跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 20:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏詩涵
研究生(外文):SHIH-HAN WEI
論文名稱:利用氟化物進行鋰離子電池矽碳負極表面改質
論文名稱(外文):Surface Modification of Li-ion Battery Silicon-Carbon Anode with Fluorinated Polymers
指導教授:吳乃立
指導教授(外文):Nae-Lih Wu
口試委員:吳弘俊李文亞
口試委員(外文):Hung-Chun WuWen-Ya Lee
口試日期:2020-07-07
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:202
中文關鍵詞:矽-碳複合負極表面改質人工高分子固體電解質介面膜光固化製程自組裝膜
外文關鍵詞:Silicon-carbon composite anodeSurface modificationArtificial polymer solid electrolyte interfacePhoto-curing processSelf-assembled monolayer
DOI:10.6342/NTU202001640
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
穩定性佳的鋰離子電池(LIBs)如今已成為最重要的儲能設備之一。然而,近年來便攜式電子設備與電動汽車的飛速發展,開發新一代具更高能量密度與更長循環壽命之鋰離子電池是眼前最重要的課題。當前,除石墨因循環壽命較佳穩坐於商業化之負極材料代表。矽基材料的負極其因來源豐富、理論比容量高(3600mAh/g,Li15Si4)與低工作電位平台而引起人們的興趣。不幸的是,其最大的問題在於重複的充放電過程中會產生嚴重的體積膨脹(420%)進而造成活性物質與集電器的分離,矽基材料顆粒本身因破碎與反覆生成過厚且不穩的固體-電解質介面膜(SEI),最終導致電容量快速衰退與較差的循環穩定性。
於本研究中,藉由打造一層具良好機械性質、離子導電率、鋰離子遷移率(tLi+)、熱穩定性及化學穩定性之高分子人造固體電解質介面膜(A-SEI)於矽-碳負極表面以減少活性物質與電解質之間的直接接觸,從而減少電解液因界面不可逆之反應被持續消耗的問題。同時我們發現該層鍍膜有助於增加矽顆粒結構的穩定性。我們主要選用含氟高分子材料進行矽-碳負極(MS-51)的表面改質。
Poly (vinylidene fluoride) (PVDF)因常被用於鋰離子電池中之黏著劑,此可間接證明PVDF具化學惰性,故其為此系統中之首選。將PVDF直接披覆於矽-碳極片表面,藉由負壓環境使高分子滲入極片中顆粒與顆粒間的空隙,使其不僅能減少電解液的接觸亦可以同時作為緩衝層,此方法有著可在不破壞電極片結構優勢下進行改質。接著我們發現於高分子膜中添加少量路易士酸式無機氧化物(Al2O3,AlF3)有助於吸收充放電過程中不斷產生的自由基以減少不可逆反應發生,而更加有效地提升循環壽命及穩定性。再者,為了增加實際應用之多元性及機動性,同時希望可更完全包覆活物粉體之表面以更有效的隔絕與電解液的直接接觸,除了針對電極片直接批覆改質,我們另外嘗試對顆粒進行鍍膜並且得到更好的循環表現結果。
經過實驗驗證高分子表面改質的可行性,我們進一步開創不同的製程方法,以新的高分子材料披覆於矽-碳負極極片表面。首先,使用PVDF的共聚合物Poly (vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP),其因HFP鏈段的加入改變原屬塑性的PVDF性質,使其具彈性且柔軟的特質以提升包覆矽-碳負極顆粒表面的完整性。再將PVDF-HFP與交聯劑經由光固化製程形成網狀結構,使其在保有彈性的性質下同時具抵抗溶劑分解的能力。除機械性質的改變,我們也發現高分子膜因結晶度的下降使其有較高的離子導電度,且量測鋰離子遷移率亦有所提升,此不僅能延長循環壽命,同時提升其於高速率充放電下的表現。此新型高分子在循環測試中表現優於純PVDF膜。
經過實驗得知,此款矽-碳負極(MS-51)衰退的機制其主因為不穩定的顆粒結構導致,最外層披覆的石墨層在充放電過程中因應力改變而有脫落的可能性,此將造成電解液因二次接觸新鮮露出的矽顆粒而持續消耗形成過厚的SEI。因此,針對如何完整包覆顆粒且不影響電子傳導路徑之問題,我們嘗試利用氟烷基矽烷與矽-碳負極表面原生的羥基或氧基團,使其藉由自組裝反應於其表面形成低聚合物膜。在所有改質中,此新方法展現最佳的循環壽命及穩定性。總體而言,我們藉由不同方法於矽-碳負極極片或顆粒上建造出不同特性的高分子膜作為人造固體電解質介面膜(A-SEI)。並找出適合本研究主要材料MS51之高分子特性。成功地有效提升其整體電性表現。
Lithium-ion batteries (LIBs) with good stability have become one of the most popular energy storage devices. However, in recent years, the rapid development of portable electronic devices and electric vehicles, the development of a new generation of lithium-ion batteries with higher energy density and longer cycle life is the most important issue at hand. The silicon-based anode materials have attracted people’s interest because of its abundant sources, high theoretical specific capacity (3600mAh/g, Li15Si4), and low working potential platform. Unfortunately, the major problem with Si-based anode is the extreme volume expansion (420%) during the repeated lithiation /de-lithiation process, causing delamination between the active materials and the current collector, pulverization of Si materials, and repeated generation of thick unstable solid-electrolyte interface (SEI) film, resulting in rapid capacity fading and poor cycling stability.
