跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/11 01:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱冠瑀
研究生(外文):Kuan-Yu Chiu
論文名稱:球形膠體粒子於離子液體溶液中之擴散泳現象
論文名稱(外文):Diffusiophoresis of a Single Spherical Colloidal Particle in Solutions containing Ionic Liquids
指導教授:李克強李克強引用關係
指導教授(外文):Eric Lee
口試委員:鄭文立何彥穎
口試委員(外文):Wen-Li ChengYan-Ying He
口試日期:2020-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:129
中文關鍵詞:擴散泳電雙層極化效應離子液體離子體積效應電荷過度遮蔽效應
外文關鍵詞:DiffusiophoresisDouble layer polarizationIonic liquidsteric effectoverscreening effect
DOI:10.6342/NTU202002864
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討單一硬球於離子液體溶液中之擴散泳現象,並針對各種參數以及電泳效應驅動做了詳盡的研究。
離子液體近年來因擁有諸多優勢因此被廣泛地探討,如低蒸氣壓、高熱穩定性、低熔點、不可燃性和耐強酸等等特性,且具有極高的陰陽離子組合可能性,以上特性使離子液體可在常壓下操作並容易回收,並讓實驗過程更加安全。所以離子液體被視為具有很大潛力的綠色溶劑,在各個領域都日益受到矚目及重視。
截至目前為止,只有Khair等人針對擴散泳的離子體積效應進行討論,且他們討論的範圍為高濃度電解質溶液,也就是薄電雙層條件下的擴散泳動度解析解,並未針對稀薄溶液作探討。然而實際上大部分離子液體實驗中所使用的濃度都很稀薄,其κ大多落在0~2 nm^(-1)左右,因此我們使用數值解的方式來計算任意電雙層厚度的泳動度,解除對溶液濃度的限制,使模擬能夠更貼近現實。
我們進行了一系列的參數探討:主要的參數有三個,第一:平均離子體積分率(ν),在考慮了離子的體積之後,擴散泳泳動度會往反方向加速,且可能泳動度反轉。第二:無因次化靜電校正長度(δ_c),離子彼此之間的作用力增強時會增強化學泳驅動力進而加速粒子。第三:陰陽離子擴散係數差(β factor),當陰陽離子擴散係數不同時會產生誘發電場,此電場方向視陰陽離子擴散係數差而定,且在δ_c上升時出現泳動度與預期相反之結果。綜上所述,考慮ν及δ_c可以讓我們更加貼近真實系統,進而提供更精準的預測結果。
Diffusiophoresis phenomena of a single rigid colloidal particle in ionic liquid solutions is investigated in this study.
In recent years, ionic liquids have been widely discussed because of their advantages such as low vapor pressure, high thermal stability, low melting point, incombustibility and strong acid endurance. There are numerous possible combinations of different cations and anions up to 〖10〗^18 combinations for the composition of ionic solutions, which makes ionic liquids very versatile in various practical application. Moreover, the above characteristics make it possible to operate under normal pressure and easily recovered thus safer. Therefore, ionic liquids are regarded as potential green solvents that are attracting attention in various fields.
No one has discussed diffusiophoresis of colloidal particle in a dilute ionic liquid solution. Thus we investigate this system and examine the effect of various parameters of electrokinetic interest. Among them, the mean volume fraction of ions(ν), representing the finite ion size, is found to enhance diffusiophoretic mobility in the opposite direction, and the mobility may be inverse when ion size is large. The second parameter is dimensionless electrostatic correlation length(δ_c), when the interaction of ions is not negligible, the chemiphoresis component will be strengthened accordingly with increasing δ_c. The third parameter β, the diffusivity difference factor, which appear only when the diffusivities between cation and anion are different, affect the particle motion in the direction of electrophoresis component in a way that following the sign of β. In conclusion, considering ion size and interaction between ions make the system closer to reality, thus provide more reliable prediction results.
