跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/10 12:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃韋智
研究生(外文):Wei-Zhi Huang
論文名稱:直接界面聚合微孔聚醯胺薄膜於巨孔陶瓷中空纖維及其於奈米過濾之應用
論文名稱(外文):Direct Interfacial Polymerization of Microporous Polyamide Thin-Film on Macroporous Ceramic Hollow Fiber for Nanofiltration
指導教授:童國倫童國倫引用關係
指導教授(外文):Kuo-Lun Tung
口試委員:莊清榮曾惠馨
口試委員(外文):Ching-Jung ChuangHui-Hsin Tseng
口試日期:2020-07-09
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:94
中文關鍵詞:聚醯胺界面聚合陶瓷複合薄膜奈米過濾
外文關鍵詞:PolyamideInterfacial PolymerizationCeramicThin Film Composite MembraneNanofiltration
DOI:10.6342/NTU202001437
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
聚醯胺複合薄膜已被廣泛應用在許多薄膜分離程序,但若在嚴峻的條件下使用具有有機支撐層的聚醯胺複合薄膜,將會引起有機支撐層的毀損,另外,聚醯胺複合平板膜與聚醯胺複合中空纖維膜相比,具有較低的填充密度。為了解決上述兩個問題,以陶瓷中空纖維為基材製備聚醯胺複合薄膜已在最近的研究中得到關注。據我們所知,目前尚未有研究可直接於巨孔洞陶瓷中空纖維上進行界面聚合製備聚醯胺薄膜,而在本研究中將提出可使用巨孔洞陶瓷中空纖維為基材製備外部選擇層聚醯胺複合薄膜的方法,並將此薄膜應用於奈米過濾。為了提升陶瓷支撐層與聚醯胺選擇層之相容性,本研究中製備了具有平滑、富含羥基及超高親水性表面的氧化鋁中空纖維基材,此基材之孔洞大小為219.4 nm,而純水滲透係數為4593 ± 139 LMH/bar。本研究所製備的聚醯胺複合中空纖維薄膜具有340 g/mol的截留分子量及9.5 ± 0.4 LMH/bar的純水滲透係數,並展現接近100 %的染料阻擋率。我們認為,這項研究提供了直接於巨孔洞陶瓷中空纖維上進行界面聚合製備微孔聚醯胺薄膜的有效方法。
Polyamide (PA) thin-film composite (TFC) membranes have been widely used in various membrane-based separation processes. However, PA TFC membranes with organic support have low harsh-environment resistance, and the commonly used TFC membranes are flat-sheet which have low packing-density. To alleviate the aforementioned problems, PA TFC membranes with ceramic hollow fiber (HF) support were developed and attracted attention in recent research. To our knowledge, none of the studies have fabricated PA thin-film by direct interfacial polymerization (IP) on the macroporous ceramic HF support. Herein, we propose an approach to prepare the outer-selective PA TFC nanofiltration (NF) membrane supported by the macroporous ceramic HF. To make the support compatible to PA thin-film, we prepared an alumina HF with a smooth, –OH groups abundant, and ultra-hydrophilic surface. This HF has the pore size of 219.4 nm and the pure water permeability (PWP) of 4593 ± 139 LMH/bar. The NF test results show that the as-synthesized PA TFC membrane possesses the MWCO of 340 g/mol, PWP of 9.5 ± 0.4 LMH/bar, and nearly 100 % rejection of dyes. We believe that this study provides the facile approach for directly synthesizing microporous PA thin-thin via IP on the macroporous ceramic HF.
