|
[1]P. Marchetti, M.F. Jimenez Solomon, G. Szekely, A.G. Livingston, Molecular separation with organic solvent nanofiltration: A critical review, Chemical Reviews 114 (2014) 10735–10806. [2]J. Wang, J. Zhu, Y. Zhang, J. Liu, B.V. der Bruggen, Nanoscale tailor-made membranes for precise and rapid molecular sieve separation, Nanoscale. 9 (2017) 2942–2957. [3]Z. Zheng, R. Grünker, X. Feng, Synthetic Two-Dimensional Materials: A new paradigm of membranes for ultimate separation, Advanced Materials. 28 (2016) 6529–6545. [4]J.Q. Liu, Z.L. Xu, X.H. Li, Y. Zhang, Y. Zhou, Z.X. Wang, X.J. Wang, An improved process to prepare high separation performance PA/PVDF hollow fiber composite nanofiltration membranes, Separation and Purification Technology. 58 (2007) 53–60. [5]A.W. Mohammad, Y.H. Teow, W.L. Ang, Y.T. Chung, D.L. Oatley-Radcliffe, N. Hilal, Nanofiltration membranes review: Recent advances and future prospects, Desalination. 356 (2015) 226–254. [6]W.J. Lau, S. Gray, T. Matsuura, D. Emadzadeh, J. Paul Chen, A.F. Ismail, A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches, Water Research. 80 (2015) 306–324. [7]M. Homayoonfal, A. Akbari, M.R. Mehrnia, Preparation of polysulfone nanofiltration membranes by UV-assisted grafting polymerization for water softening, Desalination. 263 (2010) 217–225. [8]J. Deng, Y. Zhang, J. Liu, H. Zhang, Preparation of three-bore hollow fiber charged nanofiltration membrane for separation of organics and salts, Water Science and Technology. 65 (2012) 171–176. [9]Y. Ji, Q. An, Q. Zhao, H. Chen, C. Gao, Preparation of novel positively charged copolymer membranes for nanofiltration, Journal of Membrane Science. 376 (2011) 254–265. [10]S. Karan, Z. Jiang, A.G. Livingston, Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation, Science. 348 (2015) 1347–1351. [11]S. Sorribas, P. Gorgojo, C. Téllez, J. Coronas, A.G. Livingston, High flux thin film nanocomposite membranes based on metal–organic frameworks for organic solvent nanofiltration, Journal of the American Chemical Society. 135 (2013) 15201–15208. [12]A.F. Ismail, M. Padaki, N. Hilal, T. Matsuura, W.J. Lau, Thin film composite membrane — Recent development and future potential, Desalination. 356 (2015) 140–148. [13]K.P. Lee, T.C. Arnot, D. Mattia, A review of reverse osmosis membrane materials for desalination—Development to date and future potential, Journal of Membrane Science. 370 (2011) 1–22. [14]N.Y. Yip, A. Tiraferri, W.A. Phillip, J.D. Schiffman, M. Elimelech, High performance thin-Film Composite Forward Osmosis Membrane, Environ. Sci. Technol. 44 (2010) 3812–3818. [15]S. Chou, L. Shi, R. Wang, C.Y. Tang, C. Qiu, A.G. Fane, Characteristics and potential applications of a novel forward osmosis hollow fiber membrane, Desalination. 261 (2010) 365–372. [16]Z.L. Cheng, X. Li, Y.D. Liu, T.-S. Chung, Robust outer-selective thin-film composite polyethersulfone hollow fiber membranes with low reverse salt flux for renewable salinity-gradient energy generation, Journal of Membrane Science. 506 (2016) 119–129. [17]C.F. Wan, T. Yang, W. Gai, Y.D. Lee, T.-S. Chung, Thin-film composite hollow fiber membrane with inorganic salt additives for high mechanical strength and high power density for pressure-retarded osmosis, Journal of Membrane Science. 