In this study, by engineering layer of polymer artificial solid electrolyte interface film(A-SEI) with good mechanical strength, ionic conductivity, Li+ transference number(tLi+), thermal stability and chemical stability on the Si anode surface, which can prevent the direct contact between the active material and the electrolyte to reduce the irreversible reaction and help to increase the stability of the Si particles structure. We mainly choose the fluorine-containing polymer to modify the Si/C anode (MS-51) surface.
Poly (vinylidene fluoride) (PVDF) is the first choice due to good electrochemical stability. And we use electrode (impregnation) coating, which makes the polymer penetrate into the gap of the electrode to form an A-SEI layer without destroying the structure of the electrode itself under a negative pressure environment, it can not only reduce the contact of the electrolyte but also act as a buffer layer at the same time. Then we found that Lewis acid inorganic oxides (Al2O3, AlF3) added into the polymer film will more effectively improve the performance due to the absorption of the free radicals generated during the charge/discharge process can reduce the irreversible reactions. In addition to direct modification of the electrode, we additionally tried to coat on the particles, which is more completely covered, and get better cycle performance results.
The feasibility of polymer surface modification is confirmed, we further develop different methods to modify the silicon electrode surface with new polymer materials. First, the PVDF copolymer (Poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) is used due to the addition of HFP segments, making it flexible and soft to improve the coating integrity, which is formed into a network structure with cross-linker through a photo-curing process. And we also found that polymer films have higher ion conductivity due to the decrease in crystallinity, and the measured tLi+ has also been increased. This not only extends the cycle life but also improves the rate capability.
It is known the mechanism of the decline of the electrode (MS-51) is mainly due to the unstable particle structure. The pitch coating on the outermost layer may fall off due to stress changes during charge and discharge. This will cause the second exposure of fresh silicon particles to form an excessively thick SEI. Thus, for the problem of how to completely coat the particles without affecting the electron conduction path, we tried to use the fluoroalkyl silane and the native hydroxyl or oxygen groups on the surface of the silicon-carbon anode with self-assembled reaction to form an oligomer layer. This new method exhibits the best cycle life and stability. In general, we use different methods to build polymer films with different characteristics on the Si/C electrode or particles as artificial solid electrolyte interface films (A-SEI). And find out the suitable polymer for the main material of this study MS51. Successfully and effectively improve its overall electrical performance.
致謝 I
摘要 III
Abstract V
Table of Contents VII
List of Tables XI
List of Figures XIV
Chapter 1 Introduction 1
1-1 Background 1
1-2 Motivations and Objectives 2
Chapter 2 Literature Review 4
2-1 Features of Rechargeable Lithium-ion Batteries 4
2-2 Introduction to Anode Materials for Lithium-ion Batteries 7
2-2-1 Insertion-Type Materials 8
2-2-2 Alloying-Type Materials 9
2-2-3 Conversion-Type Materials 9
2-3 Silicon Anode Materials 11
2-3-1 Major Problems of the Silicon Anodes 12
2-3-2 Possible Solutions 13
2-3-2-1 Nanostructured Design of Pure Silicon materials 13
2-3-2-2 Electrolyte Additives-Fluoroethylene Carbonate (FEC) 15
2-3-2-3 Binders 17
2-3-2-4 Silicon-Carbon Composite Anode Materials 24
2-4 Polymer Surface Modification 30
Chapter 3 Experimental 36
3-1 Materials and Chemicals 36
3-2 Synthesis of Materials 38
3-2-1 Preparation of Fluorinated Polymer Solutions 38
3-2-2 Ball Milling of Inorganic Oxide Powder 39
3-2-3 Preparation of Photo‐Curable Poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) Solution 40
3-2-4 Surface Modification of Electrode 41
3-2-4-1 Polymer Impregnation Coating 41
3-2-4-2 Photo-Curable PVDF-HFP Electrode Coating 42
3-2-4-3 Liquid Phase Deposition (LPD) 42
3-2-4-4 Chemical Vapor Deposition (CVD) 43
3-2-5 Polymer Particle Coating 44
3-3 Material Characterizations and Analysis 45
3-3-1 Scanning Electron Microscopy 45
3-3-2 Thermal Analysis 45
3-3-3 X-ray Diffraction 46
3-3-4 Tensile Testing 47
3-3-5 Contact Angle Measurement 49
3-3-6 Fourier Transform InfraRed (FT-IR) 49
3-3-7 Powder Electrical Conductivity Measurement 50
3-4 Electrochemical Characterizations 51
3-4-1 Preparation of Electrodes 51
3-4-2 Assembling Coin Cells 52
3-4-3 Discharge/Charge Test 53
3-4-4 Electrochemical Impedance Spectroscopy 54
3-4-5 Polymer Film Ionic Conductivity Measurement 55
3-4-6 Transference Number Analysis 56
Chapter 4 Polyvinylidene Fluoride (PVDF) Coating of Silicon-Carbon Electrode 58
4-1 Introduction 58
4-2 Different Concentration of PVDF Coating 60
4-2-1 Material Characterization 60
4-2-2 Electrochemical Performance 69
4-3 Effect of Inorganic Oxide Additives 84
4-3-1 Inorganic Oxide Additives without Ball-Milling 84
4-3-1-1 Material Characterization 85
4-3-1-2 Electrochemical Performance 91
4-3-2 The Inorganic Oxide (Al2O3) Additives with Ball-Milling 102
4-4 Verification of Surface Modification with Higher-Capacity Si/C Electrode 105
4-4-1 Material Characterization 105
4-4-2 Electrochemical Performance 108
Chapter 5 Silicon-Carbon Particle Coating by Using PVDF Polymer 122
