|
1.Hunter, R.J., Foundations of colloid science. 2001: Oxford university press. 2.Laidler, K., J. Meiser, and B. Sanctuary, Physical Chemistry. 2003. 3.Masliyah, J.H. and S. Bhattacharjee, Electrokinetic and colloid transport phenomena. 2006: John Wiley & Sons. 4.Derjaguin, B.v. and L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Progress in Surface Science, 1993. 43(1-4): p. 30-59. 5.Verwey, E.J.W., Theory of the stability of lyophobic colloids: the interaction of sol particles having an electric double layer. 1962. 6.Helmholtz, H.v., Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierisch‐elektrischen Versuche (Schluss.). Annalen der Physik, 1853. 165(7): p. 353-377. 7.Gouy, M., Sur la constitution de la charge électrique à la surface d'un électrolyte. 1910. 8.Chapman, D.L., LI. A contribution to the theory of electrocapillarity. The London, Edinburgh, and Dublin philosophical magazine and journal of science, 1913. 25(148): p. 475-481. 9.Stern, O., The theory of the electrolytic double-layer. Z. Elektrochem, 1924. 30(508): p. 1014-1020. 10.Shaw, D., The colloidal state. 1992, Butterworth-Heinemann: Oxford. p. 1-20. 11.Joshi, M.D. and J.L. Anderson, Recent advances of ionic liquids in separation science and mass spectrometry. Rsc Advances, 2012. 2(13): p. 5470-5484. 12.Gabriel, S. and J. Weiner, On some derivatives of propylamines. Ber. Dtsch. Chem. Ges, 1888. 21: p. 2669-2679. 13.Walden, P., Molecular weights and electrical conductivity of several fused salts. Bull. Acad. Imper. Sci.(St. Petersburg), 1914. 1800. 14.Wilkes, J.S. and M.J. Zaworotko, Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Journal of the Chemical Society, Chemical Communications, 1992(13): p. 965-967. 15.Berthod, A., M.J. Ruiz-Angel, and S. Carda-Broch, Ionic liquids in separation techniques. J Chromatogr A, 2008. 1184(1-2): p. 6-18. 16.Rogers, R.D. and K.R. Seddon, Ionic liquids--solvents of the future? Science, 2003. 302(5646): p. 792-793. 17.Endres, F., Ionic liquids: solvents for the electrodeposition of metals and semiconductors. ChemPhysChem, 2002. 3(2): p. 144-154. 18.Vekariya, R.L., A review of ionic liquids: Applications towards catalytic organic transformations. Journal of Molecular Liquids, 2017. 227: p. 44-60. 19.Seddon, K.R., Ionic liquids for clean technology. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology, 1997. 68(4): p. 351-356. 20.Egorova, K.S., E.G. Gordeev, and V.P. Ananikov, Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chemical Reviews, 2017. 117(10): p. 7132-7189. 21.Osada, I., et al., Ionic‐liquid‐based polymer electrolytes for battery applications. Angewandte Chemie International Edition, 2016. 55(2): p. 500-513. 22.Watanabe, M., et al., Application of ionic liquids to energy storage and conversion materials and devices. Chemical reviews, 2017. 117(10): p. 7190-7239. 23.Besra, L. and M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in materials science, 2007. 52(1): p. 1-61. 24.Endres, F., et al., Electrodeposition of nanocrystalline metals and alloys from ionic liquids. Angewandte Chemie International Edition, 2003. 42(29): p. 3428-3430. 25.Sarkar, P. and P.S. Nicholson, Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. Journal of the American Ceramic Society, 1996. 79(8): p. 1987-2002. 26.Sun, P. and D.W. Armstrong, Ionic liquids in analytical chemistry. Analytica Chimica Acta, 2010. 661(1): p. 1-16. 27.Tang, S., et al., Recent advances of ionic liquids and polymeric ionic liquids in capillary electrophoresis and capillary electrochromatography. Journal of Chromatography A, 2014. 1357: p. 147-157. 28.Qin, W. and S.F.Y. Li, Electrophoresis of DNA in ionic liquid coated capillary. Analyst, 2003. 128(1): p. 37-41. 29.Jiang, T.-F., et al., Dynamically coating the capillary with 1-alkyl-3-methylimidazolium-based ionic liquids for separation of basic proteins by capillary electrophoresis. Analytica chimica acta, 2003. 479(2): p. 249-254. 30.Wu, X., et al., Simultaneous separation of basic and acidic proteins using 1‐butyl‐3‐methylimidazolium‐based ion liquid as dynamic coating and background electrolyte in capillary electrophoresis. Electrophoresis, 2008. 29(11): p. 2356-2362. 