跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/07 19:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊承儫
研究生(外文):Cheng-Hao Yang
論文名稱:以共價有機框架 EB-COF:Br 吸附水中之磷酸鹽或砷酸鹽
論文名稱(外文):Use of covalent organic frameworks EB-COF:Br to adsorb phosphate or arsenate from water
指導教授:李篤中李篤中引用關係
指導教授(外文):Duu-Jong Lee
口試委員:黃志彬鄭智嘉
口試委員(外文):Chih-Pin HuangChih-Chia Cheng
口試日期:2020-06-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:85
中文關鍵詞:共價有機框架吸附劑磷酸鹽砷酸鹽陰離子磷酸廢酸
外文關鍵詞:Covalent organic frameworkAdsorbentPhosphateArsenateAnionphosphoric acidmixed waste acids
DOI:10.6342/NTU202001773
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
共價有機框架(COF)是由輕元素所組成的共價網。這項研究進行了合成和表徵,並首次將生產的EB-COF:Br 作為吸附劑用於從中性的水中去除磷酸鹽和砷酸鹽,以及從極低pH 的溶液中去除磷酸。首先證明了合成的COF 在6 M HCl 或6 M NaOH 溶液中的結構穩定且在75%磷酸中維持主要[1 0 0] 的平面。
首先,磷酸鹽在EB-COF:Br 上的吸附是一個吸熱過程,在25、35 和45°C 下的最大吸附容量分別為25.3、34.7 和35.3 mg / g COF。相應的砷酸鹽吸附過程是放熱過程,最大吸附量分別為53.1、27.5 和5.1 mg / g。合成的COF 還可以有效地吸附河水(pH 7.45)中的磷酸鹽和砷離子,但吸附能力降低。磷酸根或砷酸根離子上的負電荷與COF 的正電荷(=N+–)之間的靜電相互作用,以及磷酸根或砷酸根離子上的氫原子與COF 的(–C=O)基團之間的氫鍵為主要的吸附機制。25°C 下,砷酸鹽的強靜電相互作用使其吸附能力高於磷酸鹽。但是,砷酸根離子尺寸不匹配以及被(= N +–)和(–C=O)基團包圍的吸附位點引起的氫鍵受干擾,降低了砷酸根對溫度和外部陰離子挑戰的穩定性。
此外,來自常規濕法蝕刻工藝的廢混合酸流還含有高含量的磷酸,因此需要回收利用。這項研究是首次使用共價有機框架EB-COF:Br 作為吸附劑來吸附不同濃度的磷酸。 EB-COF:Br 在極酸性溶液中具有很高的吸附磷酸的能力。 EB-COF:Br 在25、35 和45°C 下對廢混合酸的最大吸附容量(qmax)分別為6649、6885 和 6522 mg-H3PO4 / g,這表明吸附過程與溫度無關。COF(–NH–)上的氫原子與磷酸上的氫原子之間的氫鍵與磷酸之間的強氫鍵是吸附過程的主要機制。
The covalent organic framework (COF) is made light elements linked by covalent networks. This study synthesize and characterized, and for the first time applied the produced EB-COF:Br as adsorbent for phosphate and arsenate removal from nearly neutral waters and for phosphoric acid from extremely low pH solution. The synthesized COF was first proven structurally stable in solutions of 6 M HCl, or 6 M NaOH and can maintain the main [1 0 0] planes under 75% phosphoric acid immersion.
Then the phosphate adsorption onto the EB-COF:Br was shown to be an endothermic process with maximum adsorption capacity at 25, 35 and 45 °C as 25.3, 34.7 and 35.3 mg/g COF, respectively; and the corresponding arsenate adsorption process being an exothermic process with maximum adsorption capacity as 53.1, 27.5 and 5.1 mg/g, respectively. The synthesized COF could also effectively adsorb phosphate and arsenate ions from river water (pH 7.45) but at reduced adsorption capacities. The electrostatic interactions between the negative charge on phosphate or arsenate ions and the positively charged (=N+–) of COF, and the hydrogen bondings between H atom on phosphate or arsenate ions and the (–C=O) group of COF were the dominating mechanisms for the present adsorption process. The strong electrostatic interactions for arsenate contributed to its higher adsorption capacity than noted for phosphate at 25 °C. However, the disturbed hydrogen bonding induced by mismatched sizes of arsenate ion and the adsorption sites surrounded by the (=N+–) and the (–C=O) groups reduced the stability of arsenate to against temperature and external anion challenges.