口試委員會審定書 I
致謝 II
摘要 III
Abstract IV
Table of Content V
List of Figures VII
List of Tables XI
Chapter 1. Introduction 1
Chapter 2. Literature Review 3
2-1. Pressure-Driven Membrane Separation Processes 3
2-2. Development and Application of Nanofiltration 6
2-3. Ceramic Hollow Fiber Membrane 8
2-4. Thin-Film Composite Membrane 14
Chapter 3. Experimental Procedures 23
3-1. Experimental Material 23
3-1-1. Alumina Hollow Fiber Support 23
3-1-2. Polyamide Thin-Film Composite Membrane 25
3-1-3. Nanofiltration 28
3-2. Experimental Equipment 32
3-2-1. Experimental Apparatus 32
3-2-2. Analyzing Apparatus 34
3-3. Experimental Method 43
3-3-1. Preparation of Alumina Hollow Fiber Support 43
3-3-2. Preparation of Polyamide Thin-Film Composite Membrane 47
3-3-3. Membrane Characterization 50
3-3-4. Nanofiltration Performance Evaluation 51
Chapter 4. Results and Discussion 53
4-1. Characterization of Alumina Hollow Fiber Support 54
4-2. Characterization of Polyamide Thin-Film Composite Membrane 60
4-3. Nanofiltration Performance of Polyamide Thin-Film Composite Membrane 67
Chapter 5. Conclusions 74
Reference 75
[1]P. Marchetti, M.F. Jimenez Solomon, G. Szekely, A.G. Livingston, Molecular separation with organic solvent nanofiltration: A critical review, Chemical Reviews 114 (2014) 10735–10806.
[2]J. Wang, J. Zhu, Y. Zhang, J. Liu, B.V. der Bruggen, Nanoscale tailor-made membranes for precise and rapid molecular sieve separation, Nanoscale. 9 (2017) 2942–2957.
[3]Z. Zheng, R. Grünker, X. Feng, Synthetic Two-Dimensional Materials: A new paradigm of membranes for ultimate separation, Advanced Materials. 28 (2016) 6529–6545.
[4]J.Q. Liu, Z.L. Xu, X.H. Li, Y. Zhang, Y. Zhou, Z.X. Wang, X.J. Wang, An improved process to prepare high separation performance PA/PVDF hollow fiber composite nanofiltration membranes, Separation and Purification Technology. 58 (2007) 53–60.
[5]A.W. Mohammad, Y.H. Teow, W.L. Ang, Y.T. Chung, D.L. Oatley-Radcliffe, N. Hilal, Nanofiltration membranes review: Recent advances and future prospects, Desalination. 356 (2015) 226–254.
[6]W.J. Lau, S. Gray, T. Matsuura, D. Emadzadeh, J. Paul Chen, A.F. Ismail, A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches, Water Research. 80 (2015) 306–324.
[7]M. Homayoonfal, A. Akbari, M.R. Mehrnia, Preparation of polysulfone nanofiltration membranes by UV-assisted grafting polymerization for water softening, Desalination. 263 (2010) 217–225.
[8]J. Deng, Y. Zhang, J. Liu, H. Zhang, Preparation of three-bore hollow fiber charged nanofiltration membrane for separation of organics and salts, Water Science and Technology. 65 (2012) 171–176.
[9]Y. Ji, Q. An, Q. Zhao, H. Chen, C. Gao, Preparation of novel positively charged copolymer membranes for nanofiltration, Journal of Membrane Science. 376 (2011) 254–265.
[10]S. Karan, Z. Jiang, A.G. Livingston, Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation, Science. 348 (2015) 1347–1351.
[11]S. Sorribas, P. Gorgojo, C. Téllez, J. Coronas, A.G. Livingston, High flux thin film nanocomposite membranes based on metal–organic frameworks for organic solvent nanofiltration, Journal of the American Chemical Society. 135 (2013) 15201–15208.
[12]A.F. Ismail, M. Padaki, N. Hilal, T. Matsuura, W.J. Lau, Thin film composite membrane — Recent development and future potential, Desalination. 356 (2015) 140–148.
[13]K.P. Lee, T.C. Arnot, D. Mattia, A review of reverse osmosis membrane materials for desalination—Development to date and future potential, Journal of Membrane Science. 370 (2011) 1–22.
[14]N.Y. Yip, A. Tiraferri, W.A. Phillip, J.D. Schiffman, M. Elimelech, High performance thin-Film Composite Forward Osmosis Membrane, Environ. Sci. Technol. 44 (2010) 3812–3818.
[15]S. Chou, L. Shi, R. Wang, C.Y. Tang, C. Qiu, A.G. Fane, Characteristics and potential applications of a novel forward osmosis hollow fiber membrane, Desalination. 261 (2010) 365–372.