5-1 Introduction 122
5-2 The Optimal Temperature for Coating Process 124
5-3 The Performance of Particle Polymer Coating 127
5-3-1 Material Characterization 127
5-3-2 Electrochemical Performance 132
5-4 Improving the Performance by Adding the Super P into the Polymer Solution 137
5-4-1 Material Characterization 137
5-4-2 Electrochemical Performance 138
Chapter 6 Photo-Curable PVDF-HFP Polymer and Fluorinated Oligomer for Modifying Silicon-Carbon Electrode 150
6-1 Introduction 150
6-1-1 Photo-Curable PVDF-HFP Polymer 150
6-1-2 Self-Assembly of Fluorinated Oligomer 152
6-2 Materials Characterizations 154
6-3 Electrochemical Performance 167
Chapter 7 Conclusion and Outlook 183
7-1 Conclusion 183
7-2 Outlook 185
Reference 186
Appendix 195
1.H. Akimoto, "Global air quality and pollution", Science, 302, 1716-1719 (2003)
2.K. Mukhopadhyay and O. Forssell, "An empirical investigation of air pollution from fossil fuel combustion and its impact on health in India during 1973–1974 to 1996–1997", Ecological Economics, 55, 235-250 (2005)
3.A. G. Chmielewski, "Environmental effects of fossil fuel combustion", Interaction: Energy/Environment, (1999)
4.S. Hameed and J. Dignon, "Global emissions of nitrogen and sulfur oxides in fossil fuel combustion 1970–1986", Journal of the Air & Waste Management Association, 42, 159-163 (1992)
5.S. Jacobsson and A. Johnson, "The diffusion of renewable energy technology: an analytical framework and key issues for research", Energy policy, 28, 625-640 (2000)
6.Eurostat and U. e. C. européenne, Energy, transport and environment indicators. Vol. 2. Office for Official Publications of the European Communities.(2011)
7.M. A. Hannan, M. H. Lipu, A. Hussain, and A. Mohamed, "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations", Renewable and Sustainable Energy Reviews, 78, 834-854 (2017)
8.S. Megahed and B. Scrosati, "Lithium-ion rechargeable batteries", Journal of Power Sources, 51, 79-104 (1994)
9.B. Scrosati, "Recent advances in lithium ion battery materials", Electrochimica Acta, 45, 2461-2466 (2000)
10.V. A. Agubra and J. W. Fergus, "The formation and stability of the solid electrolyte interface on the graphite anode", Journal of Power Sources, 268, 153-162 (2014)
11.G. Bieker, M. Winter, and P. Bieker, "Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode", Physical Chemistry Chemical Physics, 17, 8670-8679 (2015)
12.X.-B. Cheng and Q. Zhang, "Dendrite-free lithium metal anodes: stable solid electrolyte interphases for high-efficiency batteries", Journal of Materials Chemistry A, 3, 7207-7209 (2015)
13.X.-B. Cheng, R. Zhang, C.-Z. Zhao, and Q. Zhang, "Toward safe lithium metal anode in rechargeable batteries: a review", Chemical reviews, 117, 10403-10473 (2017)
14.T. Hatchard and J. Dahn, "In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon", Journal of The Electrochemical Society, 151, A838-A842 (2004)
15.X. H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki, L. Q. Zhang, Y. Liu, A. Kushima, W. T. Liang, and J. W. Wang, "Anisotropic swelling and fracture of silicon nanowires during lithiation", Nano letters, 11, 3312-3318 (2011)
16.A. L. Michan, G. Divitini, A. J. Pell, M. Leskes, C. Ducati, and C. P. Grey, "Solid electrolyte interphase growth and capacity loss in silicon electrodes", Journal of the American Chemical Society, 138, 7918-7931 (2016)
17.P. Zuo, G. Yin, and Y. Ma, "Electrochemical stability of silicon/carbon composite anode for lithium ion batteries", Electrochimica acta, 52, 4878-4883 (2007)
18.F. Dou, L. Shi, G. Chen, and D. Zhang, "Silicon/carbon composite anode materials for lithium-ion batteries", Electrochemical Energy Reviews, 2, 149-198 (2019)
19.R. Hill, "Application of diffraction techniques in studies of lead/acid battery performance", Journal of power sources, 11, 19-32 (1984)
20.M. Winter and J. O. Besenhard, "Wiederaufladbare batterien", Chemie in unserer Zeit, 33, 252-266 (1999)
21.H. Bode, "Lead-acid batteries", (1977)
22.H. Ogawa, M. Ikoma, H. Kawano, and I. Matsumoto. Metal hydride electrode for high energy density sealed nickel-metal hydride battery. in Power Sources 12: Research and Development in Non-Mechanical Electrical Power Sources. 1988.
23.E. Peled, "The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model", Journal of The Electrochemical Society, 126, 2047 (1979)
24.W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J.-G. Zhang, "Lithium metal anodes for rechargeable batteries", Energy & Environmental Science, 7, 513-537 (2014)
25.X. B. Cheng, R. Zhang, C. Z. Zhao, F. Wei, J. G. Zhang, and Q. Zhang, "A review of solid electrolyte interphases on lithium metal anode", Advanced Science, 3, 1500213 (2016)
26.O. Crowther and A. C. West, "Effect of electrolyte composition on lithium dendrite growth", Journal of The Electrochemical Society, 155, A806-A811 (2008)
27.D. Lin, Y. Liu, and Y. Cui, "Reviving the lithium metal anode for high-energy batteries", Nature nanotechnology, 12, 194 (2017)
28.B. Scrosati, "Lithium rocking chair batteries: An old concept?", Journal of The Electrochemical Society, 139, 2776-2781 (1992)
29.A. Väyrynen and J. Salminen, "Lithium ion battery production", The Journal of Chemical Thermodynamics, 46, 80-85 (2012)
30.K. Mizushima, P. Jones, P. Wiseman, and J. B. Goodenough, "LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density", Materials Research Bulletin, 15, 783-789 (1980)
31.J. Besenhard, "The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes", Carbon, 14, 111-115 (1976)
32.S. Basu, Rechargeable battery. 1981, Google Patents.