In addition, streams of waste mixed acids from conventional wet etching processes contain high levels of H3PO4, which warrant recycling. This investigation is the first to use covalent organic framework EB-COF:Br as adsorbent to adsorb phosphoric acid from waste mixed acids from the world’s largest semiconductor foundry. The EB-COF:Br has very high capacities to adsorb H3PO4 in extremely acidic solutions. The maximum adsorption capacities (qmax’s) of EB-COF:Br for waste mixed acids at 25, 35 and 45°C are 6649, 6885 and 6522 mg-H3PO4/g, respectively, suggesting that the adsorption process is temperature-independent. The hydrogen bonding between H atom on (–NH–) of COF and H atom on phosphorous acid and strong hydrogen bonding for phosphoric acid each other were the dominating mechanisms for the present adsorption process.
口試委員審定書 i
ACKNOWLEDGEMENTS ii
ABSTRACT iii
摘要 v
Contents vi
List of Figures ix
List of Tables xii
Chapter 1 Introduction 1
Chapter 2 Literature review 5
2.1 Water-stable and pH-stable COF 5
2.2 Use COF as adsorbent 12
2.2.1 Use for Cationic adsorbate 15
2.2.2 Use for anionic adsorbate 18
2.2.3 Use for neutral adsorbate 20
2.3 Use as industrial adsorbent 23
Chapter 3 Materials and Experiment methods 26
3.1 Chemical 26
3.2 Synthesis process 27
3.2.1 Preparation of EB-COF:Br 27
3.3 Preparation of solution 28
3.3.1 Preparation of phosphate solution with DI water and river water 28
3.3.2 Preparation of arsenate solution 28
3.3.3 Preparation of phosphoric acid 28
3.4 Characterization and instrument 29
3.4.1 Nuclear magnetic resonance spectroscopy (NMR) 29
3.4.2 Powder X-Ray diffraction (PXRD) 29
3.4.3 Fourier transform infrared spectroscopy (FTIR) 30
3.4.4 N2 adsorption and desorption isotherm 30
3.4.5 Ion Chromatography (IC) 31
3.4.6 Inductively Coupled Plasma(ICP) 31
3.4.7 Scanning electron microscopy (SEM) 31
3.4.8 X-ray Photoelectron Spectroscopy (XPS) 31
3.5 Batch adsorption experiment-phosphate and arsenate 32
3.5.1 Adsorption isothermal for batch test 32
3.5.2 Adsorption kinetic for batch tests 32
3.5.3 River water test 33
3.6 Batch adsorption experiment-concentrated H3PO4 34
3.6.1 Adsorption isotherm for batch tests 34
3.6.2 Adsorption kinetic for batch tests 34
3.6.3 Desorption test 34
3.6.4 Reusability test 34
Chapter 4 Result and discussion 36
4.1 Characteristics of EB-COF:Br 36
4.1.1 Nuclear magnetic resonance spectroscopy (NMR) 36
4.1.2 Fourier transform infrared spectroscopy (FTIR) 36
4.1.3 N2 nitrogen sorption isotherms 37
4.1.4 Scanning electron microscopy (SEM) 38
4.1.5 Power X-Ray diffraction (PXRD) 39
4.1.6 Elemental analysis via XPS 41
4.2 Adsorption performance of phosphate and arsenate 42
4.2.1 Phosphate test 42
4.2.2 Arsenate test 44
4.2.3 Adsorption mechanism 46
4.3 Adsorption of concentrated H3PO4 51
4.3.1 Calculation of Adsorption capacity 51
4.3.2 Adsorption performance 51
4.3.3 Desorption and Reusability 54
4.3.4 Surface are, pore size and relationship to structure stability 55
4.3.5 Adsorption mechanism 59
Chapter 5 Conclusions 63
References 65
1. Zhu, Rongmei, Jiawei Ding, Ling Jin, and Huan Pang, Interpenetrated structures appeared in supramolecular cages, MOFs, COFs. Coordination Chemistry Reviews, 2019. 389: 119-140.
2. Lyle, Steven J., Peter J. Waller, and Omar M. Yaghi, Covalent Organic Frameworks: Organic Chemistry Extended into Two and Three Dimensions. Trends in Chemistry, 2019. 1(2): 172-184.
3. Dawson, Robert, Andrew I. Cooper, and Dave J. Adams, Nanoporous organic polymer networks. Progress in Polymer Science, 2012. 37(4): 530-563.
4. Côté, Adrien P., Annabelle I. Benin, Nathan W. Ockwig, Michael Keeffe, Adam J. Matzger, and Omar M. Yaghi, Porous, Crystalline, Covalent Organic Frameworks. Science, 2005. 310(5751): 1166.