口試委員會審訂書 I
誌謝 III
摘要 V
Abstract VII
目錄 IX
圖目錄 XII
表目錄 XIV
Chapter 1 緒論 1
1.1 膠體懸浮液 1
1.2 離子液體介紹 9
1.3 擴散泳 14
1.3.1 擴散泳理論 14
1.3.2 膠體粒子擴散泳現象的相關應用 18
1.3.3 硬粒子擴散泳文獻回顧 21
1.4 靜電學及電動力學文獻回顧 23
1.4.1 靜電學理論文獻回顧 23
1.4.2 電動力學理論文獻回顧 28
1.5 研究動機 30
Chapter 2 理論分析 31
2.1 電動力學方程組 32
2.1.1 電位方程式 33
2.1.2 流場方程式 33
2.1.1 離子守恆式 35
2.2 系統無因次化分析 38
2.3 平衡態與擾動態 41
2.3.1 平衡態與擾動態之邊界條件 45
2.4 一維化主控方程式及邊界條件 50
2.4.1 主控方程式 50
2.4.2 邊界條件 52
2.5 數值無窮遠邊界處理方法 53
2.6 粒子受力計算 56
2.7 泳動度之計算 56
Chapter 3 數值方法 61
3.1 正交配位法 61
3.2 空間映射 67
3.3 牛頓-拉福森(Newton-Raphson)迭代法 69
3.4 擾動態多變數聯解 72
3.5 數值積分 74
Chapter 4 結果與討論 77
4.1 系統參數設定及程式比對 77
4.2 平均離子體積分率(ν)對擴散泳動度的影響 79
4.3 無因次化靜電校正長度(δc)對擴散泳動度的影響 88
4.4 平均離子體積分率(ν)與無因次化靜電校正長度(δc)交互作用力下對泳動度影響 97
4.5 β因子(βfactor)對擴散泳動度的影響 101
4.6 結論 105
Chapter 5 附錄 107
5.1 常見電解質水溶液參數值 107
5.2 修正泊松方程式(Modified Poisson equation)之推導 110
5.3 Lc*以及δc參數選擇 113
參考文獻 115
1.Masliyah, J.H. and S. Bhattacharjee, Electrokinetic and Colloid Transport Phenomena. Electrokinetic and Colloid Transport Phenomena. 2005: John Wiley & Sons, Inc.
2.Shaw, D.J., Introduction to Colloid and Surface Chemistry. Introduction to Colloid and Surface Chemistry (Fourth Edition), ed. D.J. Shaw. 1992, Oxford: Butterworth-Heinemann.
3.Hunter, R., Foundations of Colloid Science. Hunter, RJ, Foundations of Colloid Science. Vol. 1. 1987: Oxford University Press.
4.Derjaguin, B. and L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim URSS, 1941. 14(6): p. 633-662.
5.Verwey, E.J.W., J.T.G. Overbeek, and K. Van Nes, Theory of the Stability of Lyophobic Colloids: the Interaction of Sol Particles Having an Electric Double Layer. 1948: Elsevier New York.
6.Everett, D.H. and D. Everett, Basic principles of colloid science. Vol. 144. 1988: Royal Society of Chemistry London.
7.Helmholtz, H., Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Annalen der Physik, 1853. 165(6): p. 211-233.
8.Gouy, G., Constitution of the electric charge at the surface of an electrolyte. Journal of Physics, 1910. 9(4): p. 457-467.
9.Chapman, D.L., LI. A contribution to the theory of electrocapillarity. Philosophical Magazine Series 6, 1913. 25(148): p. 475-481.
10.劉陽橋, 奈米粉體的分散及表面改性. 2005: 五南圖書出版股份有限公司.
11.Seddon, K.R., Ionic liquids for clean technology. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology, 1997. 68(4): p. 351-356.
12.Johnson, K.E., What's an ionic liquid? Interface-Electrochemical Society, 2007. 16(1): p. 38-41.
13.Bockris, J.O.M. and A.K. Reddy, Modern electrochemistry 2B: electrodics in chemistry, engineering, biology and environmental science. Vol. 2. 2000: Springer Science & Business Media.
14.Joshi, M.D. and J.L. Anderson, Recent advances of ionic liquids in separation science and mass spectrometry. Rsc Advances, 2012. 2(13): p. 5470-5484.
