跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/27 08:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡孟佑
研究生(外文):Meng-Yu Tsai
論文名稱:球形膠體粒子於離子液體溶液中之電泳行爲
論文名稱(外文):Electrophoresis Phenomena of Spherical Rigid Colloidal Particles in Solutions containing Ionic Liquids
指導教授:李克強李克強引用關係
指導教授(外文):Eric Lee
口試委員:何彥穎鄭文立
口試委員(外文):Yan-Ying HeWen-Li Cheng
口試日期:2020-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:99
中文關鍵詞:電泳電雙層極化離子液體點電荷模型修正cell model
外文關鍵詞:electrophoresisdouble layer polarizationionic liquidmodified Poisson-Boltzmann equationcell model
DOI:10.6342/NTU202002863
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要討論密集硬球膠體粒子於離子液體溶液中之電泳行為,並比較其與單一系統間的異同。
離子液體於近期被廣泛應用於各領域。在電泳上的主要應用如塗佈毛細管電泳的管壁、作為毛細管電泳或微胞電泳的添加劑、非水相電泳之背景電解質或添加劑等。但由於會造成背景電流過強、黏度過高等問題,並不會被直接當作電泳的溶劑使用。
而離子液體由於離子體積較大、離子間交互作用力較強等特性,傳統上用以分析電動力學現象的點電荷模型將存在誤差:較大的體積將導致離子無法大量集中於帶電表面,進而使電雙層增厚,稱為離子體積效應;離子間交互作用力將使電位分布出現反轉,而非隨距離增加單調遞減,稱為電荷過度遮蔽效應。
本研究使用Bazant、Storey、Kornyshev (BSK)三人所提出之模型,引入平均離子體積分率ν和無因次靜電校正長度δ_c,進而將離子體積和離子間交互作用力納入考慮。此模型被廣泛用於電雙層結構模擬,近年來亦有學者應用此模型求出單一粒子時,薄電雙層、低表面帶電等極限條件下的電泳動度解析解。但離子液體在應用上的濃度數量級約為〖10〗^(-1)~〖10〗^2 mM,薄電雙層條件存在疑慮。本研究藉由數值方法解除前述的濃度限制,並利用cell model納入粒子間彼此的干擾,以期能對電雙層極化現象及其對電泳運動的影響有更深的了解。
研究結果顯示,離子體積效應和電荷過度遮蔽效應均在粒子表面電位較高時較為顯著。前者影響如:電位分布趨緩而增加電雙層厚度、放大高密集度時電雙層重疊效應的影響、增加擴散而削弱電雙層極化效應、降低離子間交互作用力的影響等。而後者影響則如:電位或電荷分布出現反轉層而增加電雙層厚度、使電泳動度往負向增加、使擾動電荷出現多層結構等。但在密集度增加時,受到電位反轉層重疊影響,電荷過度遮蔽效應的影響將被削弱。
This thesis investigates the electrophoresis behavior of spherical rigid colloidal particles in ionic liquid solutions, including the differences and similarities between single particle system and concentrated suspensions.
Recently ionic liquid has been used widely in various fields. The applications of electrophoresis are particularly of interest, such as coating on the wall of capillary electrophoresis, modifiers in capillary electrophoresis or microemulsion electrokinetic chromatography, background electrolyte or modifiers in non-aqueous electrophoresis. Note that ionic liquids themselves are not used directly as the solvent of electrophoresis in general, because this will lead to large background current and heavily viscous solutions.
Due to the large volume of ionic liquid ions and strong interaction between them, the point-charge model, which is traditionally used to analyze the electrokinetic phenomena, is no-longer suitable. The larger volume leads to a much dispersive distribution of ions, which is referred to as the steric effect. Moreover, the stronger interaction between ions will affect the original monotonically decreasing electric potential distribution and a layer with reversed electric potential may appear, which is referred to as the overscreening effect.
The modified model proposed by Bazant, Storey, and Kornyshev (BSK model) is used in this study. This model introduces mean volume fraction of ions (ν) and dimensionless electrostatic correlation length (δ_c) to take into account the steric and overscreening effects. It has been widely used in the analysis of the double layer structure. In the past decade, some researches start to use it in the derivations of analytical solutions of a single rigid particle electrophoretic mobility, under either thin double layer or low surface charge conditions. However, the order of ionic liquid concentration is about 〖10〗^(-1)~〖10〗^2 mM in practice, which may unjustify the adoption of the thin-double-layer assumption. This thesis uses numerical method to remove the constraint on concentration, and adopts the cell model to explore the interaction between particles in concentrated suspension in order to better understanding the double layer polarization in particular and electrophoresis phenomena in general.