5. Lanni, Laura M., R. William Tilford, Muktha Bharathy, and John J. Lavigne, Enhanced Hydrolytic Stability of Self-Assembling Alkylated Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2011. 133(35): 13975-13983.
6. Kandambeth, Sharath, Digambar Balaji Shinde, Manas K. Panda, Binit Lukose, Thomas Heine, and Rahul Banerjee, Enhancement of Chemical Stability and Crystallinity in Porphyrin-Containing Covalent Organic Frameworks by Intramolecular Hydrogen Bonds. Angewandte Chemie International Edition, 2013. 52(49): 13052-13056.
7. Ma, Heping, Bailing Liu, Bin Li, Liming Zhang, Yang-Guang Li, Hua-Qiao Tan, Hong-Ying Zang, and Guangshan Zhu, Cationic Covalent Organic Frameworks: A Simple Platform of Anionic Exchange for Porosity Tuning and Proton Conduction. Journal of the American Chemical Society, 2016. 138(18): 5897-5903.
8. He, Linwei, Shengtang Liu, Long Chen, Xing Dai, Jie Li, Mingxing Zhang, Fuyin Ma, Chao Zhang, Zaixing Yang, Ruhong Zhou, Zhifang Chai, and Shuao Wang, Mechanism unravelling for ultrafast and selective 99TcO4− uptake by a radiation-resistant cationic covalent organic framework: a combined radiological experiment and molecular dynamics simulation study. Chemical Science, 2019. 10(15): 4293-4305.
9. Sun, Qi, Briana Aguila, Jason Perman, Lyndsey D. Earl, Carter W. Abney, Yuchuan Cheng, Hao Wei, Nicholas Nguyen, Lukasz Wojtas, and Shengqian Ma, Postsynthetically Modified Covalent Organic Frameworks for Efficient and Effective Mercury Removal. Journal of the American Chemical Society, 2017. 139(7): 2786-2793.
10. Kumar, Pawan, Anastasia Pournara, Ki-Hyun Kim, Vasudha Bansal, Sofia Rapti, and Manolis J. Manos, Metal-organic frameworks: Challenges and opportunities for ion-exchange/sorption applications. Progress in Materials Science, 2017. 86: 25-74.
11. Yang, Cheng-Hao, Jo-Shu Chang, and Duu-Jong Lee, Chemically stable covalent organic framework as adsorbent from aqueous solution: A mini-review. Journal of the Taiwan Institute of Chemical Engineers, 2020.
12. Yang, Cheng-Hao, Jo-Shu Chang, and Duu-Jong Lee, Covalent organic framework EB-COF:Br as adsorbent for phosphorus (V) or arsenic (V) removal from nearly neutral waters. Chemosphere, 2020. 253: 126736.
13. Lin, Jui-Yen, Minsoo Kim, Dan Li, Hyunook Kim, and Chin-pao Huang, The removal of phosphate by thermally treated red mud from water: The effect of surface chemistry on phosphate immobilization. Chemosphere, 2020. 247: 125867.
14. Zhang, Ji, Danuta Barałkiewicz, Yuanzhong Wang, Jerzy Falandysz, and Chuantao Cai, Arsenic and arsenic speciation in mushrooms from China: A review. Chemosphere, 2020. 246: 125685.
15. Mood, Sohrab Haghighi, Michael Ayiania, Yaime Jefferson-Milan, and Manuel Garcia-Perez, Nitrogen doped char from anaerobically digested fiber for phosphate removal in aqueous solutions. Chemosphere, 2020. 240: 124889.
16. Jiang, Jun, Zhaoxia Dai, Rui Sun, Zhenjie Zhao, Ying Dong, Zhineng Hong, and Renkou Xu, Evaluation of ferrolysis in arsenate adsorption on the paddy soil derived from an Oxisol. Chemosphere, 2017. 179: 232-241.
17. Kumar, Rahul, Chan-Ung Kang, Dinesh Mohan, Moonis Ali Khan, Joon-Hak Lee, Sean S. Lee, and Byong-Hun Jeon, Waste sludge derived adsorbents for arsenate removal from water. Chemosphere, 2020. 239: 124832.
18. Wang, Wei, Shubo Deng, Lu Ren, Danyang Li, Wenjing Wang, Mohammadtaghi Vakili, Bin Wang, Jun Huang, Yujue Wang, and Gang Yu, Stable Covalent Organic Frameworks as Efficient Adsorbents for High and Selective Removal of an Aryl-Organophosphorus Flame Retardant from Water. ACS Applied Materials & Interfaces, 2018. 10(36): 30265-30272.