31.Yanes, E.G., et al., Capillary electrophoretic application of 1-alkyl-3-methylimidazolium-based ionic liquids. Analytical chemistry, 2001. 73(16): p. 3838-3844. 32.Zhou, C., et al., β‐cyclodextrin‐ionic liquid polymer based dynamically coating for simultaneous determination of tetracyclines by capillary electrophoresis. Electrophoresis, 2017. 38(7): p. 1060-1067. 33.Deeb, S.E., M.A. Iriban, and R. Gust, MEKC as a powerful growing analytical technique. Electrophoresis, 2011. 32(1): p. 166-183. 34.Lewis, A., et al., Review on the development of truly portable and in-situ capillary electrophoresis systems. Measurement Science and Technology, 2013. 24(4): p. 042001. 35.Wahl, J. and U. Holzgrabe, Capillary electrophoresis separation of phenethylamine enantiomers using amino acid based ionic liquids. Journal of pharmaceutical and biomedical analysis, 2018. 148: p. 245-250. 36.Mwongela, S.M., et al., Separation of achiral and chiral analytes using polymeric surfactants with ionic liquids as modifiers in micellar electrokinetic chromatography. Analytical chemistry, 2003. 75(22): p. 6089-6096. 37.Mwongela, S.M., et al., A comparison of ionic liquids to molecular organic solvents as additives for chiral separations in micellar electrokinetic chromatography. Journal of separation science, 2007. 30(9): p. 1334-1342. 38.Terabe, S., et al., Electrokinetic separations with micellar solutions and open-tubular capillaries. Analytical chemistry, 1984. 56(1): p. 111-113. 39.Tian, K., et al., Separation and determination of lignans from seeds of Schisandra species by micellar electrokinetic capillary chromatography using ionic liquid as modifier. Journal of Chromatography A, 2005. 1078(1-2): p. 181-187. 40.Vaher, M., M. Koel, and M. Kaljurand, Non-aqueous capillary electrophoresis in acetonitrile using lonic-liquid buffer electrolytes. Chromatographia, 2001. 53(1): p. S302-S306. 41.Vaher, M., M. Koel, and M. Kaljurand, Application of 1-alkyl-3-methylimidazolium-based ionic liquids in non-aqueous capillary electrophoresis. Journal of Chromatography A, 2002. 979(1-2): p. 27-32. 42.Vaher, M., M. Koel, and M. Kaljurand, Ionic liquids as electrolytes for nonaqueous capillary electrophoresis. Electrophoresis, 2002. 23(3): p. 426-430. 43.Brooks, N.J., et al., Linking the structures, free volumes, and properties of ionic liquid mixtures. Chemical science, 2017. 8(9): p. 6359-6374. 44.Smoluchowski, M., An experiment on mathematical theorization of coagulation kinetics of the colloidal solutions. Zeitschrift fur physikalisch Chemie, 1917. 92: p. 129-168. 45.Wuzhang, J., et al., Electrophoretic mobility of oil droplets in electrolyte and surfactant solutions. Electrophoresis, 2015. 36(19): p. 2489-2497. 46.Öncü-Kaya, E.M., et al., Determination of DNA in certain Salvia species by capillary gel electrophoresis. Journal of Liquid Chromatography & Related Technologies, 2015. 38(14): p. 1417-1425. 47.Hückel, E., The cataphoresis of the sphere. Phys. Z, 1924. 25: p. 204-210. 48.Henry, D., The cataphoresis of suspended particles. Part I.—The equation of cataphoresis. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1931. 133(821): p. 106-129. 49.Overbeek, J.T.G., Quantitative interpretation of the electrophoretic velocity of colloids. Advances in Colloid Science, 1950. 3: p. 797-823. 50.Booth, F., The cataphoresis of spherical, solid non-conducting particles in a symmetrical electrolyte. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1950. 203(1075): p. 514-533. 51.Wiersema, P., A. Loeb, and J.T.G. Overbeek, Calculation of the electrophoretic mobility of a spherical colloid particle. Journal of Colloid and Interface Science, 1966. 22(1): p. 78-99. 52.O'Brien, R.W. and L.R. White, Electrophoretic mobility of a spherical colloidal particle. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1978. 74: p. 1607-1626. 53.Bikerman, J., XXXIX. Structure and capacity of electrical double layer. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1942. 33(220): p. 384-397. 54.Borukhov, I., D. Andelman, and H. Orland, Steric effects in electrolytes: A modified Poisson-Boltzmann equation. Physical review letters, 1997. 79(3): p. 435. 