15.Walden, P., Molecular weights and electrical conductivity of several fused salts. Bull. Acad. Imper. Sci.(St. Petersburg), 1914. 1800.
16.Wilkes, J.S. and M.J. Zaworotko, Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Journal of the Chemical Society, Chemical Communications, 1992(13): p. 965-967.
17.Brooks, N.J., et al., Linking the structures, free volumes, and properties of ionic liquid mixtures. Chemical science, 2017. 8(9): p. 6359-6374.
18.Rogers, R.D. and K.R. Seddon, Ionic liquids--solvents of the future? Science, 2003. 302(5646): p. 792-793.
19.Berthod, A., M. Ruiz-Angel, and S. Carda-Broch, Ionic liquids in separation techniques. Journal of Chromatography A, 2008. 1184(1-2): p. 6-18.
20.Fitzwater, G., et al., Ionic liquids: sources of innovation. Report Q002, QUILL, Belfast, 2005.
21.Pandey, S., Analytical applications of room-temperature ionic liquids: A review of recent efforts. Analytica Chimica Acta, 2006. 556(1): p. 38-45.
22.Mallakpour, S. and M. Dinari, Ionic liquids as green solvents: progress and prospects, in Green Solvents II. 2012, Springer. p. 1-32.
23.Delgado, A., Interfacial electrokinetics and electrophoresis. 2002: CRC.
24.Prieve, D.C., et al., MOTION OF A PARTICLE GENERATED BY CHEMICAL GRADIENTS .2. ELECTROLYTES. Journal of Fluid Mechanics, 1984. 148(NOV): p. 247-269.
25.Lechnick, W.J. and J.A. Shaeiwitz, MEASUREMENT OF DIFFUSIOPHORESIS IN LIQUIDS. Journal of Colloid and Interface Science, 1984. 102(1): p. 71-87.
26.Anderson, J.L., M.E. Lowell, and D.C. Prieve, MOTION OF A PARTICLE GENERATED BY CHEMICAL GRADIENTS .1. NON-ELECTROLYTES. Journal of Fluid Mechanics, 1982. 117(APR): p. 107-121.
27.Dukhin, S.S., NONEQUILIBRIUM ELECTRIC SURFACE PHENOMENA. Advances in Colloid and Interface Science, 1993. 44: p. 1-134.
28.Dukhin, S. and B. Derjaguin, Surface and Colloid Science. by E. Matjevic, Wiley, New York, 1974. 7: p. 36.
29.Bakanov, S.P. and V.I. Roldughin, Diffusiophoresis in Gases. Aerosol Science and Technology, 1987(7): p. 249-255.
30.Pilat, M.J. and A. Prem, Effect of diffusiophoresis and thermophoresis on overall particle collection efficiency of spray droplet scrubbers. Journal of the Air Pollution Control Association, 1977(27): p. 982-988.
31.Jaworek, A., et al., Wet Electroscrubbers for State of the Art Gas Cleaning. Environmental Science and Technology, 2006(40): p. 6197-6207.
32.Dukhin, S.S., et al., DIFFUSIOPHORESIS IN ELECTROLYTE-SOLUTIONS AND ITS APPLICATION TO THE FORMATION OF SURFACE-COATINGS. Bulletin of the Academy of Sciences of the Ussr Division of Chemical Science, 1982. 31(8): p. 1535-1544.
33.Deryagin, B., S. Dukhin, and A. Korotkova, INFLUENCE OF NATURE OF ELECTROLYTES IN LATEX ON THE PROCESS OF FILM FORMATION BY IONIC DEPOSITION. COLLOID JOURNAL OF THE USSR, 1978. 40(4): p. 531-536.
34.Prieve, D.C., et al., Chemiphoresis: Acceleration of hydrosol deposition by ionic surface reactions. Journal of Colloid and Interface Science, 1979. 71(2): p. 267-272.
35.Prieve, D.C., H.L. Gerhart, and R.E. Smith, CHEMIPHORESIS - METHOD FOR DEPOSITION OF POLYMER-COATINGS WITHOUT APPLIED ELECTRIC-CURRENT. Industrial & Engineering Chemistry Product Research and Development, 1978. 17(1): p. 32-36.