33.K. Ozawa, "Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system", Solid State Ionics, 69, 212-221 (1994)
34.Y. Nishi, "The development of lithium ion secondary batteries", The Chemical Record, 1, 406-413 (2001)
35.S. Yuvaraj, R. K. Selvan, and Y. S. Lee, "An overview of AB 2 O 4-and A 2 BO 4-structured negative electrodes for advanced Li-ion batteries", Rsc Advances, 6, 21448-21474 (2016)
36.M. Gauthier, T. J. Carney, A. Grimaud, L. Giordano, N. Pour, H.-H. Chang, D. P. Fenning, S. F. Lux, O. Paschos, and C. Bauer, "Electrode–electrolyte interface in Li-ion batteries: Current understanding and new insights", The journal of physical chemistry letters, 6, 4653-4672 (2015)
37.A. Wang, S. Kadam, H. Li, S. Shi, and Y. Qi, "Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries", npj Computational Materials, 4, 15 (2018)
38.H. Schranzhofer, J. Bugajski, H. Santner, C. Korepp, J. Besenhard, M. Winter, and W. Sitte, "Electrochemical impedance spectroscopy study of the SEI formation on graphite and metal electrodes", Journal of Power Sources, 153, 391-395 (2006)
39.N. Takami, A. Satoh, M. Hara, and T. Ohsaki, "Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries", Journal of The Electrochemical Society, 142, 371-379 (1995)
40.Q. Liu, C. Du, B. Shen, P. Zuo, X. Cheng, Y. Ma, G. Yin, and Y. Gao, "Understanding undesirable anode lithium plating issues in lithium-ion batteries", RSC advances, 6, 88683-88700 (2016)
41.D. Aurbach, E. Zinigrad, Y. Cohen, and H. Teller, "A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions", Solid state ionics, 148, 405-416 (2002)
42.A. Mauger, H. Xie, and C. M. Julien, "Composite anodes for lithium-ion batteries: status and trends", (2016)
43.M. Osiak, H. Geaney, E. Armstrong, and C. O'Dwyer, "Structuring materials for lithium-ion batteries: advancements in nanomaterial structure, composition, and defined assembly on cell performance", Journal of Materials Chemistry A, 2, 9433-9460 (2014)
44.K. Wu, J. Yang, Y. Zhang, C. Wang, and D. Wang, "Investigation on Li 4 Ti 5 O 12 batteries developed for hybrid electric vehicle", Journal of Applied Electrochemistry, 42, 989-995 (2012)
45.Y. Tang, L. Yang, S. Fang, and Z. Qiu, "Li4Ti5O12 hollow microspheres assembled by nanosheets as an anode material for high-rate lithium ion batteries", Electrochimica Acta, 54, 6244-6249 (2009)
46.N. Mahmood, T. Tang, and Y. Hou, "Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective", Advanced Energy Materials, 6, 1600374 (2016)
47.W.-J. Zhang, "A review of the electrochemical performance of alloy anodes for lithium-ion batteries", Journal of Power Sources, 196, 13-24 (2011)
48.Y. Lu, L. Yu, and X. W. D. Lou, "Nanostructured conversion-type anode materials for advanced lithium-ion batteries", Chem, 4, 972-996 (2018)
49.D. Bresser, S. Passerini, and B. Scrosati, "Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes", Energy & Environmental Science, 9, 3348-3367 (2016)
50.J. Lu, Z. Chen, F. Pan, Y. Cui, and K. Amine, "High-performance anode materials for rechargeable lithium-ion batteries", Electrochemical Energy Reviews, 1, 35-53 (2018)
51.B. Zhu, X. Wang, P. Yao, J. Li, and J. Zhu, "Towards high energy density lithium battery anodes: silicon and lithium", Chemical science, 10, 7132-7148 (2019)
52.H. Wu and Y. Cui, "Designing nanostructured Si anodes for high energy lithium ion batteries", Nano today, 7, 414-429 (2012)
53.M. Loveridge, R. Malik, S. Paul, K. Manjunatha, S. Gallanti, C. Tan, M. Lain, A. Roberts, and R. Bhagat, "Binder-free Sn–Si heterostructure films for high capacity Li-ion batteries", RSC advances, 8, 16726-16737 (2018)
54.T.-w. Kwon, J. W. Choi, and A. Coskun, "The emerging era of supramolecular polymeric binders in silicon anodes", Chemical Society Reviews, 47, 2145-2164 (2018)
55.X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, "Size-dependent fracture of silicon nanoparticles during lithiation", ACS nano, 6, 1522-1531 (2012)
56.C. K. Chan, R. Ruffo, S. S. Hong, and Y. Cui, "Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes", Journal of Power Sources, 189, 1132-1140 (2009)
57.R. Ruffo, S. S. Hong, C. K. Chan, R. A. Huggins, and Y. Cui, "Impedance analysis of silicon nanowire lithium ion battery anodes", The Journal of Physical Chemistry C, 113, 11390-11398 (2009)
58.J. Maranchi, A. Hepp, and P. Kumta, "High capacity, reversible silicon thin-film anodes for lithium-ion batteries", Electrochemical and solid-state letters, 6, A198-A201 (2003)
59.S. Ohara, J. Suzuki, K. Sekine, and T. Takamura, "A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life", Journal of power sources, 136, 303-306 (2004)
60.C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, "High-performance lithium battery anodes using silicon nanowires", Nature nanotechnology, 3, 31 (2008)
61.Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W. D. Nix, and Y. Cui, "Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life", Nano letters, 11, 2949-2954 (2011)
62.L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, "Epitaxial core–shell and core–multishell nanowire heterostructures", Nature, 420, 57-61 (2002)