According to the result, we found that the steric effect and overscreening effect are both more profound in high surface electric potential situations. The steric effect leads to an electric potential distribution smoother hence results in thicker double layer thicker, which in turn enhances the double layer overlapping effect at high particle concentrations as well as the diffusion rate which reduces the double layer polarization. Moreover, this also reduces the effects of interaction between ions, etc. The overscreening effect, on the other hand, induces reversed layers in electric potential and charge distributions, which results in a thicker double layer and may even reverse the direction of particle motion. Multi-layer structure in disturbance charge density distribution is also observed as a result. However, due to the overlapping of these charge-reversed multi-layers, overscreening effect will be reduced in the concentrated suspensions.
致謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 X
表目錄 XII
Chapter 1 緒論 1
1.1 膠體粒子與電雙層 1
1.2 離子液體簡介 2
1.3 電動力學理論文獻回顧 7
1.3.1 傳統電泳理論 7
1.3.2 離子體積效應(Steric effect) 9
1.3.3 電荷過度遮蔽效應(Overscreening effect) 10
1.3.4 離子體積效應及電荷過度遮蔽效應對電動力學現象的影響 12
1.4 研究動機 13
Chapter 2 理論分析 14
2.1 系統描述 14
2.2 主控方程式 15
2.2.1 離子分布關係式 15
2.2.2 電位方程式 16
2.2.3 流場方程式 17
2.2.4 離子守恆方程式 18
2.2.5 無因次化 19
2.2.6 擾動法分析(perturbation analysis) 20
2.3 邊界條件 22
2.3.1 粒子表面 22
2.3.2 無窮遠處 23
2.3.3 虛擬外邊界 24
2.4 方程式與邊界條件一維化 25
2.4.1 主控方程式 26
2.4.2 粒子表面邊界條件 27
2.4.3 密集系統虛擬外邊界條件 27
2.4.4 單一系統虛擬外邊界條件 27
2.5 泳動度計算 29
2.6 總結 31
Chapter 3 數值方法 33
3.1 正交配位法(orthogonal collocation method) 33
3.1.1 簡介 33
3.1.2 計算格點與函數展開 34
3.1.3 微分矩陣 35
3.2 空間映射與多變數聯解 35
3.3 Newton-Raphson迭代法 37
Chapter 4 結果與討論 39
4.1 程式比對 39
4.2 參數選擇 45
4.3 不同條件下平衡電位之分布情形 47
4.3.1 離子體積效應(ν) 47
4.3.2 電荷過度遮蔽效應(δc) 50
4.4 不同條件對電泳動度之影響 54
4.4.1 離子體積效應(ν) 54
4.4.2 電荷過度遮蔽效應(δc) 58
4.4.3 使用Lc*而非δc作為參數 63
4.4.4 密集度影響(H) 65
4.5 結論 67
附錄 69
(A) 室溫水溶液參數列表 69
(B) 曲線座標(curvilinear coordinate)簡介 71
(C) BSK模型推導 76
(D) 主控方程式與邊界條件推導細節 79
(E) 力積分推導 84
(F) 名詞中英對照表與符號列表 86
參考文獻 91
1.Hunter, R.J., Foundations of colloid science. 2001: Oxford university press.
2.Laidler, K., J. Meiser, and B. Sanctuary, Physical Chemistry. 2003.
3.Masliyah, J.H. and S. Bhattacharjee, Electrokinetic and colloid transport phenomena. 2006: John Wiley & Sons.
4.Derjaguin, B.v. and L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Progress in Surface Science, 1993. 43(1-4): p. 30-59.
5.Verwey, E.J.W., Theory of the stability of lyophobic colloids: the interaction of sol particles having an electric double layer. 1962.
6.Helmholtz, H.v., Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierisch‐elektrischen Versuche (Schluss.). Annalen der Physik, 1853. 165(7): p. 353-377.
7.Gouy, M., Sur la constitution de la charge électrique à la surface d'un électrolyte. 1910.
8.Chapman, D.L., LI. A contribution to the theory of electrocapillarity. The London, Edinburgh, and Dublin philosophical magazine and journal of science, 1913. 25(148): p. 475-481.