36.Ulberg, Z. and A. Dukhin, Electrodiffusiophoresis-film formation in Ac and Dc electrical fields and its application for bactericidal coatings. Progress in organic coatings, 1990. 18(1): p. 1-41.
37.Abécassis, B. and et al., Osmotic manipulation of particles for microfluidic applications. New Journal of Physics, 2009. 11(7): p. 075022.
38.Abecassis, B., et al., Boosting migration of large particles by solute contrasts. Nature Materials, 2008. 7(10): p. 785-789.
39.Kar, A., et al., Enhanced transport into and out of dead-end pores. ACS nano, 2015. 9(1): p. 746-753.
40.Anderson, J.L., M.E. Lowell, and D.C. Prieve, Motion of a particle generated by chemical gradients .1. Non-electrolytes. Journal of fluid mechanics, 1982(117): p. 101-121.
41.Prieve, D.C. and R. Roman, DIFFUSIOPHORESIS OF A RIGID SPHERE THROUGH A VISCOUS ELECTROLYTE SOLUTION. Journal of the Chemical Society-Faraday Transactions Ii, 1987. 83: p. 1287-1306.
42.Obrien, R.W. and L.R. White, Electrophoretic Mobility of a Spherical Colloidal Particle. Journal of the Chemical Society-Faraday Transactions Ii, 1978. 74: p. 1607-1626.
43.Pawar, Y., Y.E. Solomentsev, and J.L. Anderson, POLARIZATION EFFECTS ON DIFFUSIOPHORESIS IN ELECTROLYTE GRADIENTS. Journal of Colloid and Interface Science, 1993. 155(2): p. 488-498.
44.Lou, J., C.Y. Shih, and E. Lee, Diffusiophoresis of Concentrated Suspensions of Spherical Particles with Charge-regulated Surface: Polarization Effect with Nonlinear Poisson-Boltzmann Equation. Langmuir, 2010. 26(1): p. 47-55.
45.Lou, J., C.Y. Shih, and E. Lee, Diffusiophoresis of a spherical particle normal to an air-water interface. Journal of Colloid and Interface Science, 2009. 331(1): p. 227-235.
46.Lou, J. and E. Lee, Diffusiophoresis of a spherical particle normal to a plane. Journal of Physical Chemistry C, 2008. 112(7): p. 2584-2592.
47.Chang, Y.C. and H.J. Keh, Diffusiophoresis and electrophoresis of a charged sphere perpendicular to two plane walls. Journal of Colloid and Interface Science, 2008. 322(2): p. 634-653.
48.Keh, H.J. and Y.L. Li, Diffusiophoresis in a suspension of charge-regulating colloidal spheres. Langmuir, 2007. 23(3): p. 1061-1072.
49.Hsu, J.P., et al., Diffusiophoresis of concentrated suspensions of spherical particles with distinct ionic diffusion velocities. Journal of Physical Chemistry B, 2007. 111(10): p. 2533-2539.
50.Lou, J., Y.Y. He, and E. Lee, Diffusiophoresis of concentrated suspensions of spherical particles with identical ionic diffusion velocities. Journal of Colloid and Interface Science, 2006. 299(1): p. 443-451.
51.Chen, P.Y. and H.J. Keh, Diffusiophoresis and electrophoresis of a charged sphere parallel to one or two plane walls. Journal of Colloid and Interface Science, 2005. 286(2): p. 774-791.
52.Wei, Y.K. and H.J. Keh, Diffusiophoresis in a suspension of spherical particles with arbitrary double-layer thickness. Journal of Colloid and Interface Science, 2002. 248(1): p. 76-87.
53.Chen, P.Y. and H.J. Keh, Diffusiophoresis of a colloidal sphere in nonelectrolyte gradients parallel to one or two plane walls. Chemical Engineering Science, 2002. 57(15): p. 2885-2899.
54.Wei, Y.K. and H.J. Keh, Diffusiophoresis and electrophoresis in concentrated suspensions of charged colloidal spheres. Langmuir, 2001. 17(5): p. 1437-1447.