63.H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, and L. Hu, "Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control", Nature nanotechnology, 7, 310 (2012)
64.N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. Wang, and Y. Cui, "A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes", Nano letters, 12, 3315-3321 (2012)
65.J. Cho, "Porous Si anode materials for lithium rechargeable batteries", Journal of Materials Chemistry, 20, 4009-4014 (2010)
66.C.-Y. Chen, T. Sano, T. Tsuda, K. Ui, Y. Oshima, M. Yamagata, M. Ishikawa, M. Haruta, T. Doi, and M. Inaba, "In situ scanning electron microscopy of silicon anode reactions in lithium-ion batteries during charge/discharge processes", Scientific reports, 6, 36153 (2016)
67.N.-S. Choi, K. H. Yew, K. Y. Lee, M. Sung, H. Kim, and S.-S. Kim, "Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode", Journal of Power Sources, 161, 1254-1259 (2006)
68.C. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Björefors, K. Edström, and T. r. Gustafsson, "Improved performance of the silicon anode for Li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive", Chemistry of Materials, 27, 2591-2599 (2015)
69.K. Schroder, J. Alvarado, T. A. Yersak, J. Li, N. Dudney, L. J. Webb, Y. S. Meng, and K. J. Stevenson, "The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes", Chemistry of Materials, 27, 5531-5542 (2015)
70.T. w. Kwon, Y. K. Jeong, I. Lee, T. S. Kim, J. W. Choi, and A. Coskun, "Systematic Molecular‐Level Design of Binders Incorporating Meldrum's Acid for Silicon Anodes in Lithium Rechargeable Batteries", Advanced Materials, 26, 7979-7985 (2014)
71.J.-S. Bridel, T. Azais, M. Morcrette, J.-M. Tarascon, and D. Larcher, "Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries", Chemistry of materials, 22, 1229-1241 (2010)
72.A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov, and G. Yushin, "Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid", ACS applied materials & interfaces, 2, 3004-3010 (2010)
73.Y. Park, S. Lee, S.-H. Kim, B. Y. Jang, J. S. Kim, S. M. Oh, J.-Y. Kim, N.-S. Choi, K. T. Lee, and B.-S. Kim, "A photo-cross-linkable polymeric binder for silicon anodes in lithium ion batteries", Rsc Advances, 3, 12625-12630 (2013)
74.G. Zhang, Y. Yang, Y. Chen, J. Huang, T. Zhang, H. Zeng, C. Wang, G. Liu, and Y. Deng, "A Quadruple‐Hydrogen‐Bonded Supramolecular Binder for High‐Performance Silicon Anodes in Lithium‐Ion Batteries", Small, 1801189 (2018)
75.B. Koo, H. Kim, Y. Cho, K. T. Lee, N. S. Choi, and J. Cho, "A highly cross‐linked polymeric binder for high‐performance silicon negative electrodes in lithium ion batteries", Angewandte Chemie International Edition, 51, 8762-8767 (2012)
76.J. Song, M. Zhou, R. Yi, T. Xu, M. L. Gordin, D. Tang, Z. Yu, M. Regula, and D. Wang, "Interpenetrated gel polymer binder for high‐performance silicon anodes in lithium‐ion batteries", Advanced functional materials, 24, 5904-5910 (2014)
77.L. Wei, C. Chen, Z. Hou, and H. Wei, "Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries", Scientific reports, 6, 19583 (2016)
78.J. Yang, L. Zhang, T. Zhang, X. Wang, Y. Gao, and Q. Fang, "Self-healing strategy for Si nanoparticles towards practical application as anode materials for Li-ion batteries", Electrochemistry Communications, 87, 22-26 (2018)
79.T. M. Higgins, S.-H. Park, P. J. King, C. Zhang, N. McEvoy, N. C. Berner, D. Daly, A. Shmeliov, U. Khan, and G. Duesberg, "A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes", Acs Nano, 10, 3702-3713 (2016)
80.D. Liu, Y. Zhao, R. Tan, L.-L. Tian, Y. Liu, H. Chen, and F. Pan, "Novel conductive binder for high-performance silicon anodes in lithium ion batteries", Nano Energy, 36, 206-212 (2017)
81.S. Hu, L. Wang, T. Huang, and A. Yu, "A conductive self-healing hydrogel binder for high-performance silicon anodes in lithium-ion batteries", Journal of Power Sources, 449, 227472 (2020)
82.D. C. Johnson, J. M. Mosby, S. C. Riha, and A. L. Prieto, "Synthesis of copper silicide nanocrystallites embedded in silicon nanowires for enhanced transport properties", Journal of Materials Chemistry, 20, 1993-1998 (2010)
83.J.-H. Kim, H. Kim, and H.-J. Sohn, "Addition of Cu for carbon coated Si-based composites as anode materials for lithium-ion batteries", Electrochemistry communications, 7, 557-561 (2005)
84.P. Zuo, G. Yin, X. Hao, Z. Yang, Y. Ma, and Z. Gao, "Synthesis and electrochemical performance of Si/Cu and Si/Cu/graphite composite anode", Materials chemistry and physics, 104, 444-447 (2007)
85.X. Feng, J. Yang, P. Gao, J. Wang, and Y. Nuli, "Facile approach to an advanced nanoporous silicon/carbon composite anode material for lithium ion batteries", Rsc Advances, 2, 5701-5706 (2012)
86.J. R. Szczech and S. Jin, "Nanostructured silicon for high capacity lithium battery anodes", Energy & Environmental Science, 4, 56-72 (2011)
87.N. Dimov, S. Kugino, and M. Yoshio, "Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations", Electrochimica Acta, 48, 1579-1587 (2003)
88.P. L. Valint Jr, G. L. Grobe III, D. M. Ammon Jr, and J. A. McGee, Plasma surface treatment of silicone hydrogel contact lenses with a flexible carbon coating. 2001, Google Patents.