55.Kékicheff, P., et al., Charge reversal seen in electrical double layer interaction of surfaces immersed in 2: 1 calcium electrolyte. The Journal of chemical physics, 1993. 99(8): p. 6098-6113. 56.Ise, N., Long‐range electrostatic attraction between macroions mediated by oppositely charged counterions: Experimental supports, past and present. Berichte der Bunsengesellschaft für physikalische Chemie, 1996. 100(6): p. 841-848. 57.Greberg, H. and R. Kjellander, Charge inversion in electric double layers and effects of different sizes for counterions and coions. The Journal of chemical physics, 1998. 108(7): p. 2940-2953. 58.Grosberg, A.Y., T. Nguyen, and B. Shklovskii, Colloquium: the physics of charge inversion in chemical and biological systems. Reviews of modern physics, 2002. 74(2): p. 329. 59.Levin, Y., Electrostatic correlations: from plasma to biology. Reports on progress in physics, 2002. 65(11): p. 1577. 60.Lyklema, J., Overcharging, charge reversal: chemistry or physics? Colloids and surfaces A: physicochemical and engineering aspects, 2006. 291(1-3): p. 3-12. 61.Mezger, M., et al., Molecular layering of fluorinated ionic liquids at a charged sapphire (0001) surface. Science, 2008. 322(5900): p. 424-428. 62.Kondrat, S. and A. Kornyshev, Superionic state in double-layer capacitors with nanoporous electrodes. Journal of Physics: Condensed Matter, 2010. 23(2): p. 022201. 63.Kilic, M.S., M.Z. Bazant, and A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Physical review E, 2007. 75(2): p. 021502. 64.Kilic, M.S., M.Z. Bazant, and A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Physical review E, 2007. 75(2): p. 021503. 65.Kornyshev, A.A., Double-layer in ionic liquids: paradigm change? 2007, ACS Publications. 66.Bazant, M.Z., B.D. Storey, and A.A. Kornyshev, Double layer in ionic liquids: Overscreening versus crowding. Physical Review Letters, 2011. 106(4): p. 046102. 67.Horng, T.-L., P.-H. Tsai, and T.-C. Lin, Modification of Bikerman model with specific ion sizes. Computational and Mathematical Biophysics, 2017. 5(1): p. 142-149. 68.Manciu, M. and E. Ruckenstein, Lattice site exclusion effect on the double layer interaction. Langmuir, 2002. 18(13): p. 5178-5185. 69.Kjellander, R., et al., Double layer interactions in mono‐and divalent electrolytes: A comparison of the anisotropic HNC theory and Monte Carlo simulations. The Journal of Chemical Physics, 1992. 97(2): p. 1424-1431. 70.Henderson, D., L. Blum, and W.R. Smith, Application of the hypernetted chain approximation to the electric double layer at a charged planar interface. Chemical Physics Letters, 1979. 63(2): p. 381-383. 71.Rosenfeld, Y., Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Physical review letters, 1989. 63(9): p. 980. 72.Kierlik, E. and M. Rosinberg, Density-functional theory for inhomogeneous fluids: adsorption of binary mixtures. Physical Review A, 1991. 44(8): p. 5025. 73.Rosenfeld, Y., Free energy model for inhomogeneous fluid mixtures: Yukawa‐charged hard spheres, general interactions, and plasmas. The Journal of chemical physics, 1993. 98(10): p. 8126-8148. 74.Roth, R., Fundamental measure theory for hard-sphere mixtures: a review. Journal of Physics: Condensed Matter, 2010. 22(6): p. 063102. 75.Roth, R. and D. Gillespie, Shells of charge: a density functional theory for charged hard spheres. Journal of Physics: Condensed Matter, 2016. 28(24): p. 244006. 76.Outhwaite, C.W. and L.B. Bhuiyan, An improved modified Poisson–Boltzmann equation in electric-double-layer theory. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1983. 79(5): p. 707-718. 77.Lee, A.A., et al., Are room-temperature ionic liquids dilute electrolytes? The journal of physical chemistry letters, 2015. 6(1): p. 159-163. 78.Kuhn, P.S., Y. Levin, and M.C. Barbosa, Charge inversion in DNA–amphiphile complexes: possible application to gene therapy. Physica A: Statistical Mechanics and its Applications, 1999. 274(1-2): p. 8-18. 79.Kharkats, Y.I., A. Kornyshev, and M. Vorotyntsev, Electrostatic models in the theory of solutions. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1976. 72: p. 361-371. 80.Kornyshev, A., A. Rubinshtein, and M.A. Vorotyntsev, Model nonlocal electrostatics. I. Journal of Physics C: Solid State Physics, 1978. 