555 (2018) 388–397. [18]G.M. Shi, T.-S. Chung, Thin film composite membranes on ceramic for pervaporation dehydration of isopropanol, Journal of Membrane Science. 448 (2013) 34–43. [19]J. Zuo, Y. Wang, T.-S. Chung, Novel organic–inorganic thin film composite membranes with separation performance surpassing ceramic membranes for isopropanol dehydration, Journal of Membrane Science. 433 (2013) 60–71. [20]J.Y. Chong, R. Wang, From micro to nano: Polyamide thin film on microfiltration ceramic tubular membranes for nanofiltration, Journal of Membrane Science. 587 (2019) 117161. [21]A. Saxena, B.P. Tripathi, M. Kumar, V.K. Shahi, Membrane-based techniques for the separation and purification of proteins: An overview, Advances in Colloid and Interface Science. 145 (2009) 1–22. [22]T. Li, Y. Xiao, D. Guo, L. Shen, R. Li, Y. Jiao, Y. Xu, H. Lin, In-situ coating TiO2 surface by plant-inspired tannic acid for fabrication of thin film nanocomposite nanofiltration membranes toward enhanced separation and antibacterial performance, Journal of Colloid and Interface Science. 572 (2020) 114–121. [23]Y. Ji, W. Qian, Y. Yu, Q. An, L. Liu, Y. Zhou, C. Gao, Recent developments in nanofiltration membranes based on nanomaterials, Chinese Journal of Chemical Engineering. 25 (2017) 1639–1652. [24]P. Vandezande, L.E.M. Gevers, I.F.J. Vankelecom, Solvent resistant nanofiltration: separating on a molecular level, Chem. Soc. Rev. 37 (2008) 365–405. [25]H.P. Hsieh, Inorganic Membranes for Separation and Reaction, Elsevier, 1996. [26]R. Bhave, Inorganic Membranes Synthesis, Characteristics and Applications: Synthesis, characteristics, and applications, Springer Science & Business Media, 2012. [27]A.J. Burggraaf, L. Cot, Fundamentals of Inorganic Membrane Science and Technology, Elsevier, 1996. [28]T. Tsuru, Inorganic Porous Membranes for Liquid Phase Separation, Separation and Purification Methods. 30 (2001) 191–220. [29]M. Mulder, J. Mulder, Basic Principles of Membrane Technology, Springer Science & Business Media, 1996. [30]T. Van Gestel, C. Vandecasteele, A. Buekenhoudt, C. Dotremont, J. Luyten, R. Leysen, B. Van der Bruggen, G. Maes, Alumina and titania multilayer membranes for nanofiltration: preparation, characterization and chemical stability, Journal of Membrane Science. 207 (2002) 73–89. [31]X.-W. Liu, Y. Cao, Y.-X. Li, Z.-L. Xu, Z. Li, M. Wang, X.-H. Ma, High-performance polyamide/ceramic hollow fiber TFC membranes with TiO2 interlayer for pervaporation dehydration of isopropanol solution, Journal of Membrane Science. 576 (2019) 26–35. [32]T. Tsuru, Nano/subnano-tuning of porous ceramic membranes for molecular separation, J Sol-Gel Sci Technol. 46 (2008) 349–361. [33]J. Ren, J.R. McCutcheon, Polyacrylonitrile supported thin film composite hollow fiber membranes for forward osmosis, Desalination. 372 (2015) 67–74. [34]J. Ren, M.R. Chowdhury, J. Qi, L. Xia, B.D. Huey, J.R. McCutcheon, Relating osmotic performance of thin film composite hollow fiber membranes to support layer surface pore size, Journal of Membrane Science. 540 (2017) 344–353. [35]Y. Zhou, S. Yu, M. Liu, C. Gao, Preparation and characterization of polyamide-urethane thin-film composite membranes, Desalination. 