[16]Z.L. Cheng, X. Li, Y.D. Liu, T.-S. Chung, Robust outer-selective thin-film composite polyethersulfone hollow fiber membranes with low reverse salt flux for renewable salinity-gradient energy generation, Journal of Membrane Science. 506 (2016) 119–129.
[17]C.F. Wan, T. Yang, W. Gai, Y.D. Lee, T.-S. Chung, Thin-film composite hollow fiber membrane with inorganic salt additives for high mechanical strength and high power density for pressure-retarded osmosis, Journal of Membrane Science. 555 (2018) 388–397.
[18]G.M. Shi, T.-S. Chung, Thin film composite membranes on ceramic for pervaporation dehydration of isopropanol, Journal of Membrane Science. 448 (2013) 34–43.
[19]J. Zuo, Y. Wang, T.-S. Chung, Novel organic–inorganic thin film composite membranes with separation performance surpassing ceramic membranes for isopropanol dehydration, Journal of Membrane Science. 433 (2013) 60–71.
[20]J.Y. Chong, R. Wang, From micro to nano: Polyamide thin film on microfiltration ceramic tubular membranes for nanofiltration, Journal of Membrane Science. 587 (2019) 117161.
[21]A. Saxena, B.P. Tripathi, M. Kumar, V.K. Shahi, Membrane-based techniques for the separation and purification of proteins: An overview, Advances in Colloid and Interface Science. 145 (2009) 1–22.
[22]T. Li, Y. Xiao, D. Guo, L. Shen, R. Li, Y. Jiao, Y. Xu, H. Lin, In-situ coating TiO2 surface by plant-inspired tannic acid for fabrication of thin film nanocomposite nanofiltration membranes toward enhanced separation and antibacterial performance, Journal of Colloid and Interface Science. 572 (2020) 114–121.
[23]Y. Ji, W. Qian, Y. Yu, Q. An, L. Liu, Y. Zhou, C. Gao, Recent developments in nanofiltration membranes based on nanomaterials, Chinese Journal of Chemical Engineering. 25 (2017) 1639–1652.
[24]P. Vandezande, L.E.M. Gevers, I.F.J. Vankelecom, Solvent resistant nanofiltration: separating on a molecular level, Chem. Soc. Rev. 37 (2008) 365–405.
[25]H.P. Hsieh, Inorganic Membranes for Separation and Reaction, Elsevier, 1996.
[26]R. Bhave, Inorganic Membranes Synthesis, Characteristics and Applications: Synthesis, characteristics, and applications, Springer Science & Business Media, 2012.
[27]A.J. Burggraaf, L. Cot, Fundamentals of Inorganic Membrane Science and Technology, Elsevier, 1996.
[28]T. Tsuru, Inorganic Porous Membranes for Liquid Phase Separation, Separation and Purification Methods. 30 (2001) 191–220.
[29]M. Mulder, J. Mulder, Basic Principles of Membrane Technology, Springer Science & Business Media, 1996.
[30]T. Van Gestel, C. Vandecasteele, A. Buekenhoudt, C. Dotremont, J. Luyten, R. Leysen, B. Van der Bruggen, G. Maes, Alumina and titania multilayer membranes for nanofiltration: preparation, characterization and chemical stability, Journal of Membrane Science. 207 (2002) 73–89.
[31]X.-W. Liu, Y. Cao, Y.-X. Li, Z.-L. Xu, Z. Li, M. Wang, X.-H. Ma, High-performance polyamide/ceramic hollow fiber TFC membranes with TiO2 interlayer for pervaporation dehydration of isopropanol solution, Journal of Membrane Science. 576 (2019) 26–35.
[32]T. Tsuru, Nano/subnano-tuning of porous ceramic membranes for molecular separation, J Sol-Gel Sci Technol. 46 (2008) 349–361.
[33]J. Ren, J.R. McCutcheon, Polyacrylonitrile supported thin film composite hollow fiber membranes for forward osmosis, Desalination. 372 (2015) 67–74.
