|
1.Masliyah, J.H. and S. Bhattacharjee, Electrokinetic and Colloid Transport Phenomena. Electrokinetic and Colloid Transport Phenomena. 2005: John Wiley & Sons, Inc. 2.Shaw, D.J., Introduction to Colloid and Surface Chemistry. Introduction to Colloid and Surface Chemistry (Fourth Edition), ed. D.J. Shaw. 1992, Oxford: Butterworth-Heinemann. 3.Hunter, R., Foundations of Colloid Science. Hunter, RJ, Foundations of Colloid Science. Vol. 1. 1987: Oxford University Press. 4.Derjaguin, B. and L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim URSS, 1941. 14(6): p. 633-662. 5.Verwey, E.J.W., J.T.G. Overbeek, and K. Van Nes, Theory of the Stability of Lyophobic Colloids: the Interaction of Sol Particles Having an Electric Double Layer. 1948: Elsevier New York. 6.Everett, D.H. and D. Everett, Basic principles of colloid science. Vol. 144. 1988: Royal Society of Chemistry London. 7.Helmholtz, H., Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Annalen der Physik, 1853. 165(6): p. 211-233. 8.Gouy, G., Constitution of the electric charge at the surface of an electrolyte. Journal of Physics, 1910. 9(4): p. 457-467. 9.Chapman, D.L., LI. A contribution to the theory of electrocapillarity. Philosophical Magazine Series 6, 1913. 25(148): p. 475-481. 10.劉陽橋, 奈米粉體的分散及表面改性. 2005: 五南圖書出版股份有限公司. 11.Seddon, K.R., Ionic liquids for clean technology. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology, 1997. 68(4): p. 351-356. 12.Johnson, K.E., What's an ionic liquid? Interface-Electrochemical Society, 2007. 16(1): p. 38-41. 13.Bockris, J.O.M. and A.K. Reddy, Modern electrochemistry 2B: electrodics in chemistry, engineering, biology and environmental science. Vol. 2. 2000: Springer Science & Business Media. 14.Joshi, M.D. and J.L. Anderson, Recent advances of ionic liquids in separation science and mass spectrometry. Rsc Advances, 2012. 2(13): p. 5470-5484. 15.Walden, P., Molecular weights and electrical conductivity of several fused salts. Bull. Acad. Imper. Sci.(St. Petersburg), 1914. 1800. 16.Wilkes, J.S. and M.J. Zaworotko, Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Journal of the Chemical Society, Chemical Communications, 1992(13): p. 965-967. 17.Brooks, N.J., et al., Linking the structures, free volumes, and properties of ionic liquid mixtures. Chemical science, 2017. 8(9): p. 6359-6374. 18.Rogers, R.D. and K.R. Seddon, Ionic liquids--solvents of the future? Science, 2003. 302(5646): p. 792-793. 19.Berthod, A., M. Ruiz-Angel, and S. Carda-Broch, Ionic liquids in separation techniques. Journal of Chromatography A, 2008. 1184(1-2): p. 6-18. 20.Fitzwater, G., et al., Ionic liquids: sources of innovation. Report Q002, QUILL, Belfast, 2005. 21.Pandey, S., Analytical applications of room-temperature ionic liquids: A review of recent efforts. Analytica Chimica Acta, 2006. 556(1): p. 38-45. 22.Mallakpour, S. and M. Dinari, Ionic liquids as green solvents: progress and prospects, in Green Solvents II. 2012, Springer. p. 1-32. 23.Delgado, A., Interfacial electrokinetics and electrophoresis. 2002: CRC. 24.Prieve, D.C., et al., MOTION OF A PARTICLE GENERATED BY CHEMICAL GRADIENTS .2. ELECTROLYTES. Journal of Fluid Mechanics, 1984. 148(NOV): p. 247-269. 25.Lechnick, W.J. and J.A. Shaeiwitz, MEASUREMENT OF DIFFUSIOPHORESIS IN LIQUIDS. Journal of Colloid and Interface Science, 1984. 102(1): p. 71-87. 26.Anderson, J.L., M.E. Lowell, and D.C. Prieve, MOTION OF A PARTICLE GENERATED BY CHEMICAL GRADIENTS .1. NON-ELECTROLYTES. Journal of Fluid Mechanics, 1982. 117(APR): p. 107-121. 27.Dukhin, S.S., NONEQUILIBRIUM ELECTRIC SURFACE PHENOMENA. Advances in Colloid and Interface Science, 1993. 44: p. 1-134. 28.Dukhin, S. and B. Derjaguin, Surface and Colloid Science. by E. Matjevic, Wiley, New York, 1974. 7: p. 36. 29.Bakanov, S.P. and V.I. Roldughin, Diffusiophoresis in Gases. Aerosol Science and Technology, 1987(7): p. 249-255. 