55.Keh, H.J. and Y.K. Wei, Diffusiophoretic mobility of spherical particles at low potential and arbitrary double-layer thickness. Langmuir, 2000. 16(12): p. 5289-5294.
56.Keh, H.J. and S.C. Luo, Particle interactions in diffusiophoresis: Axisymmetric motion of multiple spheres in electrolyte gradients. Langmuir, 1996. 12(3): p. 657-667.
57.Keh, H.J. and J.S. Jan, Boundary effects on diffusiophoresis and electrophoresis: Motion of a colloidal sphere normal to a plane wall. Journal of Colloid and Interface Science, 1996. 183(2): p. 458-475.
58.Staffeld, P.O. and J.A. Quinn, DIFFUSION-INDUCED BANDING OF COLLOID PARTICLES VIA DIFFUSIOPHORESIS .1. ELECTROLYTES. Journal of Colloid and Interface Science, 1989. 130(1): p. 69-87.
59.Staffeld, P.O. and J.A. Quinn, DIFFUSION-INDUCED BANDING OF COLLOID PARTICLES VIA DIFFUSIOPHORESIS .2. NON-ELECTROLYTES. Journal of Colloid and Interface Science, 1989. 130(1): p. 88-100.
60.Ebel, J.P., J.L. Anderson, and D.C. Prieve, DIFFUSIOPHORESIS OF LATEX-PARTICLES IN ELECTROLYTE GRADIENTS. Langmuir, 1988. 4(2): p. 396-406.
61.Lechnick, W.J. and J.A. Shaeiwitz, ELECTROLYTE CONCENTRATION-DEPENDENCE OF DIFFUSIOPHORESIS IN LIQUIDS. Journal of Colloid and Interface Science, 1985. 104(2): p. 456-470.
62.Shaeiwitz, J.A. and W.J. Lechnick, TERNARY DIFFUSION FORMULATION FOR DIFFUSIOPHORESIS. Chemical Engineering Science, 1984. 39(5): p. 799-807.
63.Bikerman, J., XXXIX. Structure and capacity of electrical double layer. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1942. 33(220): p. 384-397.
64.Borukhov, I., D. Andelman, and H. Orland, Steric effects in electrolytes: A modified Poisson-Boltzmann equation. Physical review letters, 1997. 79(3): p. 435.
65.Kékicheff, P., et al., Charge reversal seen in electrical double layer interaction of surfaces immersed in 2: 1 calcium electrolyte. The Journal of chemical physics, 1993. 99(8): p. 6098-6113.
66.Ise, N., Long‐range electrostatic attraction between macroions mediated by oppositely charged counterions: Experimental supports, past and present. Berichte der Bunsengesellschaft für physikalische Chemie, 1996. 100(6): p. 841-848.
67.Greberg, H. and R. Kjellander, Charge inversion in electric double layers and effects of different sizes for counterions and coions. The Journal of chemical physics, 1998. 108(7): p. 2940-2953.
68.Grosberg, A.Y., T. Nguyen, and B. Shklovskii, Colloquium: the physics of charge inversion in chemical and biological systems. Reviews of modern physics, 2002. 74(2): p. 329.
69.Levin, Y., Electrostatic correlations: from plasma to biology. Reports on progress in physics, 2002. 65(11): p. 1577.
70.Lyklema, J., Overcharging, charge reversal: chemistry or physics? Colloids and surfaces A: physicochemical and engineering aspects, 2006. 291(1-3): p. 3-12.
71.Mezger, M., et al., Molecular layering of fluorinated ionic liquids at a charged sapphire (0001) surface. Science, 2008. 322(5900): p. 424-428.
72.Kondrat, S. and A. Kornyshev, Superionic state in double-layer capacitors with nanoporous electrodes. Journal of Physics: Condensed Matter, 2010. 23(2): p. 022201.
73.Gao, Y., et al., Charge Transport in Confined Concentrated Solutions: A Minireview. Current Opinion in Electrochemistry, 2018.
74.Merlet, C., et al., Computer simulations of ionic liquids at electrochemical interfaces. Physical Chemistry Chemical Physics, 2013. 15(38): p. 15781-15792.