[34]J. Ren, M.R. Chowdhury, J. Qi, L. Xia, B.D. Huey, J.R. McCutcheon, Relating osmotic performance of thin film composite hollow fiber membranes to support layer surface pore size, Journal of Membrane Science. 540 (2017) 344–353.
[35]Y. Zhou, S. Yu, M. Liu, C. Gao, Preparation and characterization of polyamide-urethane thin-film composite membranes, Desalination. 180 (2005) 189–196.
[36]J. Ji, M. Mehta, Mathematical model for the formation of thin-film composite hollow fiber and tubular membranes by interfacial polymerization, Journal of Membrane Science. 192 (2001) 41–54.
[37]A. Prakash Rao, S.V. Joshi, J.J. Trivedi, C.V. Devmurari, V.J. Shah, Structure–performance correlation of polyamide thin film composite membranes: effect of coating conditions on film formation, Journal of Membrane Science. 211 (2003) 13–24.
[38]A.L. Ahmad, B.S. Ooi, Properties–performance of thin film composites membrane: study on trimesoyl chloride content and polymerization time, Journal of Membrane Science. 255 (2005) 67–77.
[39]X.-Z. Wei, L.-P. Zhu, H.-Y. Deng, Y.-Y. Xu, B.-K. Zhu, Z.-M. Huang, New type of nanofiltration membrane based on crosslinked hyperbranched polymers, Journal of Membrane Science. 323 (2008) 278–287.
[40]C. Guizard, A. Ayral, A. Julbe, Potentiality of organic solvents filtration with ceramic membranes. A comparison with polymer membranes, Desalination. 147 (2002) 275–280.
[41]S. Lee, J. Cho, Comparison of ceramic and polymeric membranes for natural organic matter (NOM) removal, Desalination. 160 (2004) 223–232.
[42]A. Alem, H. Sarpoolaky, M. Keshmiri, Titania ultrafiltration membrane: Preparation, characterization and photocatalytic activity, Journal of the European Ceramic Society. 29 (2009) 629–635.
[43]R. Weber, H. Chmiel, V. Mavrov, Characteristics and application of new ceramic nanofiltration membranes, Desalination. 157 (2003) 113–125.
[44]J. Galuszka, R.N. Pandey, S. Ahmed, Methane conversion to syngas in a palladium membrane reactor, Catalysis Today. 46 (1998) 83–89.
[45]J.N. Keuler, L. Lorenzen, The dehydrogenation of 2-butanol in a Pd–Ag membrane reactor, Journal of Membrane Science. 202 (2002) 17–26.
[46]H.W.J.P. Neomagus, G. Saracco, H.F.W. Wessel, G.F. Versteeg, The catalytic combustion of natural gas in a membrane reactor with separate feed of reactants, Chemical Engineering Journal. 77 (2000) 165–177.
[47]A. Julbe, D. Farrusseng, C. Guizard, Porous ceramic membranes for catalytic reactors — overview and new ideas, Journal of Membrane Science. 181 (2001) 3–20.
[48]B.F.K. Kingsbury, K. Li, A morphological study of ceramic hollow fibre membranes, Journal of Membrane Science. 328 (2009) 134–140.
[49]L. Xia, J. Ren, M. Weyd, J.R. McCutcheon, Ceramic-supported thin film composite membrane for organic solvent nanofiltration, Journal of Membrane Science. 563 (2018) 857–863.
[50]L. Xia, J.R. McCutcheon, Understanding the influence of solvents on the intrinsic properties and performance of polyamide thin film composite membranes, Separation and Purification Technology. 238 (2020) 116398.
[51]M. Lee, Z. Wu, R. Wang, K. Li, Micro-structured alumina hollow fibre membranes – Potential applications in wastewater treatment, Journal of Membrane Science. 461 (2014) 39–48.
[52]S. LOEB, S. SOURIRAJAN, Sea Water Demineralization by Means of an Osmotic Membrane, in: Saline Water Conversion—II, AMERICAN CHEMICAL SOCIETY, 1963: pp. 117–132.
[53]K. Li, Ceramic Membranes for Separation and Reaction, John Wiley & Sons, 2007.