9.Stern, O., The theory of the electrolytic double-layer. Z. Elektrochem, 1924. 30(508): p. 1014-1020.
10.Shaw, D., The colloidal state. 1992, Butterworth-Heinemann: Oxford. p. 1-20.
11.Joshi, M.D. and J.L. Anderson, Recent advances of ionic liquids in separation science and mass spectrometry. Rsc Advances, 2012. 2(13): p. 5470-5484.
12.Gabriel, S. and J. Weiner, On some derivatives of propylamines. Ber. Dtsch. Chem. Ges, 1888. 21: p. 2669-2679.
13.Walden, P., Molecular weights and electrical conductivity of several fused salts. Bull. Acad. Imper. Sci.(St. Petersburg), 1914. 1800.
14.Wilkes, J.S. and M.J. Zaworotko, Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Journal of the Chemical Society, Chemical Communications, 1992(13): p. 965-967.
15.Berthod, A., M.J. Ruiz-Angel, and S. Carda-Broch, Ionic liquids in separation techniques. J Chromatogr A, 2008. 1184(1-2): p. 6-18.
16.Rogers, R.D. and K.R. Seddon, Ionic liquids--solvents of the future? Science, 2003. 302(5646): p. 792-793.
17.Endres, F., Ionic liquids: solvents for the electrodeposition of metals and semiconductors. ChemPhysChem, 2002. 3(2): p. 144-154.
18.Vekariya, R.L., A review of ionic liquids: Applications towards catalytic organic transformations. Journal of Molecular Liquids, 2017. 227: p. 44-60.
19.Seddon, K.R., Ionic liquids for clean technology. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology, 1997. 68(4): p. 351-356.
20.Egorova, K.S., E.G. Gordeev, and V.P. Ananikov, Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chemical Reviews, 2017. 117(10): p. 7132-7189.
21.Osada, I., et al., Ionic‐liquid‐based polymer electrolytes for battery applications. Angewandte Chemie International Edition, 2016. 55(2): p. 500-513.
22.Watanabe, M., et al., Application of ionic liquids to energy storage and conversion materials and devices. Chemical reviews, 2017. 117(10): p. 7190-7239.
23.Besra, L. and M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in materials science, 2007. 52(1): p. 1-61.
24.Endres, F., et al., Electrodeposition of nanocrystalline metals and alloys from ionic liquids. Angewandte Chemie International Edition, 2003. 42(29): p. 3428-3430.
25.Sarkar, P. and P.S. Nicholson, Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. Journal of the American Ceramic Society, 1996. 79(8): p. 1987-2002.
26.Sun, P. and D.W. Armstrong, Ionic liquids in analytical chemistry. Analytica Chimica Acta, 2010. 661(1): p. 1-16.
27.Tang, S., et al., Recent advances of ionic liquids and polymeric ionic liquids in capillary electrophoresis and capillary electrochromatography. Journal of Chromatography A, 2014. 1357: p. 147-157.
28.Qin, W. and S.F.Y. Li, Electrophoresis of DNA in ionic liquid coated capillary. Analyst, 2003. 128(1): p. 37-41.
29.Jiang, T.-F., et al., Dynamically coating the capillary with 1-alkyl-3-methylimidazolium-based ionic liquids for separation of basic proteins by capillary electrophoresis. Analytica chimica acta, 2003. 479(2): p. 249-254.
30.Wu, X., et al., Simultaneous separation of basic and acidic proteins using 1‐butyl‐3‐methylimidazolium‐based ion liquid as dynamic coating and background electrolyte in capillary electrophoresis. Electrophoresis, 2008. 29(11): p. 2356-2362.
31.Yanes, E.G., et al., Capillary electrophoretic application of 1-alkyl-3-methylimidazolium-based ionic liquids. Analytical chemistry, 2001. 73(16): p. 3838-3844.
32.Zhou, C., et al., β‐cyclodextrin‐ionic liquid polymer based dynamically coating for simultaneous determination of tetracyclines by capillary electrophoresis. Electrophoresis, 2017. 38(7): p. 1060-1067.
33.Deeb, S.E., M.A. Iriban, and R. Gust, MEKC as a powerful growing analytical technique. Electrophoresis, 2011. 32(1): p. 166-183.
34.Lewis, A., et al., Review on the development of truly portable and in-situ capillary electrophoresis systems. Measurement Science and Technology, 2013. 24(4): p. 042001.