89.H. Tao, L. Xiong, S. Zhu, L. Zhang, and X. Yang, "Porous Si/C/reduced graphene oxide microspheres by spray drying as anode for Li-ion batteries", Journal of Electroanalytical Chemistry, 797, 16-22 (2017)
90.L. Hu, H. Wu, Y. Gao, A. Cao, H. Li, J. McDough, X. Xie, M. Zhou, and Y. Cui, "Silicon–Carbon Nanotube Coaxial Sponge as Li‐Ion Anodes with High Areal Capacity", Advanced Energy Materials, 1, 523-527 (2011)
91.J. Guo, A. Sun, X. Chen, C. Wang, and A. Manivannan, "Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy", Electrochimica Acta, 56, 3981-3987 (2011)
92.J. Y. Howe, D. J. Burton, Y. Qi, H. M. Meyer III, M. Nazri, G. A. Nazri, A. C. Palmer, and P. D. Lake, "Improving microstructure of silicon/carbon nanofiber composites as a Li battery anode", Journal of Power Sources, 221, 455-461 (2013)
93.Y. Chen, Y. Hu, Z. Shen, R. Chen, X. He, X. Zhang, Y. Zhang, and K. Wu, "Sandwich structure of graphene-protected silicon/carbon nanofibers for lithium-ion battery anodes", Electrochimica Acta, 210, 53-60 (2016)
94.L. Su, Z. Zhou, and M. Ren, "Core double-shell Si@ SiO 2@ C nanocomposites as anode materials for Li-ion batteries", Chemical Communications, 46, 2590-2592 (2010)
95.X. Li, P. Meduri, X. Chen, W. Qi, M. H. Engelhard, W. Xu, F. Ding, J. Xiao, W. Wang, and C. Wang, "Hollow core–shell structured porous Si–C nanocomposites for Li-ion battery anodes", Journal of Materials Chemistry, 22, 11014-11017 (2012)
96.Y. Ru, D. G. Evans, H. Zhu, and W. Yang, "Facile fabrication of yolk–shell structured porous Si–C microspheres as effective anode materials for Li-ion batteries", Rsc Advances, 4, 71-75 (2014)
97.S. Jeong, J.-P. Lee, M. Ko, G. Kim, S. Park, and J. Cho, "Etched graphite with internally grown Si nanowires from pores as an anode for high density Li-ion batteries", Nano letters, 13, 3403-3407 (2013)
98.W.-J. Yu, C. Liu, P.-X. Hou, L. Zhang, X.-Y. Shan, F. Li, and H.-M. Cheng, "Lithiation of silicon nanoparticles confined in carbon nanotubes", ACS nano, 9, 5063-5071 (2015)
99.B. Wang, X. Li, X. Zhang, B. Luo, M. Jin, M. Liang, S. A. Dayeh, S. Picraux, and L. Zhi, "Adaptable silicon–carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes", ACS nano, 7, 1437-1445 (2013)
100.F. Luo, B. Liu, J. Zheng, G. Chu, K. Zhong, H. Li, X. Huang, and L. Chen, "Nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries", Journal of The Electrochemical Society, 162, A2509 (2015)
101.J. Luo, X. Zhao, J. Wu, H. D. Jang, H. H. Kung, and J. Huang, "Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes", The journal of physical chemistry letters, 3, 1824-1829 (2012)
102.S. H. Ng, J. Wang, D. Wexler, K. Konstantinov, Z. P. Guo, and H. K. Liu, "Highly reversible lithium storage in spheroidal carbon‐coated silicon nanocomposites as anodes for lithium‐ion batteries", Angewandte Chemie International Edition, 45, 6896-6899 (2006)
103.V. A. Sethuraman, K. Kowolik, and V. Srinivasan, "Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries", Journal of Power Sources, 196, 393-398 (2011)
104.Y. Yu, L. Gu, C. Zhu, S. Tsukimoto, P. A. van Aken, and J. Maier, "Reversible storage of lithium in silver‐coated three‐dimensional macroporous silicon", Advanced materials, 22, 2247-2250 (2010)
105.S. M. George, B. Yoon, and A. A. Dameron, "Surface Chemistry for Molecular Layer Deposition of Organic and Hybrid Organic− Inorganic Polymers", Accounts of chemical research, 42, 498-508 (2009)
106.B. H. Lee, B. Yoon, A. I. Abdulagatov, R. A. Hall, and S. M. George, "Growth and properties of hybrid organic‐inorganic metalcone films using molecular layer deposition techniques", Advanced Functional Materials, 23, 532-546 (2013)
107.D. M. Piper, J. J. Travis, M. Young, S. B. Son, S. C. Kim, K. H. Oh, S. M. George, C. Ban, and S. H. Lee, "Reversible High‐Capacity Si Nanocomposite Anodes for Lithium‐ion Batteries Enabled by Molecular Layer Deposition", Advanced Materials, 26, 1596-1601 (2014)
108.Y. He, D. M. Piper, M. Gu, J. J. Travis, S. M. George, S.-H. Lee, A. Genc, L. Pullan, J. Liu, and S. X. Mao, "In situ transmission electron microscopy probing of native oxide and artificial layers on silicon nanoparticles for lithium ion batteries", Acs Nano, 8, 11816-11823 (2014)
109.D. M. Piper, Y. Lee, S.-B. Son, T. Evans, F. Lin, D. Nordlund, X. Xiao, S. M. George, S.-H. Lee, and C. Ban, "Cross-linked aluminum dioxybenzene coating for stabilization of silicon electrodes", Nano Energy, 22, 202-210 (2016)