[54]X. Zhang, D.K. Wang, D.R.S. Lopez, J.C. Diniz da Costa, Fabrication of nanostructured TiO2 hollow fiber photocatalytic membrane and application for wastewater treatment, Chemical Engineering Journal. 236 (2014) 314–322.
[55]S. Liu, K. Li, Preparation TiO2/Al2O3 composite hollow fibre membranes, Journal of Membrane Science. 218 (2003) 269–277.
[56]B.F.K. Kingsbury, Z. Wu, K. Li, A morphological study of ceramic hollow fibre membranes: A perspective on multifunctional catalytic membrane reactors, Catalysis Today. 156 (2010) 306–315.
[57]N. Abdullah, M.A. Rahman, M.H.D. Othman, A.F. Ismail, J. Jaafar, A.A. Aziz, Preparation and characterization of self-cleaning alumina hollow fiber membrane using the phase inversion and sintering technique, Ceramics International. 42 (2016) 12312–12322.
[58]Y. Song, P. Sun, L.L. Henry, B. Sun, Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process, Journal of Membrane Science. 251 (2005) 67–79.
[59]A.K. Ghosh, B.-H. Jeong, X. Huang, E.M.V. Hoek, Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties, Journal of Membrane Science. 311 (2008) 34–45.
[60]J.Y. Xiong, Z.L. Cheng, C.F. Wan, S.C. Chen, T.-S. Chung, Analysis of flux reduction behaviors of PRO hollow fiber membranes: Experiments, mechanisms, and implications, Journal of Membrane Science. 505 (2016) 1–14.
[61]C.Y. Tang, Y.-N. Kwon, J.O. Leckie, Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and XPS characterization of polyamide and coating layer chemistry, Desalination. 242 (2009) 149–167.
[62]C.Y. Tang, Y.-N. Kwon, J.O. Leckie, Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers, Desalination. 242 (2009) 168–182.
[63]C.Y. Tang, Y.-N. Kwon, J.O. Leckie, Probing the nano- and micro-scales of reverse osmosis membranes—A comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements, Journal of Membrane Science. 287 (2007) 146–156.
[64]X.-H. Ma, Z.-K. Yao, Z. Yang, H. Guo, Z.-L. Xu, C.Y. Tang, M. Elimelech, Nanofoaming of Polyamide Desalination Membranes To Tune Permeability and Selectivity, Environ. Sci. Technol. Lett. 5 (2018) 123–130.
[65]Z. Yang, H. Guo, C.Y. Tang, The upper bound of thin-film composite (TFC) polyamide membranes for desalination, Journal of Membrane Science. 590 (2019) 117297.
[66]J.H. Kim, E.J. Moon, C.K. Kim, Composite membranes prepared from poly(m-animostyrene-co-vinyl alcohol) copolymers for the reverse osmosis process, Journal of Membrane Science. 216 (2003) 107–120.
[67]Y. Li, Y. Su, J. Li, X. Zhao, R. Zhang, X. Fan, J. Zhu, Y. Ma, Y. Liu, Z. Jiang, Preparation of thin film composite nanofiltration membrane with improved structural stability through the mediation of polydopamine, Journal of Membrane Science. 476 (2015) 10–19.
[68]Y.-C. Chiang, Y.-Z. Hsub, R.-C. Ruaan, C.-J. Chuang, K.-L. Tung, Nanofiltration membranes synthesized from hyperbranched polyethyleneimine, Journal of Membrane Science. 326 (2009) 19–26.
[69]Z. Yang, X. Huang, J. Wang, C.Y. Tang, Novel polyethyleneimine/TMC-based nanofiltration membrane prepared on a polydopamine coated substrate, Front. Chem. Sci. Eng. 12 (2018) 273–282.
[70]L. Li, S. Zhang, X. Zhang, G. Zheng, Polyamide thin film composite membranes prepared from 3,4′,5-biphenyl triacyl chloride, 3,3′,5,5′-biphenyl tetraacyl chloride and m-phenylenediamine, Journal of Membrane Science. 289 (2007) 258–267.