180 (2005) 189–196. [36]J. Ji, M. Mehta, Mathematical model for the formation of thin-film composite hollow fiber and tubular membranes by interfacial polymerization, Journal of Membrane Science. 192 (2001) 41–54. [37]A. Prakash Rao, S.V. Joshi, J.J. Trivedi, C.V. Devmurari, V.J. Shah, Structure–performance correlation of polyamide thin film composite membranes: effect of coating conditions on film formation, Journal of Membrane Science. 211 (2003) 13–24. [38]A.L. Ahmad, B.S. Ooi, Properties–performance of thin film composites membrane: study on trimesoyl chloride content and polymerization time, Journal of Membrane Science. 255 (2005) 67–77. [39]X.-Z. Wei, L.-P. Zhu, H.-Y. Deng, Y.-Y. Xu, B.-K. Zhu, Z.-M. Huang, New type of nanofiltration membrane based on crosslinked hyperbranched polymers, Journal of Membrane Science. 323 (2008) 278–287. [40]C. Guizard, A. Ayral, A. Julbe, Potentiality of organic solvents filtration with ceramic membranes. A comparison with polymer membranes, Desalination. 147 (2002) 275–280. [41]S. Lee, J. Cho, Comparison of ceramic and polymeric membranes for natural organic matter (NOM) removal, Desalination. 160 (2004) 223–232. [42]A. Alem, H. Sarpoolaky, M. Keshmiri, Titania ultrafiltration membrane: Preparation, characterization and photocatalytic activity, Journal of the European Ceramic Society. 29 (2009) 629–635. [43]R. Weber, H. Chmiel, V. Mavrov, Characteristics and application of new ceramic nanofiltration membranes, Desalination. 157 (2003) 113–125. [44]J. Galuszka, R.N. Pandey, S. Ahmed, Methane conversion to syngas in a palladium membrane reactor, Catalysis Today. 46 (1998) 83–89. [45]J.N. Keuler, L. Lorenzen, The dehydrogenation of 2-butanol in a Pd–Ag membrane reactor, Journal of Membrane Science. 202 (2002) 17–26. [46]H.W.J.P. Neomagus, G. Saracco, H.F.W. Wessel, G.F. Versteeg, The catalytic combustion of natural gas in a membrane reactor with separate feed of reactants, Chemical Engineering Journal. 77 (2000) 165–177. [47]A. Julbe, D. Farrusseng, C. Guizard, Porous ceramic membranes for catalytic reactors — overview and new ideas, Journal of Membrane Science. 181 (2001) 3–20. [48]B.F.K. Kingsbury, K. Li, A morphological study of ceramic hollow fibre membranes, Journal of Membrane Science. 328 (2009) 134–140. [49]L. Xia, J. Ren, M. Weyd, J.R. McCutcheon, Ceramic-supported thin film composite membrane for organic solvent nanofiltration, Journal of Membrane Science. 563 (2018) 857–863. [50]L. Xia, J.R. McCutcheon, Understanding the influence of solvents on the intrinsic properties and performance of polyamide thin film composite membranes, Separation and Purification Technology. 238 (2020) 116398. [51]M. Lee, Z. Wu, R. Wang, K. Li, Micro-structured alumina hollow fibre membranes – Potential applications in wastewater treatment, Journal of Membrane Science. 461 (2014) 39–48. [52]S. LOEB, S. SOURIRAJAN, Sea Water Demineralization by Means of an Osmotic Membrane, in: Saline Water Conversion—II, AMERICAN CHEMICAL SOCIETY, 1963: pp. 117–132. [53]K. Li, Ceramic Membranes for Separation and Reaction, John Wiley & Sons, 2007. [54]X. Zhang, D.K. Wang, D.R.S. Lopez, J.C. Diniz da Costa, Fabrication of nanostructured TiO2 hollow fiber photocatalytic membrane and application for wastewater treatment, Chemical Engineering Journal. 