11(15): p. 3307. 81.Vorotyntsev, M., Model nonlocal electrostatics. II. Spherical interface. Journal of Physics C: Solid State Physics, 1978. 11(15): p. 3323. 82.Hildebrandt, A., et al., Novel formulation of nonlocal electrostatics. Physical review letters, 2004. 93(10): p. 108104. 83.Santangelo, C.D., Computing counterion densities at intermediate coupling. Physical Review E, 2006. 73(4): p. 041512. 84.Hatlo, M.M. and L. Lue, Electrostatic interactions of charged bodies from the weak-to the strong-coupling regime. EPL (Europhysics Letters), 2010. 89(2): p. 25002. 85.Zhao, H., Diffuse-charge dynamics of ionic liquids in electrochemical systems. Physical Review E, 2011. 84(5): p. 051504. 86.Moon, G.J., M.M. Ahn, and I.S. Kang, Osmotic pressure of ionic liquids in an electric double layer: Prediction based on a continuum model. Physical Review E, 2015. 92(6): p. 063020. 87.Santos, M.S., E.C. Biscaia, and F.W. Tavares, Effect of electrostatic correlations on micelle formation A Physicochemical and engineering aspects. 2017. 88.de Souza, J.P. and M.Z. Bazant, Continuum theory of electrostatic correlations at charged surfaces. arXiv preprint arXiv:1902.05493, 2019. 89.Storey, B.D. and M.Z. Bazant, Effects of electrostatic correlations on electrokinetic phenomena. Physical Review E, 2012. 86(5): p. 056303. 90.Stout, R.F. and A.S. Khair, A continuum approach to predicting electrophoretic mobility reversals. Journal of Fluid Mechanics, 2014. 752. 91.Stout, R.F. and A.S. Khair, Influence of ion sterics on diffusiophoresis and electrophoresis in concentrated electrolytes. Physical Review Fluids, 2017. 2(1): p. 014201. 92.Wang, C., et al., Modeling electrokinetics in ionic liquids. Electrophoresis, 2017. 38(13-14): p. 1693-1705. 93.López-García, J., M. Aranda-Rascón, and J. Horno, Excluded volume effect on the electrophoretic mobility of colloidal particles. Journal of colloid and interface science, 2008. 323(1): p. 146-152. 94.Khair, A.S. and T.M. Squires, Ion steric effects on electrophoresis of a colloidal particle. Journal of Fluid Mechanics, 2009. 640: p. 343-356. 95.Semenov, I., et al., Electrophoretic mobility and charge inversion of a colloidal particle studied by single-colloid electrophoresis and molecular dynamics simulations. Physical Review E, 2013. 87(2): p. 022302. 96.Lee, E., Theory of Electrophoresis and Diffusiophoresis of Highly Charged Colloidal Particles. 2018: Academic Press. 97.Jackson, J.D., Classical electrodynamics. 2007: John Wiley & Sons. 98.Bird, R.B., W.E. Stewart, and E.N. Lightfoot, Transport Phenomena. 2006: John Wiley & Sons. 99.Happel, J. and H. Brenner, Low Reynolds number hydrodynamics: with special applications to particulate media. Vol. 1. 2012: Springer Science & Business Media. 100.Kuwabara, S., The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. Journal of the physical society of Japan, 1959. 14(4): p. 527-532. 101.Zaitsev, V.F. and A.D. Polyanin, Handbook of exact solutions for ordinary differential equations. 2002: CRC press. 102.Canuto, C., et al., Spectral methods in fluid dynamics. 2012: Springer Science & Business Media. 103.He, Y.Y., E. Wu, and E. Lee, Electrophoresis in suspensions of charged porous spheres in salt-free media. Chemical Engineering Science, 2010. 65(20): p. 5507-5516. 104.Sarraute, S., M.F. Costa Gomes, and A.A. Pádua, Diffusion coefficients of 1-alkyl-3-methylimidazolium ionic liquids in water, methanol, and acetonitrile at infinite dilution. Journal of Chemical & Engineering Data, 2009. 54(9): p. 2389-2394. 105.Haynes, W.M., CRC handbook of chemistry and physics. 2014: CRC press. 106.Cahn, J.W. and J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. The Journal of chemical physics, 1958. 28(2): p. 258-267. 107.Nauman, E.B. and D.Q. He, Nonlinear diffusion and phase separation. Chemical Engineering Science, 2001. 56(6): p. 1999-2018. 108.Liu, J.-L., D. Xie, and B. Eisenberg, Poisson-Fermi formulation of nonlocal electrostatics in electrolyte solutions. Computational and Mathematical Biophysics, 2017. 5(1): p. 116-124. 109.Rowlinson, J., The Yukawa potential. Physica A: Statistical Mechanics and its Applications, 1989. 156(1): p. 15-34.
|