19. Shin, Chang-Hoon, Ju-Yup Kim, Jun-Young Kim, Hyun-Sang Kim, Hyang-Sook Lee, Debasish Mohapatra, Jae-Woo Ahn, Jong-Gwan Ahn, and Wookeun Bae, Recovery of nitric acid from waste etching solution using solvent extraction. Journal of Hazardous Materials, 2009. 163(2): 729-734.
20. Motoda, Y., M. Morikawa, N. Murayama, H. Yamamoto, and J. Shibata, Recovery of phosphoric acid from waste acid mixture with solvent extraction. Technology reports of the Kansai University, 2004. 46: 21-30.
21. Wang, Ye, Fang Chen, Xiaodong Ma, and Guoquan Zhang, Recovery of nitric and acetic acids from etching waste solutions using a synergistic system consisting of N235 and TRPO in cyclohexane. Hydrometallurgy, 2019. 185: 23-29.
22. Jia, Xuhong, Jun Li, Yang Jin, Jianhong Luo, Baoming Wang, and Yabing Qi, Liquid–Liquid Equilibrium in the Nitric Acid/Phosphoric Acid/Water/Tri-n-octylamine System. Journal of Chemical & Engineering Data, 2013. 58(1): 78-83.
23. Kim, Ju-Yup, Chang-Hoon Shin, Hyungjoo Choi, and Wookeun Bae, Recovery of phosphoric acid from mixed waste acids of semiconductor industry by diffusion dialysis and vacuum distillation. Separation and Purification Technology, 2012. 90: 64-68.
24. Kim, K.-J., Purification of Phosphoric Acid from Waste Acid Etchant using Layer Melt Crystallization. Chemical Engineering and Technology, 2006. 29(2): 271-276.
25. Chang, Zu-Wei, Yu-Jen Lee, and Duu-Jong Lee, Adsorption of hydrogen arsenate and dihydrogen arsenate ions from neutral water by UiO-66-NH2. Journal of Environmental Management, 2019. 247: 263-268.
26. Lee, Yu-Jen, Ying-Ju Chang, Duu-Jong Lee, and Jyh-Ping Hsu, Water stable metal-organic framework as adsorbent from aqueous solution: A mini-review. Journal of the Taiwan Institute of Chemical Engineers, 2018. 93: 176-183.
27. Lee, Yu-Jen, Ying-Ju Chang, Duu-Jong Lee, Zu-Wei Chang, and Jyh-Ping Hsu, Effective adsorption of phosphoric acid by UiO-66 and UiO-66-NH2 from extremely acidic mixed waste acids: Proof of concept. Journal of the Taiwan Institute of Chemical Engineers, 2019. 96: 483-486.
28. Wang, Chun-Yao, Yu-Jen Lee, Jhy-Ping Hsu, and Duu-Jong Lee, Phosphate or arsenate modified UiO-66-NO2: Amorphous mesoporous matrix. Journal of the Taiwan Institute of Chemical Engineers, 2020. 108: 129-133.
29. Ye, Hengpeng, Fanzhong Chen, Yanqing Sheng, Guoying Sheng, and Jiamo Fu, Adsorption of phosphate from aqueous solution onto modified palygorskites. Separation and Purification Technology, 2006. 50(3): 283-290.
30. Pepper, R. A., S. J. Couperthwaite, and G. J. Millar, Re-use of waste red mud: Production of a functional iron oxide adsorbent for removal of phosphorous. Journal of Water Process Engineering, 2018. 25: 138-148.
31. Ajmal, Zeeshan, Atif Muhmood, Muhammad Usman, Simon Kizito, Jiaxin Lu, Renjie Dong, and Shubiao Wu, Phosphate removal from aqueous solution using iron oxides: Adsorption, desorption and regeneration characteristics. Journal of Colloid and Interface Science, 2018. 528: 145-155.
32. Guo, Huichao, Wenjun Li, Huanying Wang, Jinghua Zhang, Yang Liu, and Yue Zhou, A study of phosphate adsorption by different temperature treated hydrous cerium oxides. Rare Metals, 2011. 30(1): 58-62.
33. Lin, Jianwei, Siqi He, Xingxing Wang, Honghua Zhang, and Yanhui Zhan, Removal of phosphate from aqueous solution by a novel Mg(OH)2/ZrO2 composite: Adsorption behavior and mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019. 561: 301-314.