[71]W. Choi, S. Jeon, S.J. Kwon, H. Park, Y.-I. Park, S.-E. Nam, P.S. Lee, J.S. Lee, J. Choi, S. Hong, E.P. Chan, J.-H. Lee, Thin film composite reverse osmosis membranes prepared via layered interfacial polymerization, Journal of Membrane Science. 527 (2017) 121–128.
[72]J. Wei, X. Liu, C. Qiu, R. Wang, C.Y. Tang, Influence of monomer concentrations on the performance of polyamide-based thin film composite forward osmosis membranes, Journal of Membrane Science. 381 (2011) 110–117.
[73]F. Yang, S. Zhang, D. Yang, X. Jian, Preparation and characterization of polypiperazine amide/PPESK hollow fiber composite nanofiltration membrane, Journal of Membrane Science. 301 (2007) 85–92.
[74]M. Liu, S. Yu, J. Tao, C. Gao, Preparation, structure characteristics and separation properties of thin-film composite polyamide-urethane seawater reverse osmosis membrane, Journal of Membrane Science. 325 (2008) 947–956.
[75]W. Wang, G. Li, One-step fabrication of high selective hollow fiber nanofiltration membrane module, Fibers Polym. 11 (2010) 1041–1048.
[76]M. Fathizadeh, A. Aroujalian, A. Raisi, Effect of lag time in interfacial polymerization on polyamide composite membrane with different hydrophilic sub layers, Desalination. 284 (2012) 32–41.
[77]V. Freger, Kinetics of Film Formation by Interfacial Polycondensation, Langmuir. 21 (2005) 1884–1894.
[78]W. Xie, G.M. Geise, B.D. Freeman, H.-S. Lee, G. Byun, J.E. McGrath, Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine, Journal of Membrane Science. 403–404 (2012) 152–161.
[79]C. Wu, S. Zhang, D. Yang, X. Jian, Preparation, characterization and application of a novel thermal stable composite nanofiltration membrane, Journal of Membrane Science. 326 (2009) 429–434.
[80]Z. Yang, Y. Wu, H. Guo, X.-H. Ma, C.-E. Lin, Y. Zhou, B. Cao, B.-K. Zhu, K. Shih, C.Y. Tang, A novel thin-film nano-templated composite membrane with in situ silver nanoparticles loading: Separation performance enhancement and implications, Journal of Membrane Science. 544 (2017) 351–358.
[81]R. Zhang, S. Yu, W. Shi, J. Zhu, B. Van der Bruggen, Support membrane pore blockage (SMPB): An important phenomenon during the fabrication of thin film composite membrane via interfacial polymerization, Separation and Purification Technology. 215 (2019) 670–680.
[82]L. Zhao, W.S.W. Ho, Novel reverse osmosis membranes incorporated with a hydrophilic additive for seawater desalination, Journal of Membrane Science. 455 (2014) 44–54.
[83]X. Ma, Z. Yang, Z. Yao, H. Guo, Z. Xu, C.Y. Tang, Tuning roughness features of thin film composite polyamide membranes for simultaneously enhanced permeability, selectivity and anti-fouling performance, Journal of Colloid and Interface Science. 540 (2019) 382–388.
[84]B. Tang, Z. Huo, P. Wu, Study on a novel polyester composite nanofiltration membrane by interfacial polymerization of triethanolamine (TEOA) and trimesoyl chloride (TMC): I. Preparation, characterization and nanofiltration properties test of membrane, Journal of Membrane Science. 320 (2008) 198–205.
[85]A. Rahimpour, M. Jahanshahi, M. Peyravi, S. Khalili, Interlaboratory studies of highly permeable thin-film composite polyamide nanofiltration membrane, Polymers for Advanced Technologies. 23 (2012) 884–893.
[86]B. Khorshidi, T. Thundat, D. Pernitsky, M. Sadrzadeh, A parametric study on the synergistic impacts of chemical additives on permeation properties of thin film composite polyamide membrane, Journal of Membrane Science. 535 (2017) 248–257.