236 (2014) 314–322. [55]S. Liu, K. Li, Preparation TiO2/Al2O3 composite hollow fibre membranes, Journal of Membrane Science. 218 (2003) 269–277. [56]B.F.K. Kingsbury, Z. Wu, K. Li, A morphological study of ceramic hollow fibre membranes: A perspective on multifunctional catalytic membrane reactors, Catalysis Today. 156 (2010) 306–315. [57]N. Abdullah, M.A. Rahman, M.H.D. Othman, A.F. Ismail, J. Jaafar, A.A. Aziz, Preparation and characterization of self-cleaning alumina hollow fiber membrane using the phase inversion and sintering technique, Ceramics International. 42 (2016) 12312–12322. [58]Y. Song, P. Sun, L.L. Henry, B. Sun, Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process, Journal of Membrane Science. 251 (2005) 67–79. [59]A.K. Ghosh, B.-H. Jeong, X. Huang, E.M.V. Hoek, Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties, Journal of Membrane Science. 311 (2008) 34–45. [60]J.Y. Xiong, Z.L. Cheng, C.F. Wan, S.C. Chen, T.-S. Chung, Analysis of flux reduction behaviors of PRO hollow fiber membranes: Experiments, mechanisms, and implications, Journal of Membrane Science. 505 (2016) 1–14. [61]C.Y. Tang, Y.-N. Kwon, J.O. Leckie, Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and XPS characterization of polyamide and coating layer chemistry, Desalination. 242 (2009) 149–167. [62]C.Y. Tang, Y.-N. Kwon, J.O. Leckie, Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers, Desalination. 242 (2009) 168–182. [63]C.Y. Tang, Y.-N. Kwon, J.O. Leckie, Probing the nano- and micro-scales of reverse osmosis membranes—A comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements, Journal of Membrane Science. 287 (2007) 146–156. [64]X.-H. Ma, Z.-K. Yao, Z. Yang, H. Guo, Z.-L. Xu, C.Y. Tang, M. Elimelech, Nanofoaming of Polyamide Desalination Membranes To Tune Permeability and Selectivity, Environ. Sci. Technol. Lett. 5 (2018) 123–130. [65]Z. Yang, H. Guo, C.Y. Tang, The upper bound of thin-film composite (TFC) polyamide membranes for desalination, Journal of Membrane Science. 590 (2019) 117297. [66]J.H. Kim, E.J. Moon, C.K. Kim, Composite membranes prepared from poly(m-animostyrene-co-vinyl alcohol) copolymers for the reverse osmosis process, Journal of Membrane Science. 216 (2003) 107–120. [67]Y. Li, Y. Su, J. Li, X. Zhao, R. Zhang, X. Fan, J. Zhu, Y. Ma, Y. Liu, Z. Jiang, Preparation of thin film composite nanofiltration membrane with improved structural stability through the mediation of polydopamine, Journal of Membrane Science. 476 (2015) 10–19. [68]Y.-C. Chiang, Y.-Z. Hsub, R.-C. Ruaan, C.-J. Chuang, K.-L. Tung, Nanofiltration membranes synthesized from hyperbranched polyethyleneimine, Journal of Membrane Science. 326 (2009) 19–26. [69]Z. Yang, X. Huang, J. Wang, C.Y. Tang, Novel polyethyleneimine/TMC-based nanofiltration membrane prepared on a polydopamine coated substrate, Front. Chem. Sci. Eng. 12 (2018) 273–282. [70]L. Li, S. Zhang, X. Zhang, G. Zheng, Polyamide thin film composite membranes prepared from 3,4′,5-biphenyl triacyl chloride, 3,3′,5,5′-biphenyl tetraacyl chloride and m-phenylenediamine, Journal of Membrane Science. 289 (2007) 258–267. [71]W. Choi, S. Jeon, S.J. Kwon, H. Park, Y.-I. Park, S.-E. Nam, P.S. Lee, J.S. Lee, J. Choi, S. Hong, E.P. Chan, J.-H. Lee, Thin film composite reverse osmosis membranes prepared via layered interfacial polymerization, Journal of Membrane Science. 