34. Du, Xiaoli, Qiang Han, Junqi Li, and Haiyan Li, The behavior of phosphate adsorption and its reactions on the surfaces of Fe–Mn oxide adsorbent. Journal of the Taiwan Institute of Chemical Engineers, 2017. 76: 167-175.
35. Fang, Liping, Ru Liu, Ji Li, Cuihong Xu, Li-Zhi Huang, and Dongsheng Wang, Magnetite/Lanthanum hydroxide for phosphate sequestration and recovery from lake and the attenuation effects of sediment particles. Water Research, 2018. 130: 243-254.
36. Mitrogiannis, Dimitris, Maria Psychoyou, Ioannis Baziotis, Vassilis J. Inglezakis, Nikolaos Koukouzas, Nikolaos Tsoukalas, Dimitrios Palles, Efstratios Kamitsos, Georgios Oikonomou, and Giorgos Markou, Removal of phosphate from aqueous solutions by adsorption onto Ca(OH)2 treated natural clinoptilolite. Chemical Engineering Journal, 2017. 320: 510-522.
37. Jung, Kyung-Won, Kipal Kim, Tae-Un Jeong, and Kyu-Hong Ahn, Influence of pyrolysis temperature on characteristics and phosphate adsorption capability of biochar derived from waste-marine macroalgae (Undaria pinnatifida roots). Bioresource Technology, 2016. 200: 1024-1028.
38. Jung, K. W., M. J. Hwang, K. H. Ahn, and Y. S. Ok, Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media. International Journal of Environmental Science and Technology, 2015. 12(10): 3363-3372.
39. Trazzi, P. A., J. J. Leahy, M. H. B. Hayes, and W. Kwapinski, Adsorption and desorption of phosphate on biochars. Journal of Environmental Chemical Engineering, 2016. 4(1): 37-46.
40. Kizito, Simon, Hongzhen Luo, Shubiao Wu, Zeeshan Ajmal, Tao Lv, and Renjie Dong, Phosphate recovery from liquid fraction of anaerobic digestate using four slow pyrolyzed biochars: Dynamics of adsorption, desorption and regeneration. Journal of Environmental Management, 2017. 201: 260-267.
41. Zhu, Huijie, Yongfeng Jia, Xing Wu, and He Wang, Removal of arsenic from water by supported nano zero-valent iron on activated carbon. Journal of Hazardous Materials, 2009. 172(2): 1591-1596.
42. Zhang, Shengxiao, Hongyun Niu, Yaqi Cai, Xiaoli Zhao, and Yali Shi, Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chemical Engineering Journal, 2010. 158(3): 599-607.
43. Goswami, A., P. K. Raul, and M. K. Purkait, Arsenic adsorption using copper (II) oxide nanoparticles. Chemical Engineering Research and Design, 2012. 90(9): 1387-1396.
44. Giménez, Javier, María Martínez, Joan de Pablo, Miquel Rovira, and Lara Duro, Arsenic sorption onto natural hematite, magnetite, and goethite. Journal of Hazardous Materials, 2007. 141(3): 575-580.
45. Lin, Tsair-Fuh and Jun-Kun Wu, Adsorption of Arsenite and Arsenate within Activated Alumina Grains: Equilibrium and Kinetics. Water Research, 2001. 35(8): 2049-2057.
46. Wang, Can, Hanjin Luo, Zilong Zhang, Yan Wu, Jian Zhang, and Shaowei Chen, Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. Journal of Hazardous Materials, 2014. 268: 124-131.
47. Vitela-Rodriguez, Alma Veronica and Jose Rene Rangel-Mendez, Arsenic removal by modified activated carbons with iron hydro(oxide) nanoparticles. Journal of Environmental Management, 2013. 114: 225-231.
48. Yürüm, Alp, Züleyha Özlem Kocabaş-Ataklı, Meltem Sezen, Raphael Semiat, and Yuda Yürüm, Fast deposition of porous iron oxide on activated carbon by microwave heating and arsenic (V) removal from water. Chemical Engineering Journal, 2014. 242: 321-332.
49. Bilici Baskan, Meltem and Aysegul Pala, Removal of arsenic from drinking water using modified natural zeolite. Desalination, 2011. 281: 396-403.
50. Liu, Dengchao, Shubo Deng, Ayiguli Maimaiti, Bin Wang, Jun Huang, Yujue Wang, and Gang Yu, As(III) and As(V) adsorption on nanocomposite of hydrated zirconium oxide coated carbon nanotubes. Journal of Colloid and Interface Science, 2018. 511: 277-284.
51. Belowich, Matthew E. and J. Fraser Stoddart, Dynamic imine chemistry. Chemical Society Reviews, 2012. 41(6): 2003-2024.