[87]S. Hermans, H. Mariën, E. Dom, R. Bernstein, I.F.J. Vankelecom, Simplified synthesis route for interfacially polymerized polyamide membranes, Journal of Membrane Science. 451 (2014) 148–156.
[88]X. Hao, S. Gao, J. Tian, Y. Sun, F. Cui, C.Y. Tang, Calcium-Carboxyl Intrabridging during Interfacial Polymerization: A Novel Strategy to Improve Antifouling Performance of Thin Film Composite Membranes, Environ. Sci. Technol. 53 (2019) 4371–4379.
[89]S.H. Kim, S.-Y. Kwak, T. Suzuki, Positron Annihilation Spectroscopic Evidence to Demonstrate the Flux-Enhancement Mechanism in Morphology-Controlled Thin-Film-Composite (TFC) Membrane, Environ. Sci. Technol. 39 (2005) 1764–1770.
[90]Y.-J. Tang, L.-J. Wang, Z.-L. Xu, Y.-M. Wei, H. Yang, Novel high-flux thin film composite nanofiltration membranes fabricated by the NaClO pre-oxidation of the mixed diamine monomers of PIP and BHTTM in the aqueous phase solution, Journal of Membrane Science. 502 (2016) 106–115.
[91]C. Kong, M. Kanezashi, T. Yamomoto, T. Shintani, T. Tsuru, Controlled synthesis of high performance polyamide membrane with thin dense layer for water desalination, Journal of Membrane Science. 362 (2010) 76–80.
[92]Y. Zhang, X. Miao, G. Pan, H. Shi, H. Yan, J. Xu, M. Guo, S. Li, Y. Zhang, Y. Liu, Highly improved permeation property of thin-film-composite polyamide membrane for water desalination, J Polym Res. 24 (2016) 5.
[93]E. Maaskant, P. de Wit, N.E. Benes, Direct interfacial polymerization onto thin ceramic hollow fibers, Journal of Membrane Science. 550 (2018) 296–301.
[94]Y.-X. Li, Y. Cao, M. Wang, Z.-L. Xu, H.-Z. Zhang, X.-W. Liu, Z. Li, Novel high-flux polyamide/TiO2 composite nanofiltration membranes on ceramic hollow fibre substrates, Journal of Membrane Science. 565 (2018) 322–330.
[95]Y. Cai, Y. Wang, X. Chen, M. Qiu, Y. Fan, Modified colloidal sol–gel process for fabrication of titania nanofiltration membranes with organic additives, Journal of Membrane Science. 476 (2015) 432–441.
[96]S. Anisah, M. Kanezashi, H. Nagasawa, T. Tsuru, TiO2-ZrO2 membranes of controlled pore sizes with different Ti/Zr ratios for nanofiltration, J Sol-Gel Sci Technol. 92 (2019) 12–24.
[97]M. Zhang, J. Sun, Y. Mao, G. Liu, W. Jin, Effect of substrate on formation and nanofiltration performance of graphene oxide membranes, Journal of Membrane Science. 574 (2019) 196–204.
[98]M. Tian, C. Qiu, Y. Liao, S. Chou, R. Wang, Preparation of polyamide thin film composite forward osmosis membranes using electrospun polyvinylidene fluoride (PVDF) nanofibers as substrates, Separation and Purification Technology. 118 (2013) 727–736.
[99]A.K. Ghosh, E.M.V. Hoek, Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes, Journal of Membrane Science. 336 (2009) 140–148.
[100] N. Misdan, W.J. Lau, A.F. Ismail, T. Matsuura, Formation of thin film composite nanofiltration membrane: Effect of polysulfone substrate characteristics, Desalination. 329 (2013) 9–18.
[101] X. Li, Q. Li, W. Fang, R. Wang, W.B. Krantz, Effects of the support on the characteristics and permselectivity of thin film composite membranes, Journal of Membrane Science. 580 (2019) 12–23.
[102] L. Huang, J.R. McCutcheon, Impact of support layer pore size on performance of thin film composite membranes for forward osmosis, Journal of Membrane Science. 483 (2015) 25–33.
[103] J.G. Wijmans, P. Hao, Influence of the porous support on diffusion in composite membranes, Journal of Membrane Science. 494 (2015) 78–85.