527 (2017) 121–128. [72]J. Wei, X. Liu, C. Qiu, R. Wang, C.Y. Tang, Influence of monomer concentrations on the performance of polyamide-based thin film composite forward osmosis membranes, Journal of Membrane Science. 381 (2011) 110–117. [73]F. Yang, S. Zhang, D. Yang, X. Jian, Preparation and characterization of polypiperazine amide/PPESK hollow fiber composite nanofiltration membrane, Journal of Membrane Science. 301 (2007) 85–92. [74]M. Liu, S. Yu, J. Tao, C. Gao, Preparation, structure characteristics and separation properties of thin-film composite polyamide-urethane seawater reverse osmosis membrane, Journal of Membrane Science. 325 (2008) 947–956. [75]W. Wang, G. Li, One-step fabrication of high selective hollow fiber nanofiltration membrane module, Fibers Polym. 11 (2010) 1041–1048. [76]M. Fathizadeh, A. Aroujalian, A. Raisi, Effect of lag time in interfacial polymerization on polyamide composite membrane with different hydrophilic sub layers, Desalination. 284 (2012) 32–41. [77]V. Freger, Kinetics of Film Formation by Interfacial Polycondensation, Langmuir. 21 (2005) 1884–1894. [78]W. Xie, G.M. Geise, B.D. Freeman, H.-S. Lee, G. Byun, J.E. McGrath, Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine, Journal of Membrane Science. 403–404 (2012) 152–161. [79]C. Wu, S. Zhang, D. Yang, X. Jian, Preparation, characterization and application of a novel thermal stable composite nanofiltration membrane, Journal of Membrane Science. 326 (2009) 429–434. [80]Z. Yang, Y. Wu, H. Guo, X.-H. Ma, C.-E. Lin, Y. Zhou, B. Cao, B.-K. Zhu, K. Shih, C.Y. Tang, A novel thin-film nano-templated composite membrane with in situ silver nanoparticles loading: Separation performance enhancement and implications, Journal of Membrane Science. 544 (2017) 351–358. [81]R. Zhang, S. Yu, W. Shi, J. Zhu, B. Van der Bruggen, Support membrane pore blockage (SMPB): An important phenomenon during the fabrication of thin film composite membrane via interfacial polymerization, Separation and Purification Technology. 215 (2019) 670–680. [82]L. Zhao, W.S.W. Ho, Novel reverse osmosis membranes incorporated with a hydrophilic additive for seawater desalination, Journal of Membrane Science. 455 (2014) 44–54. [83]X. Ma, Z. Yang, Z. Yao, H. Guo, Z. Xu, C.Y. Tang, Tuning roughness features of thin film composite polyamide membranes for simultaneously enhanced permeability, selectivity and anti-fouling performance, Journal of Colloid and Interface Science. 540 (2019) 382–388. [84]B. Tang, Z. Huo, P. Wu, Study on a novel polyester composite nanofiltration membrane by interfacial polymerization of triethanolamine (TEOA) and trimesoyl chloride (TMC): I. Preparation, characterization and nanofiltration properties test of membrane, Journal of Membrane Science. 320 (2008) 198–205. [85]A. Rahimpour, M. Jahanshahi, M. Peyravi, S. Khalili, Interlaboratory studies of highly permeable thin-film composite polyamide nanofiltration membrane, Polymers for Advanced Technologies. 23 (2012) 884–893. [86]B. Khorshidi, T. Thundat, D. Pernitsky, M. Sadrzadeh, A parametric study on the synergistic impacts of chemical additives on permeation properties of thin film composite polyamide membrane, Journal of Membrane Science. 