52. Segura, José L., María J. Mancheño, and Félix Zamora, Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chemical Society Reviews, 2016. 45(20): 5635-5671.
53. Jin, Yinghua, Chao Yu, Ryan J. Denman, and Wei Zhang, Recent advances in dynamic covalent chemistry. Chemical Society Reviews, 2013. 42(16): 6634-6654.
54. Rowan, Stuart J., Stuart J. Cantrill, Graham R. L. Cousins, Jeremy K. M. Sanders, and J. Fraser Stoddart, Dynamic Covalent Chemistry. Angewandte Chemie International Edition, 2002. 41(6): 898-952.
55. Bunck, David N. and William R. Dichtel, Bulk Synthesis of Exfoliated Two-Dimensional Polymers Using Hydrazone-Linked Covalent Organic Frameworks. Journal of the American Chemical Society, 2013. 135(40): 14952-14955.
56. Liu, Wanting, Qing Su, Pengyao Ju, Bixuan Guo, Hui Zhou, Guanghua Li, and Qiaolin Wu, A Hydrazone-Based Covalent Organic Framework as an Efficient and Reusable Photocatalyst for the Cross-Dehydrogenative Coupling Reaction of N-Aryltetrahydroisoquinolines. ChemSusChem, 2017. 10(4): 664-669.
57. Kandambeth, Sharath, Arijit Mallick, Binit Lukose, Manoj V. Mane, Thomas Heine, and Rahul Banerjee, Construction of Crystalline 2D Covalent Organic Frameworks with Remarkable Chemical (Acid/Base) Stability via a Combined Reversible and Irreversible Route. Journal of the American Chemical Society, 2012. 134(48): 19524-19527.
58. Sun, Qi, Briana Aguila, Jason A. Perman, Taylor Butts, Feng-Shou Xiao, and Shengqian Ma, Integrating Superwettability within Covalent Organic Frameworks for Functional Coating. Chem, 2018. 4(7): 1726-1739.
59. Du, Yi, Kanmi Mao, Preeti Kamakoti, Bradley Wooler, Steven Cundy, Quanchang Li, Peter Ravikovitch, and David Calabro, The effects of pyridine on the structure of B-COFs and the underlying mechanism. Journal of Materials Chemistry A, 2013. 1(42): 13171-13178.
60. Li, Zhongping, Yongfeng Zhi, Xiao Feng, Xuesong Ding, Yongcun Zou, Xiaoming Liu, and Ying Mu, An Azine-Linked Covalent Organic Framework: Synthesis, Characterization and Efficient Gas Storage. Chemistry – A European Journal, 2015. 21(34): 12079-12084.
61. Dalapati, Sasanka, Shangbin Jin, Jia Gao, Yanhong Xu, Atsushi Nagai, and Donglin Jiang, An Azine-Linked Covalent Organic Framework. Journal of the American Chemical Society, 2013. 135(46): 17310-17313.
62. Li, Yang, Weiben Chen, Wenjing Hao, Yusen Li, and Long Chen, Covalent Organic Frameworks Constructed from Flexible Building Blocks with High Adsorption Capacity for Pollutants. ACS Applied Nano Materials, 2018. 1(9): 4756-4761.
63. Li, Yang, Cheng-Xiong Yang, and Xiu-Ping Yan, Controllable preparation of core–shell magnetic covalent-organic framework nanospheres for efficient adsorption and removal of bisphenols in aqueous solution. Chemical Communications, 2017. 53(16): 2511-2514.
64. Yang, Cheng-Xiong, Chang Liu, Yi-Meng Cao, and Xiu-Ping Yan, Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation. Chemical Communications, 2015. 51(61): 12254-12257.
65. Kalska-Szostko, B., U. Wykowska, K. Piekut, and D. Satuła, Stability of Fe3O4 nanoparticles in various model solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014. 450: 15-24.
66. Kandambeth, Sharath, V. Venkatesh, Digambar B. Shinde, Sushma Kumari, Arjun Halder, Sandeep Verma, and Rahul Banerjee, Self-templated chemically stable hollow spherical covalent organic framework. Nature Communications, 2015. 6(1): 6786.
67. Chandra, Suman, Tanay Kundu, Sharath Kandambeth, Ravichandar BabaRao, Yogesh Marathe, Shrikant M. Kunjir, and Rahul Banerjee, Phosphoric Acid Loaded Azo (−N══N−) Based Covalent Organic Framework for Proton Conduction. Journal of the American Chemical Society, 2014. 136(18): 6570-6573.