[104] Y. Yabuno, K. Mihara, K. Komatsu, S. Shimamura, K. Nakagawa, T. Shintani, H. Matsuyama, T. Yoshioka, Preparation of Polyamide Thin-Film Composite Membranes Using Hydrophilic Hollow Fiber PVDF via the TIPS Process Modified by PVA Diffusion, Ind. Eng. Chem. Res. 58 (2019) 21691–21699.
[105] J.R. McCutcheon, M. Elimelech, Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes, Journal of Membrane Science. 318 (2008) 458–466.
[106] B. Yan, S. Liu, Y. Heng, Nano-oxide thin films deposited via atomic layer deposition on microchannel plates, Nanoscale Research Letters. 10 (2015) 162.
[107] R.-C. Fang, Q.-Q. Sun, P. Zhou, W. Yang, P.-F. Wang, D.W. Zhang, High-performance bilayer flexible resistive random access memory based on low-temperature thermal atomic layer deposition, Nanoscale Res Lett. 8 (2013) 92.
[108] C. Sun, R. Zeng, J. Zhang, Z.-J. Qiu, D. Wu, Effects of UV-Ozone Treatment on Sensing Behaviours of EGFETs with Al2O3 Sensing Film, Materials (Basel). 10 (2017).
[109] L. Shi, S.R. Chou, R. Wang, W.X. Fang, C.Y. Tang, A.G. Fane, Effect of substrate structure on the performance of thin-film composite forward osmosis hollow fiber membranes, Journal of Membrane Science. 382 (2011) 116–123.
[110] Y. Wang, T. Xu, Anchoring hydrophilic polymer in substrate: An easy approach for improving the performance of TFC FO membrane, Journal of Membrane Science. 476 (2015) 330–339.
[111] S. Lim, V.H. Tran, N. Akther, S. Phuntsho, H.K. Shon, Defect-free outer-selective hollow fiber thin-film composite membranes for forward osmosis applications, Journal of Membrane Science. 586 (2019) 281–291.
[112] X. Kong, Z.-L. Qiu, C.-E. Lin, Y.-Z. Song, B.-K. Zhu, L.-P. Zhu, X.-Z. Wei, High permselectivity hyperbranched polyester/polyamide ultrathin films with nanoscale heterogeneity, J. Mater. Chem. A. 5 (2017) 7876–7884.
[113] X. Chen, W. Zhang, Y. Lin, Y. Cai, M. Qiu, Y. Fan, Preparation of high-flux gamma-alumina nanofiltration membranes by using a modified sol-gel method, Microporous Mesoporous Mat. 214 (2015) 195–203.
[114] Z. Wang, Y.-M. Wei, Z.-L. Xu, Y. Cao, Z.-Q. Dong, X.-L. Shi, Preparation, characterization and solvent resistance of γ-Al2O3/α-Al2O3 inorganic hollow fiber nanofiltration membrane, Journal of Membrane Science. 503 (2016) 69–80.
[115] H. Chen, X. Jia, M. Wei, Y. Wang, Ceramic tubular nanofiltration membranes with tunable performances by atomic layer deposition and calcination, Journal of Membrane Science. 528 (2017) 95–102.
[116] R. Shang, A. Goulas, C.Y. Tang, X. de Frias Serra, L.C. Rietveld, S.G.J. Heijman, Atmospheric pressure atomic layer deposition for tight ceramic nanofiltration membranes: Synthesis and application in water purification, Journal of Membrane Science. 528 (2017) 163–170.
[117] N.F.D. Aba, J.Y. Chong, B. Wang, C. Mattevi, K. Li, Graphene oxide membranes on ceramic hollow fibers – Microstructural stability and nanofiltration performance, Journal of Membrane Science. 484 (2015) 87–94.
[118] J.Y. Chong, N.F.D. Aba, B. Wang, C. Mattevi, K. Li, UV-Enhanced Sacrificial Layer Stabilised Graphene Oxide Hollow Fibre Membranes for Nanofiltration, Scientific Reports. 5 (2015) 15799.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