30.Pilat, M.J. and A. Prem, Effect of diffusiophoresis and thermophoresis on overall particle collection efficiency of spray droplet scrubbers. Journal of the Air Pollution Control Association, 1977(27): p. 982-988. 31.Jaworek, A., et al., Wet Electroscrubbers for State of the Art Gas Cleaning. Environmental Science and Technology, 2006(40): p. 6197-6207. 32.Dukhin, S.S., et al., DIFFUSIOPHORESIS IN ELECTROLYTE-SOLUTIONS AND ITS APPLICATION TO THE FORMATION OF SURFACE-COATINGS. Bulletin of the Academy of Sciences of the Ussr Division of Chemical Science, 1982. 31(8): p. 1535-1544. 33.Deryagin, B., S. Dukhin, and A. Korotkova, INFLUENCE OF NATURE OF ELECTROLYTES IN LATEX ON THE PROCESS OF FILM FORMATION BY IONIC DEPOSITION. COLLOID JOURNAL OF THE USSR, 1978. 40(4): p. 531-536. 34.Prieve, D.C., et al., Chemiphoresis: Acceleration of hydrosol deposition by ionic surface reactions. Journal of Colloid and Interface Science, 1979. 71(2): p. 267-272. 35.Prieve, D.C., H.L. Gerhart, and R.E. Smith, CHEMIPHORESIS - METHOD FOR DEPOSITION OF POLYMER-COATINGS WITHOUT APPLIED ELECTRIC-CURRENT. Industrial & Engineering Chemistry Product Research and Development, 1978. 17(1): p. 32-36. 36.Ulberg, Z. and A. Dukhin, Electrodiffusiophoresis-film formation in Ac and Dc electrical fields and its application for bactericidal coatings. Progress in organic coatings, 1990. 18(1): p. 1-41. 37.Abécassis, B. and et al., Osmotic manipulation of particles for microfluidic applications. New Journal of Physics, 2009. 11(7): p. 075022. 38.Abecassis, B., et al., Boosting migration of large particles by solute contrasts. Nature Materials, 2008. 7(10): p. 785-789. 39.Kar, A., et al., Enhanced transport into and out of dead-end pores. ACS nano, 2015. 9(1): p. 746-753. 40.Anderson, J.L., M.E. Lowell, and D.C. Prieve, Motion of a particle generated by chemical gradients .1. Non-electrolytes. Journal of fluid mechanics, 1982(117): p. 101-121. 41.Prieve, D.C. and R. Roman, DIFFUSIOPHORESIS OF A RIGID SPHERE THROUGH A VISCOUS ELECTROLYTE SOLUTION. Journal of the Chemical Society-Faraday Transactions Ii, 1987. 83: p. 1287-1306. 42.Obrien, R.W. and L.R. White, Electrophoretic Mobility of a Spherical Colloidal Particle. Journal of the Chemical Society-Faraday Transactions Ii, 1978. 74: p. 1607-1626. 43.Pawar, Y., Y.E. Solomentsev, and J.L. Anderson, POLARIZATION EFFECTS ON DIFFUSIOPHORESIS IN ELECTROLYTE GRADIENTS. Journal of Colloid and Interface Science, 1993. 155(2): p. 488-498. 44.Lou, J., C.Y. Shih, and E. Lee, Diffusiophoresis of Concentrated Suspensions of Spherical Particles with Charge-regulated Surface: Polarization Effect with Nonlinear Poisson-Boltzmann Equation. Langmuir, 2010. 26(1): p. 47-55. 45.Lou, J., C.Y. Shih, and E. Lee, Diffusiophoresis of a spherical particle normal to an air-water interface. Journal of Colloid and Interface Science, 2009. 331(1): p. 227-235. 46.Lou, J. and E. Lee, Diffusiophoresis of a spherical particle normal to a plane. Journal of Physical Chemistry C, 2008. 112(7): p. 2584-2592. 47.Chang, Y.C. and H.J. Keh, Diffusiophoresis and electrophoresis of a charged sphere perpendicular to two plane walls. Journal of Colloid and Interface Science, 2008. 322(2): p. 634-653. 48.Keh, H.J. and Y.L. Li, Diffusiophoresis in a suspension of charge-regulating colloidal spheres. Langmuir, 2007. 23(3): p. 1061-1072. 49.Hsu, J.P., et al., Diffusiophoresis of concentrated suspensions of spherical particles with distinct ionic diffusion velocities. Journal of Physical Chemistry B, 2007. 111(10): p. 2533-2539. 50.Lou, J., Y.Y. He, and E. Lee, Diffusiophoresis of concentrated suspensions of spherical particles with identical ionic diffusion velocities. Journal of Colloid and Interface Science, 2006. 299(1): p. 443-451. 