35.Wahl, J. and U. Holzgrabe, Capillary electrophoresis separation of phenethylamine enantiomers using amino acid based ionic liquids. Journal of pharmaceutical and biomedical analysis, 2018. 148: p. 245-250.
36.Mwongela, S.M., et al., Separation of achiral and chiral analytes using polymeric surfactants with ionic liquids as modifiers in micellar electrokinetic chromatography. Analytical chemistry, 2003. 75(22): p. 6089-6096.
37.Mwongela, S.M., et al., A comparison of ionic liquids to molecular organic solvents as additives for chiral separations in micellar electrokinetic chromatography. Journal of separation science, 2007. 30(9): p. 1334-1342.
38.Terabe, S., et al., Electrokinetic separations with micellar solutions and open-tubular capillaries. Analytical chemistry, 1984. 56(1): p. 111-113.
39.Tian, K., et al., Separation and determination of lignans from seeds of Schisandra species by micellar electrokinetic capillary chromatography using ionic liquid as modifier. Journal of Chromatography A, 2005. 1078(1-2): p. 181-187.
40.Vaher, M., M. Koel, and M. Kaljurand, Non-aqueous capillary electrophoresis in acetonitrile using lonic-liquid buffer electrolytes. Chromatographia, 2001. 53(1): p. S302-S306.
41.Vaher, M., M. Koel, and M. Kaljurand, Application of 1-alkyl-3-methylimidazolium-based ionic liquids in non-aqueous capillary electrophoresis. Journal of Chromatography A, 2002. 979(1-2): p. 27-32.
42.Vaher, M., M. Koel, and M. Kaljurand, Ionic liquids as electrolytes for nonaqueous capillary electrophoresis. Electrophoresis, 2002. 23(3): p. 426-430.
43.Brooks, N.J., et al., Linking the structures, free volumes, and properties of ionic liquid mixtures. Chemical science, 2017. 8(9): p. 6359-6374.
44.Smoluchowski, M., An experiment on mathematical theorization of coagulation kinetics of the colloidal solutions. Zeitschrift fur physikalisch Chemie, 1917. 92: p. 129-168.
45.Wuzhang, J., et al., Electrophoretic mobility of oil droplets in electrolyte and surfactant solutions. Electrophoresis, 2015. 36(19): p. 2489-2497.
46.Öncü-Kaya, E.M., et al., Determination of DNA in certain Salvia species by capillary gel electrophoresis. Journal of Liquid Chromatography & Related Technologies, 2015. 38(14): p. 1417-1425.
47.Hückel, E., The cataphoresis of the sphere. Phys. Z, 1924. 25: p. 204-210.
48.Henry, D., The cataphoresis of suspended particles. Part I.—The equation of cataphoresis. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1931. 133(821): p. 106-129.
49.Overbeek, J.T.G., Quantitative interpretation of the electrophoretic velocity of colloids. Advances in Colloid Science, 1950. 3: p. 797-823.
50.Booth, F., The cataphoresis of spherical, solid non-conducting particles in a symmetrical electrolyte. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1950. 203(1075): p. 514-533.
51.Wiersema, P., A. Loeb, and J.T.G. Overbeek, Calculation of the electrophoretic mobility of a spherical colloid particle. Journal of Colloid and Interface Science, 1966. 22(1): p. 78-99.
52.O'Brien, R.W. and L.R. White, Electrophoretic mobility of a spherical colloidal particle. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1978. 74: p. 1607-1626.
53.Bikerman, J., XXXIX. Structure and capacity of electrical double layer. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1942. 33(220): p. 384-397.
54.Borukhov, I., D. Andelman, and H. Orland, Steric effects in electrolytes: A modified Poisson-Boltzmann equation. Physical review letters, 1997. 79(3): p. 435.
55.Kékicheff, P., et al., Charge reversal seen in electrical double layer interaction of surfaces immersed in 2: 1 calcium electrolyte. The Journal of chemical physics, 1993. 99(8): p. 6098-6113.
56.Ise, N., Long‐range electrostatic attraction between macroions mediated by oppositely charged counterions: Experimental supports, past and present. Berichte der Bunsengesellschaft für physikalische Chemie, 1996. 100(6): p. 841-848.
57.Greberg, H. and R. Kjellander, Charge inversion in electric double layers and effects of different sizes for counterions and coions. The Journal of chemical physics, 1998. 108(7): p. 2940-2953.