535 (2017) 248–257. [87]S. Hermans, H. Mariën, E. Dom, R. Bernstein, I.F.J. Vankelecom, Simplified synthesis route for interfacially polymerized polyamide membranes, Journal of Membrane Science. 451 (2014) 148–156. [88]X. Hao, S. Gao, J. Tian, Y. Sun, F. Cui, C.Y. Tang, Calcium-Carboxyl Intrabridging during Interfacial Polymerization: A Novel Strategy to Improve Antifouling Performance of Thin Film Composite Membranes, Environ. Sci. Technol. 53 (2019) 4371–4379. [89]S.H. Kim, S.-Y. Kwak, T. Suzuki, Positron Annihilation Spectroscopic Evidence to Demonstrate the Flux-Enhancement Mechanism in Morphology-Controlled Thin-Film-Composite (TFC) Membrane, Environ. Sci. Technol. 39 (2005) 1764–1770. [90]Y.-J. Tang, L.-J. Wang, Z.-L. Xu, Y.-M. Wei, H. Yang, Novel high-flux thin film composite nanofiltration membranes fabricated by the NaClO pre-oxidation of the mixed diamine monomers of PIP and BHTTM in the aqueous phase solution, Journal of Membrane Science. 502 (2016) 106–115. [91]C. Kong, M. Kanezashi, T. Yamomoto, T. Shintani, T. Tsuru, Controlled synthesis of high performance polyamide membrane with thin dense layer for water desalination, Journal of Membrane Science. 362 (2010) 76–80. [92]Y. Zhang, X. Miao, G. Pan, H. Shi, H. Yan, J. Xu, M. Guo, S. Li, Y. Zhang, Y. Liu, Highly improved permeation property of thin-film-composite polyamide membrane for water desalination, J Polym Res. 24 (2016) 5. [93]E. Maaskant, P. de Wit, N.E. Benes, Direct interfacial polymerization onto thin ceramic hollow fibers, Journal of Membrane Science. 550 (2018) 296–301. [94]Y.-X. Li, Y. Cao, M. Wang, Z.-L. Xu, H.-Z. Zhang, X.-W. Liu, Z. Li, Novel high-flux polyamide/TiO2 composite nanofiltration membranes on ceramic hollow fibre substrates, Journal of Membrane Science. 565 (2018) 322–330. [95]Y. Cai, Y. Wang, X. Chen, M. Qiu, Y. Fan, Modified colloidal sol–gel process for fabrication of titania nanofiltration membranes with organic additives, Journal of Membrane Science. 476 (2015) 432–441. [96]S. Anisah, M. Kanezashi, H. Nagasawa, T. Tsuru, TiO2-ZrO2 membranes of controlled pore sizes with different Ti/Zr ratios for nanofiltration, J Sol-Gel Sci Technol. 92 (2019) 12–24. [97]M. Zhang, J. Sun, Y. Mao, G. Liu, W. Jin, Effect of substrate on formation and nanofiltration performance of graphene oxide membranes, Journal of Membrane Science. 574 (2019) 196–204. [98]M. Tian, C. Qiu, Y. Liao, S. Chou, R. Wang, Preparation of polyamide thin film composite forward osmosis membranes using electrospun polyvinylidene fluoride (PVDF) nanofibers as substrates, Separation and Purification Technology. 118 (2013) 727–736. [99]A.K. Ghosh, E.M.V. Hoek, Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes, Journal of Membrane Science. 336 (2009) 140–148. [100] N. Misdan, W.J. Lau, A.F. Ismail, T. Matsuura, Formation of thin film composite nanofiltration membrane: Effect of polysulfone substrate characteristics, Desalination. 329 (2013) 9–18. [101] X. Li, Q. Li, W. Fang, R. Wang, W.B. Krantz, Effects of the support on the characteristics and permselectivity of thin film composite membranes, Journal of Membrane Science. 580 (2019) 12–23. [102] L. Huang, J.R. McCutcheon, Impact of support layer pore size on performance of thin film composite membranes for forward osmosis, Journal of Membrane Science. 