51.Chen, P.Y. and H.J. Keh, Diffusiophoresis and electrophoresis of a charged sphere parallel to one or two plane walls. Journal of Colloid and Interface Science, 2005. 286(2): p. 774-791. 52.Wei, Y.K. and H.J. Keh, Diffusiophoresis in a suspension of spherical particles with arbitrary double-layer thickness. Journal of Colloid and Interface Science, 2002. 248(1): p. 76-87. 53.Chen, P.Y. and H.J. Keh, Diffusiophoresis of a colloidal sphere in nonelectrolyte gradients parallel to one or two plane walls. Chemical Engineering Science, 2002. 57(15): p. 2885-2899. 54.Wei, Y.K. and H.J. Keh, Diffusiophoresis and electrophoresis in concentrated suspensions of charged colloidal spheres. Langmuir, 2001. 17(5): p. 1437-1447. 55.Keh, H.J. and Y.K. Wei, Diffusiophoretic mobility of spherical particles at low potential and arbitrary double-layer thickness. Langmuir, 2000. 16(12): p. 5289-5294. 56.Keh, H.J. and S.C. Luo, Particle interactions in diffusiophoresis: Axisymmetric motion of multiple spheres in electrolyte gradients. Langmuir, 1996. 12(3): p. 657-667. 57.Keh, H.J. and J.S. Jan, Boundary effects on diffusiophoresis and electrophoresis: Motion of a colloidal sphere normal to a plane wall. Journal of Colloid and Interface Science, 1996. 183(2): p. 458-475. 58.Staffeld, P.O. and J.A. Quinn, DIFFUSION-INDUCED BANDING OF COLLOID PARTICLES VIA DIFFUSIOPHORESIS .1. ELECTROLYTES. Journal of Colloid and Interface Science, 1989. 130(1): p. 69-87. 59.Staffeld, P.O. and J.A. Quinn, DIFFUSION-INDUCED BANDING OF COLLOID PARTICLES VIA DIFFUSIOPHORESIS .2. NON-ELECTROLYTES. Journal of Colloid and Interface Science, 1989. 130(1): p. 88-100. 60.Ebel, J.P., J.L. Anderson, and D.C. Prieve, DIFFUSIOPHORESIS OF LATEX-PARTICLES IN ELECTROLYTE GRADIENTS. Langmuir, 1988. 4(2): p. 396-406. 61.Lechnick, W.J. and J.A. Shaeiwitz, ELECTROLYTE CONCENTRATION-DEPENDENCE OF DIFFUSIOPHORESIS IN LIQUIDS. Journal of Colloid and Interface Science, 1985. 104(2): p. 456-470. 62.Shaeiwitz, J.A. and W.J. Lechnick, TERNARY DIFFUSION FORMULATION FOR DIFFUSIOPHORESIS. Chemical Engineering Science, 1984. 39(5): p. 799-807. 63.Bikerman, J., XXXIX. Structure and capacity of electrical double layer. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1942. 33(220): p. 384-397. 64.Borukhov, I., D. Andelman, and H. Orland, Steric effects in electrolytes: A modified Poisson-Boltzmann equation. Physical review letters, 1997. 79(3): p. 435. 65.Kékicheff, P., et al., Charge reversal seen in electrical double layer interaction of surfaces immersed in 2: 1 calcium electrolyte. The Journal of chemical physics, 1993. 99(8): p. 6098-6113. 66.Ise, N., Long‐range electrostatic attraction between macroions mediated by oppositely charged counterions: Experimental supports, past and present. Berichte der Bunsengesellschaft für physikalische Chemie, 1996. 100(6): p. 841-848. 67.Greberg, H. and R. Kjellander, Charge inversion in electric double layers and effects of different sizes for counterions and coions. The Journal of chemical physics, 1998. 108(7): p. 2940-2953. 68.Grosberg, A.Y., T. Nguyen, and B. Shklovskii, Colloquium: the physics of charge inversion in chemical and biological systems. Reviews of modern physics, 2002. 74(2): p. 329. 69.Levin, Y., Electrostatic correlations: from plasma to biology. Reports on progress in physics, 2002. 65(11): p. 1577. 70.Lyklema, J., Overcharging, charge reversal: chemistry or physics? Colloids and surfaces A: physicochemical and engineering aspects, 2006. 291(1-3): p. 3-12. 71.Mezger, M., et al., Molecular layering of fluorinated ionic liquids at a charged sapphire (0001) surface. Science, 2008. 322(5900): p. 424-428. 72.Kondrat, S. and A. Kornyshev, Superionic state in double-layer capacitors with nanoporous electrodes. Journal of Physics: Condensed Matter, 2010. 23(2): p. 022201. 