58.Grosberg, A.Y., T. Nguyen, and B. Shklovskii, Colloquium: the physics of charge inversion in chemical and biological systems. Reviews of modern physics, 2002. 74(2): p. 329.
59.Levin, Y., Electrostatic correlations: from plasma to biology. Reports on progress in physics, 2002. 65(11): p. 1577.
60.Lyklema, J., Overcharging, charge reversal: chemistry or physics? Colloids and surfaces A: physicochemical and engineering aspects, 2006. 291(1-3): p. 3-12.
61.Mezger, M., et al., Molecular layering of fluorinated ionic liquids at a charged sapphire (0001) surface. Science, 2008. 322(5900): p. 424-428.
62.Kondrat, S. and A. Kornyshev, Superionic state in double-layer capacitors with nanoporous electrodes. Journal of Physics: Condensed Matter, 2010. 23(2): p. 022201.
63.Kilic, M.S., M.Z. Bazant, and A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Physical review E, 2007. 75(2): p. 021502.
64.Kilic, M.S., M.Z. Bazant, and A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Physical review E, 2007. 75(2): p. 021503.
65.Kornyshev, A.A., Double-layer in ionic liquids: paradigm change? 2007, ACS Publications.
66.Bazant, M.Z., B.D. Storey, and A.A. Kornyshev, Double layer in ionic liquids: Overscreening versus crowding. Physical Review Letters, 2011. 106(4): p. 046102.
67.Horng, T.-L., P.-H. Tsai, and T.-C. Lin, Modification of Bikerman model with specific ion sizes. Computational and Mathematical Biophysics, 2017. 5(1): p. 142-149.
68.Manciu, M. and E. Ruckenstein, Lattice site exclusion effect on the double layer interaction. Langmuir, 2002. 18(13): p. 5178-5185.
69.Kjellander, R., et al., Double layer interactions in mono‐and divalent electrolytes: A comparison of the anisotropic HNC theory and Monte Carlo simulations. The Journal of Chemical Physics, 1992. 97(2): p. 1424-1431.
70.Henderson, D., L. Blum, and W.R. Smith, Application of the hypernetted chain approximation to the electric double layer at a charged planar interface. Chemical Physics Letters, 1979. 63(2): p. 381-383.
71.Rosenfeld, Y., Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Physical review letters, 1989. 63(9): p. 980.
72.Kierlik, E. and M. Rosinberg, Density-functional theory for inhomogeneous fluids: adsorption of binary mixtures. Physical Review A, 1991. 44(8): p. 5025.
73.Rosenfeld, Y., Free energy model for inhomogeneous fluid mixtures: Yukawa‐charged hard spheres, general interactions, and plasmas. The Journal of chemical physics, 1993. 98(10): p. 8126-8148.
74.Roth, R., Fundamental measure theory for hard-sphere mixtures: a review. Journal of Physics: Condensed Matter, 2010. 22(6): p. 063102.
75.Roth, R. and D. Gillespie, Shells of charge: a density functional theory for charged hard spheres. Journal of Physics: Condensed Matter, 2016. 28(24): p. 244006.
76.Outhwaite, C.W. and L.B. Bhuiyan, An improved modified Poisson–Boltzmann equation in electric-double-layer theory. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1983. 79(5): p. 707-718.
77.Lee, A.A., et al., Are room-temperature ionic liquids dilute electrolytes? The journal of physical chemistry letters, 2015. 6(1): p. 159-163.
78.Kuhn, P.S., Y. Levin, and M.C. Barbosa, Charge inversion in DNA–amphiphile complexes: possible application to gene therapy. Physica A: Statistical Mechanics and its Applications, 1999. 274(1-2): p. 8-18.
79.Kharkats, Y.I., A. Kornyshev, and M. Vorotyntsev, Electrostatic models in the theory of solutions. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1976. 72: p. 361-371.
80.Kornyshev, A., A. Rubinshtein, and M.A. Vorotyntsev, Model nonlocal electrostatics. I. Journal of Physics C: Solid State Physics, 1978. 11(15): p. 3307.
81.Vorotyntsev, M., Model nonlocal electrostatics. II. Spherical interface. Journal of Physics C: Solid State Physics, 1978. 11(15): p. 3323.
82.Hildebrandt, A., et al., Novel formulation of nonlocal electrostatics. Physical review letters, 2004. 93(10): p. 108104.