483 (2015) 25–33. [103] J.G. Wijmans, P. Hao, Influence of the porous support on diffusion in composite membranes, Journal of Membrane Science. 494 (2015) 78–85. [104] Y. Yabuno, K. Mihara, K. Komatsu, S. Shimamura, K. Nakagawa, T. Shintani, H. Matsuyama, T. Yoshioka, Preparation of Polyamide Thin-Film Composite Membranes Using Hydrophilic Hollow Fiber PVDF via the TIPS Process Modified by PVA Diffusion, Ind. Eng. Chem. Res. 58 (2019) 21691–21699. [105] J.R. McCutcheon, M. Elimelech, Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes, Journal of Membrane Science. 318 (2008) 458–466. [106] B. Yan, S. Liu, Y. Heng, Nano-oxide thin films deposited via atomic layer deposition on microchannel plates, Nanoscale Research Letters. 10 (2015) 162. [107] R.-C. Fang, Q.-Q. Sun, P. Zhou, W. Yang, P.-F. Wang, D.W. Zhang, High-performance bilayer flexible resistive random access memory based on low-temperature thermal atomic layer deposition, Nanoscale Res Lett. 8 (2013) 92. [108] C. Sun, R. Zeng, J. Zhang, Z.-J. Qiu, D. Wu, Effects of UV-Ozone Treatment on Sensing Behaviours of EGFETs with Al2O3 Sensing Film, Materials (Basel). 10 (2017). [109] L. Shi, S.R. Chou, R. Wang, W.X. Fang, C.Y. Tang, A.G. Fane, Effect of substrate structure on the performance of thin-film composite forward osmosis hollow fiber membranes, Journal of Membrane Science. 382 (2011) 116–123. [110] Y. Wang, T. Xu, Anchoring hydrophilic polymer in substrate: An easy approach for improving the performance of TFC FO membrane, Journal of Membrane Science. 476 (2015) 330–339. [111] S. Lim, V.H. Tran, N. Akther, S. Phuntsho, H.K. Shon, Defect-free outer-selective hollow fiber thin-film composite membranes for forward osmosis applications, Journal of Membrane Science. 586 (2019) 281–291. [112] X. Kong, Z.-L. Qiu, C.-E. Lin, Y.-Z. Song, B.-K. Zhu, L.-P. Zhu, X.-Z. Wei, High permselectivity hyperbranched polyester/polyamide ultrathin films with nanoscale heterogeneity, J. Mater. Chem. A. 5 (2017) 7876–7884. [113] X. Chen, W. Zhang, Y. Lin, Y. Cai, M. Qiu, Y. Fan, Preparation of high-flux gamma-alumina nanofiltration membranes by using a modified sol-gel method, Microporous Mesoporous Mat. 214 (2015) 195–203. [114] Z. Wang, Y.-M. Wei, Z.-L. Xu, Y. Cao, Z.-Q. Dong, X.-L. Shi, Preparation, characterization and solvent resistance of γ-Al2O3/α-Al2O3 inorganic hollow fiber nanofiltration membrane, Journal of Membrane Science. 503 (2016) 69–80. [115] H. Chen, X. Jia, M. Wei, Y. Wang, Ceramic tubular nanofiltration membranes with tunable performances by atomic layer deposition and calcination, Journal of Membrane Science. 528 (2017) 95–102. [116] R. Shang, A. Goulas, C.Y. Tang, X. de Frias Serra, L.C. Rietveld, S.G.J. Heijman, Atmospheric pressure atomic layer deposition for tight ceramic nanofiltration membranes: Synthesis and application in water purification, Journal of Membrane Science. 528 (2017) 163–170. [117] N.F.D. Aba, J.Y. Chong, B. Wang, C. Mattevi, K. Li, Graphene oxide membranes on ceramic hollow fibers – Microstructural stability and nanofiltration performance, Journal of Membrane Science. 484 (2015) 87–94. [118] J.Y. Chong, N.F.D. Aba, B. Wang, C. Mattevi, K. Li, UV-Enhanced Sacrificial Layer Stabilised Graphene Oxide Hollow Fibre Membranes for Nanofiltration, Scientific Reports. 5 (2015) 15799.
|