.-Y.; Noh, Y.-Y., ACS Appl. Mater. Interfaces 2013, 5 (21), 10745-10752.

Jeon, G. G.; Lee, M.; Nam, J.; Park, W.; Yang, M.; Choi, J.-H.; Yoon, D. K.; Lee, E.; Kim, B.; Kim, J. H., ACS Appl. Mater. Interfaces 2018, 10 (35), 29824-29830.

Jeong, Y. J.; Yun, D.-J.; Noh, S. H.; Park, C. E.; Jang, J., ACS Nano 2018, 12 (8), 7701-7709.

Kim, M.; Seong, H.; Lee, S.; Kwon, H.; Im, S. G.; Moon, H.; Yoo, S., Sci. Rep. 2016, 6, 30536.

Zhang, L.-X.; Gao, X.; Lv, J.-J.; Zhong, Y.-N.; Xu, C.; Xu, J.-L.; Wang, S.-D., ACS Appl. Mater. Interfaces 2019, 11 (43), 40366-40371.

Chang, Y. H.; Ku, C. W.; Zhang, Y. H.; Wang, H. C.; Chen, J. Y., Adv. Funct. Mater. 2020, 30 (21), 2000764.

Wu, H.-C.; Benight, S. J.; Chortos, A.; Lee, W.-Y.; Mei, J.; To, J. W.; Lu, C.; He, M.; Tok, J. B.-H.; Chen, W.-C., Chem. Mater. 2014, 26 (15), 4544-4551.

Wu, H.-C.; Hung, C.-C.; Hong, C.-W.; Sun, H.-S.; Wang, J.-T.; Yamashita, G.; Higashihara, T.; Chen, W.-C., Macromolecules 2016, 49 (22), 8540-8548.

Wang, J.-T.; Saito, K.; Wu, H.-C.; Sun, H.-S.; Hung, C.-C.; Chen, Y.; Isono, T.; Kakuchi, T.; Satoh, T.; Chen, W.-C., NPG Asia Materials 2016, 8 (8), e298-e298.

Liang, J.; Li, L.; Chen, D.; Hajagos, T.; Ren, Z.; Chou, S.-Y.; Hu, W.; Pei, Q., Nat. Commun. 2015, 6 (1), 1-10.

Lee, Y.; Shin, M.; Thiyagarajan, K.; Jeong, U., Macromolecules 2016, 49 (2), 433-444.

Choi, D.; Kim, H.; Persson, N.; Chu, P.-H.; Chang, M.; Kang, J.-H.; Graham, S.; Reichmanis, E., Chem. Mater. 2016, 28 (4), 1196-1204.

Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I., ACS Nano 2014, 8 (5), 5154-5163.

Choong, C. L.; Shim, M. B.; Lee, B. S.; Jeon, S.; Ko, D. S.; Kang, T. H.; Bae, J.; Lee, S. H.; Byun, K. E.; Im, J., Adv. Mater. 2014, 26 (21), 3451-3458.

Chortos, A.; Liu, J.; Bao, Z., Nat. Mater. 2016, 15 (9), 937-950.

Hwang, B.-U.; Lee, J.-H.; Trung, T. Q.; Roh, E.; Kim, D.-I.; Kim, S.-W.; Lee, N.-E., ACS Nano 2015, 9 (9), 8801-8810.

Wang, C.; Li, X.; Gao, E.; Jian, M.; Xia, K.; Wang, Q.; Xu, Z.; Ren, T.; Zhang, Y., Adv. Mater. 2016, 28 (31), 6640-6648.

Lipomi, D. J.; Tee, B. C. K.; Vosgueritchian, M.; Bao, Z., Adv. Mater. 2011, 23 (15), 1771-1775.

Trung, T. Q.; Lee, N.-E., Journal of Materials Chemistry C 2017, 5 (9), 2202-2222.

Trung, T. Q.; Lee, N. E., Adv. Mater. 2017, 29 (3), 1603167.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top