73.Gao, Y., et al., Charge Transport in Confined Concentrated Solutions: A Minireview. Current Opinion in Electrochemistry, 2018. 74.Merlet, C., et al., Computer simulations of ionic liquids at electrochemical interfaces. Physical Chemistry Chemical Physics, 2013. 15(38): p. 15781-15792. 75.Huang, J., Confinement Induced Dilution: Electrostatic Screening Length Anomaly in Concentrated Electrolytes in Confined Space. The Journal of Physical Chemistry C, 2018. 122(6): p. 3428-3433. 76.Bazant, M.Z., B.D. Storey, and A.A. Kornyshev, Double layer in ionic liquids: Overscreening versus crowding. Physical Review Letters, 2011. 106(4): p. 046102. 77.Kondrat, S., D. Vella, and A. Goriely, Dynamics of ion transport in ionic liquids. Physical review letters, 2015. 115(10): p. 106101. 78.Wang, C., et al., Modeling electrokinetics in ionic liquids. Electrophoresis, 2017. 79.Ferguson, T.R. and M.Z. Bazant, Nonequilibrium thermodynamics of porous electrodes. Journal of The Electrochemical Society, 2012. 159(12): p. A1967-A1985. 80.Kilic, M.S., M.Z. Bazant, and A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Physical review E, 2007. 75(2): p. 021502. 81.Kilic, M.S., M.Z. Bazant, and A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Physical review E, 2007. 75(2): p. 021503. 82.Stern, O., The theory of the electrolytic double-layer. Z. Elektrochem, 1924. 30(508): p. 1014-1020. 83.Kornyshev, A.A., Double-layer in ionic liquids: paradigm change? 2007, ACS Publications. 84.Horng, T.-L., P.-H. Tsai, and T.-C. Lin, Modification of Bikerman model with specific ion sizes. Computational and Mathematical Biophysics, 2017. 5(1): p. 142-149. 85.Manciu, M. and E. Ruckenstein, Lattice site exclusion effect on the double layer interaction. Langmuir, 2002. 18(13): p. 5178-5185. 86.Kjellander, R., et al., Double layer interactions in mono‐and divalent electrolytes: A comparison of the anisotropic HNC theory and Monte Carlo simulations. The Journal of Chemical Physics, 1992. 97(2): p. 1424-1431. 87.Henderson, D., L. Blum, and W.R. Smith, Application of the hypernetted chain approximation to the electric double layer at a charged planar interface. Chemical Physics Letters, 1979. 63(2): p. 381-383. 88.Rosenfeld, Y., Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Physical review letters, 1989. 63(9): p. 980. 89.Kierlik, E. and M. Rosinberg, Density-functional theory for inhomogeneous fluids: adsorption of binary mixtures. Physical Review A, 1991. 44(8): p. 5025. 90.Rosenfeld, Y., Free energy model for inhomogeneous fluid mixtures: Yukawa‐charged hard spheres, general interactions, and plasmas. The Journal of chemical physics, 1993. 98(10): p. 8126-8148. 91.Roth, R., Fundamental measure theory for hard-sphere mixtures: a review. Journal of Physics: Condensed Matter, 2010. 22(6): p. 063102. 92.Roth, R. and D. Gillespie, Shells of charge: a density functional theory for charged hard spheres. Journal of Physics: Condensed Matter, 2016. 28(24): p. 244006. 93.Outhwaite, C.W. and L.B. Bhuiyan, An improved modified Poisson–Boltzmann equation in electric-double-layer theory. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1983. 79(5): p. 707-718. 94.Lee, A.A., et al., Are room-temperature ionic liquids dilute electrolytes? The journal of physical chemistry letters, 2015. 6(1): p. 159-163. 95.Kuhn, P.S., Y. Levin, and M.C. Barbosa, Charge inversion in DNA–amphiphile complexes: possible application to gene therapy. Physica A: Statistical Mechanics and its Applications, 1999. 274(1-2): p. 8-18. 96.Kjellander, R., Nonlocal electrostatics in ionic liquids: The key to an understanding of the screening decay length and screened interactions. The Journal of chemical physics, 2016. 145(12): p. 124503. 97.Hildebrandt, A., et al., Novel formulation of nonlocal electrostatics. Physical review letters, 2004. 93(10): p. 108104. 