75.Huang, J., Confinement Induced Dilution: Electrostatic Screening Length Anomaly in Concentrated Electrolytes in Confined Space. The Journal of Physical Chemistry C, 2018. 122(6): p. 3428-3433.
76.Bazant, M.Z., B.D. Storey, and A.A. Kornyshev, Double layer in ionic liquids: Overscreening versus crowding. Physical Review Letters, 2011. 106(4): p. 046102.
77.Kondrat, S., D. Vella, and A. Goriely, Dynamics of ion transport in ionic liquids. Physical review letters, 2015. 115(10): p. 106101.
78.Wang, C., et al., Modeling electrokinetics in ionic liquids. Electrophoresis, 2017.
79.Ferguson, T.R. and M.Z. Bazant, Nonequilibrium thermodynamics of porous electrodes. Journal of The Electrochemical Society, 2012. 159(12): p. A1967-A1985.
80.Kilic, M.S., M.Z. Bazant, and A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Physical review E, 2007. 75(2): p. 021502.
81.Kilic, M.S., M.Z. Bazant, and A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Physical review E, 2007. 75(2): p. 021503.
82.Stern, O., The theory of the electrolytic double-layer. Z. Elektrochem, 1924. 30(508): p. 1014-1020.
83.Kornyshev, A.A., Double-layer in ionic liquids: paradigm change? 2007, ACS Publications.
84.Horng, T.-L., P.-H. Tsai, and T.-C. Lin, Modification of Bikerman model with specific ion sizes. Computational and Mathematical Biophysics, 2017. 5(1): p. 142-149.
85.Manciu, M. and E. Ruckenstein, Lattice site exclusion effect on the double layer interaction. Langmuir, 2002. 18(13): p. 5178-5185.
86.Kjellander, R., et al., Double layer interactions in mono‐and divalent electrolytes: A comparison of the anisotropic HNC theory and Monte Carlo simulations. The Journal of Chemical Physics, 1992. 97(2): p. 1424-1431.
87.Henderson, D., L. Blum, and W.R. Smith, Application of the hypernetted chain approximation to the electric double layer at a charged planar interface. Chemical Physics Letters, 1979. 63(2): p. 381-383.
88.Rosenfeld, Y., Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Physical review letters, 1989. 63(9): p. 980.
89.Kierlik, E. and M. Rosinberg, Density-functional theory for inhomogeneous fluids: adsorption of binary mixtures. Physical Review A, 1991. 44(8): p. 5025.
90.Rosenfeld, Y., Free energy model for inhomogeneous fluid mixtures: Yukawa‐charged hard spheres, general interactions, and plasmas. The Journal of chemical physics, 1993. 98(10): p. 8126-8148.
91.Roth, R., Fundamental measure theory for hard-sphere mixtures: a review. Journal of Physics: Condensed Matter, 2010. 22(6): p. 063102.
92.Roth, R. and D. Gillespie, Shells of charge: a density functional theory for charged hard spheres. Journal of Physics: Condensed Matter, 2016. 28(24): p. 244006.
93.Outhwaite, C.W. and L.B. Bhuiyan, An improved modified Poisson–Boltzmann equation in electric-double-layer theory. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1983. 79(5): p. 707-718.
94.Lee, A.A., et al., Are room-temperature ionic liquids dilute electrolytes? The journal of physical chemistry letters, 2015. 6(1): p. 159-163.
95.Kuhn, P.S., Y. Levin, and M.C. Barbosa, Charge inversion in DNA–amphiphile complexes: possible application to gene therapy. Physica A: Statistical Mechanics and its Applications, 1999. 274(1-2): p. 8-18.
96.Kjellander, R., Nonlocal electrostatics in ionic liquids: The key to an understanding of the screening decay length and screened interactions. The Journal of chemical physics, 2016. 145(12): p. 124503.
97.Hildebrandt, A., et al., Novel formulation of nonlocal electrostatics. Physical review letters, 2004. 93(10): p. 108104.
98.Santangelo, C.D., Computing counterion densities at intermediate coupling. Physical Review E, 2006. 73(4): p. 041512.