83.Santangelo, C.D., Computing counterion densities at intermediate coupling. Physical Review E, 2006. 73(4): p. 041512.
84.Hatlo, M.M. and L. Lue, Electrostatic interactions of charged bodies from the weak-to the strong-coupling regime. EPL (Europhysics Letters), 2010. 89(2): p. 25002.
85.Zhao, H., Diffuse-charge dynamics of ionic liquids in electrochemical systems. Physical Review E, 2011. 84(5): p. 051504.
86.Moon, G.J., M.M. Ahn, and I.S. Kang, Osmotic pressure of ionic liquids in an electric double layer: Prediction based on a continuum model. Physical Review E, 2015. 92(6): p. 063020.
87.Santos, M.S., E.C. Biscaia, and F.W. Tavares, Effect of electrostatic correlations on micelle formation A Physicochemical and engineering aspects. 2017.
88.de Souza, J.P. and M.Z. Bazant, Continuum theory of electrostatic correlations at charged surfaces. arXiv preprint arXiv:1902.05493, 2019.
89.Storey, B.D. and M.Z. Bazant, Effects of electrostatic correlations on electrokinetic phenomena. Physical Review E, 2012. 86(5): p. 056303.
90.Stout, R.F. and A.S. Khair, A continuum approach to predicting electrophoretic mobility reversals. Journal of Fluid Mechanics, 2014. 752.
91.Stout, R.F. and A.S. Khair, Influence of ion sterics on diffusiophoresis and electrophoresis in concentrated electrolytes. Physical Review Fluids, 2017. 2(1): p. 014201.
92.Wang, C., et al., Modeling electrokinetics in ionic liquids. Electrophoresis, 2017. 38(13-14): p. 1693-1705.
93.López-García, J., M. Aranda-Rascón, and J. Horno, Excluded volume effect on the electrophoretic mobility of colloidal particles. Journal of colloid and interface science, 2008. 323(1): p. 146-152.
94.Khair, A.S. and T.M. Squires, Ion steric effects on electrophoresis of a colloidal particle. Journal of Fluid Mechanics, 2009. 640: p. 343-356.
95.Semenov, I., et al., Electrophoretic mobility and charge inversion of a colloidal particle studied by single-colloid electrophoresis and molecular dynamics simulations. Physical Review E, 2013. 87(2): p. 022302.
96.Lee, E., Theory of Electrophoresis and Diffusiophoresis of Highly Charged Colloidal Particles. 2018: Academic Press.
97.Jackson, J.D., Classical electrodynamics. 2007: John Wiley & Sons.
98.Bird, R.B., W.E. Stewart, and E.N. Lightfoot, Transport Phenomena. 2006: John Wiley & Sons.
99.Happel, J. and H. Brenner, Low Reynolds number hydrodynamics: with special applications to particulate media. Vol. 1. 2012: Springer Science & Business Media.
100.Kuwabara, S., The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. Journal of the physical society of Japan, 1959. 14(4): p. 527-532.
101.Zaitsev, V.F. and A.D. Polyanin, Handbook of exact solutions for ordinary differential equations. 2002: CRC press.
102.Canuto, C., et al., Spectral methods in fluid dynamics. 2012: Springer Science & Business Media.
103.He, Y.Y., E. Wu, and E. Lee, Electrophoresis in suspensions of charged porous spheres in salt-free media. Chemical Engineering Science, 2010. 65(20): p. 5507-5516.
104.Sarraute, S., M.F. Costa Gomes, and A.A. Pádua, Diffusion coefficients of 1-alkyl-3-methylimidazolium ionic liquids in water, methanol, and acetonitrile at infinite dilution. Journal of Chemical & Engineering Data, 2009. 54(9): p. 2389-2394.
105.Haynes, W.M., CRC handbook of chemistry and physics. 2014: CRC press.
106.Cahn, J.W. and J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. The Journal of chemical physics, 1958. 28(2): p. 258-267.
107.Nauman, E.B. and D.Q. He, Nonlinear diffusion and phase separation. Chemical Engineering Science, 2001. 56(6): p. 1999-2018.
108.Liu, J.-L., D. Xie, and B. Eisenberg, Poisson-Fermi formulation of nonlocal electrostatics in electrolyte solutions. Computational and Mathematical Biophysics, 2017. 5(1): p. 116-124.
109.Rowlinson, J., The Yukawa potential. Physica A: Statistical Mechanics and its Applications, 1989. 156(1): p. 15-34.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