98.Santangelo, C.D., Computing counterion densities at intermediate coupling. Physical Review E, 2006. 73(4): p. 041512. 99.Hatlo, M.M. and L. Lue, Electrostatic interactions of charged bodies from the weak-to the strong-coupling regime. EPL (Europhysics Letters), 2010. 89(2): p. 25002. 100.López-García, J., M. Aranda-Rascón, and J. Horno, Excluded volume effect on the electrophoretic mobility of colloidal particles. Journal of colloid and interface science, 2008. 323(1): p. 146-152. 101.Semenov, I., et al., Electrophoretic mobility and charge inversion of a colloidal particle studied by single-colloid electrophoresis and molecular dynamics simulations. Physical Review E, 2013. 87(2): p. 022302. 102.Stout, R.F. and A.S. Khair, A continuum approach to predicting electrophoretic mobility reversals. Journal of Fluid Mechanics, 2014. 752. 103.Prieve, D.C., et al., Diffusiophoresis of charged colloidal particles in the limit of very high salinity. Proceedings of the National Academy of Sciences, 2019. 116(37): p. 18257-18262. 104.Yanes, E.G., et al., Capillary electrophoretic application of 1-alkyl-3-methylimidazolium-based ionic liquids. Analytical chemistry, 2001. 73(16): p. 3838-3844. 105.Jiang, T.-F., et al., Dynamically coating the capillary with 1-alkyl-3-methylimidazolium-based ionic liquids for separation of basic proteins by capillary electrophoresis. Analytica chimica acta, 2003. 479(2): p. 249-254. 106.Mwongela, S.M., et al., Separation of achiral and chiral analytes using polymeric surfactants with ionic liquids as modifiers in micellar electrokinetic chromatography. Analytical chemistry, 2003. 75(22): p. 6089-6096. 107.Tian, K., et al., Separation and determination of lignans from seeds of Schisandra species by micellar electrokinetic capillary chromatography using ionic liquid as modifier. Journal of Chromatography A, 2005. 1078(1-2): p. 181-187. 108.Wu, X., et al., Simultaneous separation of basic and acidic proteins using 1‐butyl‐3‐methylimidazolium‐based ion liquid as dynamic coating and background electrolyte in capillary electrophoresis. Electrophoresis, 2008. 29(11): p. 2356-2362. 109.Zhou, C., et al., β‐cyclodextrin‐ionic liquid polymer based dynamically coating for simultaneous determination of tetracyclines by capillary electrophoresis. Electrophoresis, 2017. 38(7): p. 1060-1067. 110.Wahl, J. and U. Holzgrabe, Capillary electrophoresis separation of phenethylamine enantiomers using amino acid based ionic liquids. Journal of pharmaceutical and biomedical analysis, 2018. 148: p. 245-250. 111.Storey, B.D. and M.Z. Bazant, Effects of electrostatic correlations on electrokinetic phenomena. Physical Review E, 2012. 86(5): p. 056303. 112.Liu, J.-L., D. Xie, and B. Eisenberg, Poisson-Fermi formulation of nonlocal electrostatics in electrolyte solutions. Computational and Mathematical Biophysics, 2017. 5(1): p. 116-124. 113.Happel, J. and H. Brenner, Low Reynolds number hydrodynamics: with special applications to particulate media. Vol. 1. 2012: Springer Science & Business Media. 114.Helmholtz, H.v., Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierisch‐elektrischen Versuche (Schluss.). Annalen der Physik, 1853. 165(7): p. 353-377. 115.Shin, S., et al., Membraneless water filtration using CO2. Nature Communications, 2017. 8: p. 15181. 116.Abhyankar, V.V., et al., Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab on a Chip, 2006. 6(3): p. 389-393. 117.O'Brien, R.W. and L.R. White, Electrophoretic mobility of a spherical colloidal particle. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1978. 74: p. 1607-1626. 118.Canuto, C., et al., Spectral methods in fluid dynamics. 2012: Springer Science & Business Media. 119.Stout, R.F. and A.S. Khair, Influence of ion sterics on diffusiophoresis and electrophoresis in concentrated electrolytes. Physical Review Fluids, 2017. 2(1): p. 014201.
|