68. Katekomol, Phisan, Jérôme Roeser, Michael Bojdys, Jens Weber, and Arne Thomas, Covalent Triazine Frameworks Prepared from 1,3,5-Tricyanobenzene. Chemistry of Materials, 2013. 25(9): 1542-1548.
69. Xu, Hong, Shanshan Tao, and Donglin Jiang, Proton conduction in crystalline and porous covalent organic frameworks. Nature Materials, 2016. 15(7): 722-726.
70. Uribe-Romo, Fernando J., Christian J. Doonan, Hiroyasu Furukawa, Kounosuke Oisaki, and Omar M. Yaghi, Crystalline Covalent Organic Frameworks with Hydrazone Linkages. Journal of the American Chemical Society, 2011. 133(30): 11478-11481.
71. Fang, Qianrong, Zhongbin Zhuang, Shuang Gu, Robert B. Kaspar, Jie Zheng, Junhua Wang, Shilun Qiu, and Yushan Yan, Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nature Communications, 2014. 5(1): 4503.
72. Li, Zhongping, Xiao Feng, Yongcun Zou, Yuwei Zhang, Hong Xia, Xiaoming Liu, and Ying Mu, A 2D azine-linked covalent organic framework for gas storage applications. Chemical Communications, 2014. 50(89): 13825-13828.
73. Yu, Shang-Bo, Hao Lyu, Jia Tian, Hui Wang, Dan-Wei Zhang, Yi Liu, and Zhan-Ting Li, A polycationic covalent organic framework: a robust adsorbent for anionic dye pollutants. Polymer Chemistry, 2016. 7(20): 3392-3397.
74. Huang, Ning, Lipeng Zhai, Hong Xu, and Donglin Jiang, Stable Covalent Organic Frameworks for Exceptional Mercury Removal from Aqueous Solutions. Journal of the American Chemical Society, 2017. 139(6): 2428-2434.
75. Yang, Yajie, Muhammad Faheem, Lili Wang, Qinghao Meng, Haoyan Sha, Nan Yang, Ye Yuan, and Guangshan Zhu, Surface Pore Engineering of Covalent Organic Frameworks for Ammonia Capture through Synergistic Multivariate and Open Metal Site Approaches. ACS Central Science, 2018. 4(6): 748-754.
76. Da, Hong-Ju, Cheng-Xiong Yang, and Xiu-Ping Yan, Cationic Covalent Organic Nanosheets for Rapid and Selective Capture of Perrhenate: An Analogue of Radioactive Pertechnetate from Aqueous Solution. Environmental Science & Technology, 2019. 53(9): 5212-5220.
77. Li, Zonglong, Hui Li, Xinyu Guan, Junjie Tang, Yusran Yusran, Zhan Li, Ming Xue, Qianrong Fang, Yushan Yan, Valentin Valtchev, and Shilun Qiu, Three-Dimensional Ionic Covalent Organic Frameworks for Rapid, Reversible, and Selective Ion Exchange. Journal of the American Chemical Society, 2017. 139(49): 17771-17774.
78. Huang, Ning, Ping Wang, Matthew A. Addicoat, Thomas Heine, and Donglin Jiang, Ionic Covalent Organic Frameworks: Design of a Charged Interface Aligned on 1D Channel Walls and Its Unusual Electrostatic Functions. Angewandte Chemie International Edition, 2017. 56(18): 4982-4986.
79. Cheng, Yuan-Jie, Rui Wang, Shan Wang, Xiao-Juan Xi, Lu-Fang Ma, and Shuang-Quan Zang, Encapsulating [Mo3S13]2− clusters in cationic covalent organic frameworks: enhancing stability and recyclability by converting a homogeneous photocatalyst to a heterogeneous photocatalyst. Chemical Communications, 2018. 54(96): 13563-13566.
80. Ding, San-Yuan, Jia Gao, Qiong Wang, Yuan Zhang, Wei-Guo Song, Cheng-Yong Su, and Wei Wang, Construction of Covalent Organic Framework for Catalysis: Pd/COF-LZU1 in Suzuki–Miyaura Coupling Reaction. Journal of the American Chemical Society, 2011. 133(49): 19816-19822.
81. Ding, San-Yuan, Ming Dong, Ya-Wen Wang, Yan-Tao Chen, Huai-Zhen Wang, Cheng-Yong Su, and Wei Wang, Thioether-Based Fluorescent Covalent Organic Framework for Selective Detection and Facile Removal of Mercury(II). Journal of the American Chemical Society, 2016. 138(9): 3031-3037.