99.Hatlo, M.M. and L. Lue, Electrostatic interactions of charged bodies from the weak-to the strong-coupling regime. EPL (Europhysics Letters), 2010. 89(2): p. 25002.
100.López-García, J., M. Aranda-Rascón, and J. Horno, Excluded volume effect on the electrophoretic mobility of colloidal particles. Journal of colloid and interface science, 2008. 323(1): p. 146-152.
101.Semenov, I., et al., Electrophoretic mobility and charge inversion of a colloidal particle studied by single-colloid electrophoresis and molecular dynamics simulations. Physical Review E, 2013. 87(2): p. 022302.
102.Stout, R.F. and A.S. Khair, A continuum approach to predicting electrophoretic mobility reversals. Journal of Fluid Mechanics, 2014. 752.
103.Prieve, D.C., et al., Diffusiophoresis of charged colloidal particles in the limit of very high salinity. Proceedings of the National Academy of Sciences, 2019. 116(37): p. 18257-18262.
104.Yanes, E.G., et al., Capillary electrophoretic application of 1-alkyl-3-methylimidazolium-based ionic liquids. Analytical chemistry, 2001. 73(16): p. 3838-3844.
105.Jiang, T.-F., et al., Dynamically coating the capillary with 1-alkyl-3-methylimidazolium-based ionic liquids for separation of basic proteins by capillary electrophoresis. Analytica chimica acta, 2003. 479(2): p. 249-254.
106.Mwongela, S.M., et al., Separation of achiral and chiral analytes using polymeric surfactants with ionic liquids as modifiers in micellar electrokinetic chromatography. Analytical chemistry, 2003. 75(22): p. 6089-6096.
107.Tian, K., et al., Separation and determination of lignans from seeds of Schisandra species by micellar electrokinetic capillary chromatography using ionic liquid as modifier. Journal of Chromatography A, 2005. 1078(1-2): p. 181-187.
108.Wu, X., et al., Simultaneous separation of basic and acidic proteins using 1‐butyl‐3‐methylimidazolium‐based ion liquid as dynamic coating and background electrolyte in capillary electrophoresis. Electrophoresis, 2008. 29(11): p. 2356-2362.
109.Zhou, C., et al., β‐cyclodextrin‐ionic liquid polymer based dynamically coating for simultaneous determination of tetracyclines by capillary electrophoresis. Electrophoresis, 2017. 38(7): p. 1060-1067.
110.Wahl, J. and U. Holzgrabe, Capillary electrophoresis separation of phenethylamine enantiomers using amino acid based ionic liquids. Journal of pharmaceutical and biomedical analysis, 2018. 148: p. 245-250.
111.Storey, B.D. and M.Z. Bazant, Effects of electrostatic correlations on electrokinetic phenomena. Physical Review E, 2012. 86(5): p. 056303.
112.Liu, J.-L., D. Xie, and B. Eisenberg, Poisson-Fermi formulation of nonlocal electrostatics in electrolyte solutions. Computational and Mathematical Biophysics, 2017. 5(1): p. 116-124.
113.Happel, J. and H. Brenner, Low Reynolds number hydrodynamics: with special applications to particulate media. Vol. 1. 2012: Springer Science & Business Media.
114.Helmholtz, H.v., Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierisch‐elektrischen Versuche (Schluss.). Annalen der Physik, 1853. 165(7): p. 353-377.
115.Shin, S., et al., Membraneless water filtration using CO2. Nature Communications, 2017. 8: p. 15181.
116.Abhyankar, V.V., et al., Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab on a Chip, 2006. 6(3): p. 389-393.
117.O'Brien, R.W. and L.R. White, Electrophoretic mobility of a spherical colloidal particle. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1978. 74: p. 1607-1626.
118.Canuto, C., et al., Spectral methods in fluid dynamics. 2012: Springer Science & Business Media.
119.Stout, R.F. and A.S. Khair, Influence of ion sterics on diffusiophoresis and electrophoresis in concentrated electrolytes. Physical Review Fluids, 2017. 2(1): p. 014201.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top