110.R. Na, K. Minnici, G. Zhang, N. Lu, M. A. González, G. Wang, and E. Reichmanis, "Electrically Conductive Shell-Protective Layer Capping on the Silicon Surface as the Anode Material for High-Performance Lithium-Ion Batteries", ACS Applied Materials & Interfaces, 11, 40034-40042 (2019)
111.J. Gao, C. Sun, L. Xu, J. Chen, C. Wang, D. Guo, and H. Chen, "Lithiated Nafion as polymer electrolyte for solid-state lithium sulfur batteries using carbon-sulfur composite cathode", Journal of Power Sources, 382, 179-189 (2018)
112.S. Jiang, Y. Lu, Y. Lu, M. Han, H. Li, Z. Tao, Z. Niu, and J. Chen, "Nafion/Titanium Dioxide‐Coated Lithium Anode for Stable Lithium–Sulfur Batteries", Chemistry–An Asian Journal, 13, 1379-1385 (2018)
113.N. Belousova, O. Goryaynova, and E. Melnikova. Performance evaluation of Al2O3 powder dispersion by bead and ball Mills. in Applied Mechanics and Materials. 2014. Trans Tech Publ.
114.G.-T. Chen, C.-H. Su, S.-H. Wei, T.-L. Shen, P.-H. Chung, Q.-M. Guo, W.-J. Chen, Y.-F. Chen, Y.-C. Liao, and W.-Y. Lee, "Photo‐Curable Ion‐Enhanced Fluorinated Elastomers for Pressure‐Sensitive Textiles", Advanced Intelligent Systems, 1900180
115.S. C. Ligon-Auer, M. Schwentenwein, C. Gorsche, J. Stampfl, and R. Liska, "Toughening of photo-curable polymer networks: a review", Polymer Chemistry, 7, 257-286 (2016)
116.K. Kourtakis, P. Bekiarian, G. Blackman, M. Lewittes, and S. Subramoney, "Novel thermal and photo curable anti-reflective coatings using fluoroelastomer nanocomposites and self-assembly of nanoparticles", Journal of Coatings Technology and Research, 13, 753-762 (2016)
117.M. Badv, I. Jaffer, and T. Didar, "An omniphobic lubricant-infused coating produced by chemical vapor deposition of hydrophobic organosilanes attenuates clotting on catheter surfaces", Scientific Reports, 7, (2017)
118.Y. Ito, A. A. Virkar, S. Mannsfeld, J. H. Oh, M. Toney, J. Locklin, and Z. Bao, "Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors", Journal of the American Chemical Society, 131, 9396-9404 (2009)
119.S. Kulinich and M. Farzaneh, "Alkylsilane self-assembled monolayers: modeling their wetting characteristics", Applied surface science, 230, 232-240 (2004)
120.P. W. Hoffmann, M. Stelzle, and J. F. Rabolt, "Vapor phase self-assembly of fluorinated monolayers on silicon and germanium oxide", Langmuir, 13, 1877-1880 (1997)
121.A. Hozumi, K. Ushiyama, H. Sugimura, and O. Takai, "Fluoroalkylsilane monolayers formed by chemical vapor surface modification on hydroxylated oxide surfaces", Langmuir, 15, 7600-7604 (1999)
122.S. Nagaraj, S. Shivanna, N. Subramani, and H. Siddaramaiah, "Revisiting powder X-ray diffraction technique: a powerful tool to characterize polymers and their composite films", J. Mater. Sci, 4, 1-5 (2016)
123.D. Zhou, K. Zhang, A. Ravey, F. Gao, and A. Miraoui, "Parameter sensitivity analysis for fractional-order modeling of lithium-ion batteries", Energies, 9, 123 (2016)
124.S. Zhang, K. Xu, and T. Jow, "EIS study on the formation of solid electrolyte interface in Li-ion battery", Electrochimica acta, 51, 1636-1640 (2006)
125.M. Oldenburger, B. Bedürftig, A. Gruhle, F. Grimsmann, E. Richter, R. Findeisen, and A. Hintennach, "Investigation of the low frequency Warburg impedance of Li-ion cells by frequency domain measurements", Journal of Energy Storage, 21, 272-280 (2019)
126.S. Suriyakumar, M. Kanagaraj, N. Angulakshmi, M. Kathiresan, K. S. Nahm, M. Walkowiak, K. Wasiński, P. Półrolniczak, and A. M. Stephan, "Charge–discharge studies of all-solid-state Li/LiFePO 4 cells with PEO-based composite electrolytes encompassing metal organic frameworks", RSC advances, 6, 97180-97186 (2016)
127.C. M. Costa, M. M. Silva, and S. Lanceros-Mendez, "Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications", Rsc Advances, 3, 11404-11417 (2013)
128.C. F. Francis, I. L. Kyratzis, and A. S. Best, "Lithium‐Ion Battery Separators for Ionic‐Liquid Electrolytes: A Review", Advanced Materials, 1904205 (2020)
129.J. C. Barbosa, J. P. Dias, S. Lanceros-Méndez, and C. M. Costa, "Recent advances in poly (vinylidene fluoride) and its copolymers for lithium-ion battery separators", Membranes, 8, 45 (2018)
130.R. Miao, B. Liu, Z. Zhu, Y. Liu, J. Li, X. Wang, and Q. Li, "PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries", Journal of Power Sources, 184, 420-426 (2008)
131.Y.-J. Kim, C. H. Ahn, M. B. Lee, and M.-S. Choi, "Characteristics of electrospun PVDF/SiO2 composite nanofiber membranes as polymer electrolyte", Materials Chemistry and Physics, 127, 137-142 (2011)
132.J. Xi, X. Qiu, J. Li, X. Tang, W. Zhu, and L. Chen, "PVDF–PEO blends based microporous polymer electrolyte: effect of PEO on pore configurations and ionic conductivity", Journal of power sources, 157, 501-506 (2006)
133.G.-L. Ji, B.-K. Zhu, Z.-Y. Cui, C.-F. Zhang, and Y.-Y. Xu, "PVDF porous matrix with controlled microstructure prepared by TIPS process as polymer electrolyte for lithium ion battery", Polymer, 48, 6415-6425 (2007)
134.Z. Chen, V. Chevrier, L. Christensen, and J. Dahn, "Design of amorphous alloy electrodes for Li-ion batteries: a big challenge", Electrochemical and Solid State Letters, 7, A310 (2004)
135.Z. Chen, L. Christensen, and J. Dahn, "Comparison of PVDF and PVDF-TFE-P as binders for electrode materials showing large volume changes in lithium-ion batteries", Journal of The Electrochemical Society, 150, A1073-A1078 (2003)
136.Z. Chen, L. Christensen, and J. Dahn, "Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers", Electrochemistry communications, 5, 919-923 (2003)
137.M. Yoshio, R. J. Brodd, and A. Kozawa, Lithium-ion batteries. Vol. 1. Springer.(2009)
138.E. Markevich, G. Salitra, and D. Aurbach, "Influence of the PVdF binder on the stability of LiCoO2 electrodes", Electrochemistry communications, 7, 1298-1304 (2005)
139.J.-P. Yen, C.-C. Chang, Y.-R. Lin, S.-T. Shen, and J.-L. Hong, "Effects of styrene-butadiene rubber/carboxymethylcellulose (SBR/CMC) and polyvinylidene difluoride (PVDF) binders on low temperature lithium ion batteries", Journal of The Electrochemical Society, 160, A1811 (2013)
140.M. Yoo, C. W. Frank, S. Mori, and S. Yamaguchi, "Interaction of poly (vinylidene fluoride) with graphite particles. 2. Effect of solvent evaporation kinetics and chemical properties of PVDF on the surface morphology of a composite film and its relation to electrochemical performance", Chemistry of materials, 16, 1945-1953 (2004)
141.S. Hu, Y. Li, J. Yin, H. Wang, X. Yuan, and Q. Li, "Effect of different binders on electrochemical properties of LiFePO4/C cathode material in lithium ion batteries", Chemical Engineering Journal, 237, 497-502 (2014)
142.Y. B. Yohannes, S. D. Lin, and N.-L. Wu, "In situ DRIFTS analysis of solid electrolyte interphase of Si-based anode with and without fluoroethylene carbonate additive", Journal of The Electrochemical Society, 164, A3641-A3648 (2017)
143.C. C. Nguyen, S.-W. Woo, and S.-W. Song, "Understanding the interfacial processes at silicon–copper electrodes in ionic liquid battery electrolyte", The Journal of Physical Chemistry C, 116, 14764-14771 (2012)
144.Y. J. Kim, H. Kim, B. Kim, D. Ahn, J.-G. Lee, T.-J. Kim, D. Son, J. Cho, Y.-W. Kim, and B. Park, "Electrochemical stability of thin-film LiCoO2 cathodes by aluminum-oxide coating", Chemistry of materials, 15, 1505-1511 (2003)
145.A. Eftekhari, "Aluminum oxide as a multi-function agent for improving battery performance of LiMn2O4 cathode", Solid State Ionics, 167, 237-242 (2004)
146.T. Kyotani, L.-f. Tsai, and A. Tomita, "Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film", Chemistry of Materials, 8, 2109-2113 (1996)
147.T. Abe, H. Fukuda, Y. Iriyama, and Z. Ogumi, "Solvated Li-ion transfer at interface between graphite and electrolyte", Journal of The Electrochemical Society, 151, A1120-A1123 (2004)
148.R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, "Capillary flow as the cause of ring stains from dried liquid drops", Nature, 389, 827-829 (1997)
149.Z. Jin, K. Xie, X. Hong, Z. Hu, and X. Liu, "Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells", Journal of Power Sources, 218, 163-167 (2012)
150.S. Dalavi, P. Guduru, and B. L. Lucht, "Performance enhancing electrolyte additives for lithium ion batteries with silicon anodes", Journal of The Electrochemical Society, 159, A642 (2012)
151.S. Maharjan, K.-S. Liao, A. J. Wang, K. Barton, A. Haldar, N. J. Alley, H. J. Byrne, and S. A. Curran, "Self-cleaning hydrophobic nanocoating on glass: A scalable manufacturing process", Materials Chemistry and Physics, 239, 122000 (2020)
152.E. Kabir, M. Khatun, L. Nasrin, M. J. Raihan, and M. Rahman, "Pure β-phase formation in polyvinylidene fluoride (PVDF)-carbon nanotube composites", Journal of Physics D: Applied Physics, 50, 163002 (2017)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top