82. Fang, Qianrong, Junhua Wang, Shuang Gu, Robert B. Kaspar, Zhongbin Zhuang, Jie Zheng, Hongxia Guo, Shilun Qiu, and Yushan Yan, 3D Porous Crystalline Polyimide Covalent Organic Frameworks for Drug Delivery. Journal of the American Chemical Society, 2015. 137(26): 8352-8355.
83. Kuhn, Pierre, Markus Antonietti, and Arne Thomas, Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis. Angewandte Chemie International Edition, 2008. 47(18): 3450-3453.
84. Bojdys, Michael J., Jekaterina Jeromenok, Arne Thomas, and Markus Antonietti, Rational Extension of the Family of Layered, Covalent, Triazine-Based Frameworks with Regular Porosity. Advanced Materials, 2010. 22(19): 2202-2205.
85. Li, Hengshuai, Haiquan Hu, Chunjiang Bao, Feng Guo, Xiaoming Zhang, Xiaobiao Liu, Juan Hua, Jie Tan, Aizhu Wang, Hongcai Zhou, Bo Yang, Yuanyuan Qu, and Xiangdong Liu, Forming heterojunction: an effective strategy to enhance the photocatalytic efficiency of a new metal-free organic photocatalyst for water splitting. Scientific Reports, 2016. 6(1): 29327.
86. Wang, Ting, Rui Xue, Huiqin Chen, Peiling Shi, Xi Lei, Yuli Wei, Hao Guo, and Wu Yang, Preparation of two new polyimide bond linked porous covalent organic frameworks and their fluorescence sensing application for sensitive and selective determination of Fe3+. New Journal of Chemistry, 2017. 41(23): 14272-14278.
87. Li, Guiliang, Jianrong Ye, Qile Fang, and Fu Liu, Amide-based covalent organic frameworks materials for efficient and recyclable removal of heavy metal lead (II). Chemical Engineering Journal, 2019. 370: 822-830.
88. Li, Shufeng, Yinhua Yang, Houchao Shan, Jing Zhao, Ze Wang, Di Cai, Peiyong Qin, Jan Baeyens, and Tianwei Tan, Ultrafast and ultrahigh adsorption of furfural from aqueous solution via covalent organic framework-300. Separation and Purification Technology, 2019. 220: 283-292.
89. Li, Shufeng, Pei Li, Di Cai, Houchao Shan, Jing Zhao, Ze Wang, Peiyong Qin, and Tianwei Tan, Boosting pervaporation performance by promoting organic permeability and simultaneously inhibiting water transport via blending PDMS with COF-300. Journal of Membrane Science, 2019. 579: 141-150.
90. Lu, Zhixiang, Yanxiong Liu, Xiaolan Liu, Shuhan Lu, Yuan Li, Shaoxiong Yang, Yu Qin, Liyan Zheng, and Hongbin Zhang, A hollow microshuttle-shaped capsule covalent organic framework for protein adsorption. Journal of Materials Chemistry B, 2019. 7(9): 1469-1474.
91. Wang, Ren-Qi, Xue-Bing Wei, and Yu-Qi Feng, β-Cyclodextrin Covalent Organic Framework for Selective Molecular Adsorption. Chemistry-A European Journal, 2018. 24(43): 10979-10983.
92. Lu, Qiuyu, Yunchao Ma, Hui Li, Xinyu Guan, Yusran Yusran, Ming Xue, Qianrong Fang, Yushan Yan, Shilun Qiu, and Valentin Valtchev, Postsynthetic Functionalization of Three-Dimensional Covalent Organic Frameworks for Selective Extraction of Lanthanide Ions. Angewandte Chemie, 2018. 57(21): 6042-6048.
93. Zhao, Wei, Tian-Pin Wang, Jia-Li Wu, Ru-Ping Pan, Xiang-Yang Liu, and Xi-Kui Liu, Monolithic Covalent Organic Framework Aerogels through Framework Crystallization Induced Self-assembly: Heading towards Framework Materials Synthesis over All Length Scales. Chinese Journal of Polymer Science, 2019. 37(11): 1045-1052.
94. Zhang, Wenfen, Yanhao Zhang, Guangrui Zhang, Jiying Liu, Wuduo Zhao, Wenjing Zhang, Kai Hu, Fuwei Xie, and Shusheng Zhang, Facile preparation of a cationic COF functionalized magnetic nanoparticle and its use for the determination of nine hydroxylated polycyclic aromatic hydrocarbons in smokers’ urine. Analyst, 2019. 144(19): 5829-5841.
95. Jiang, Yunzhe, Chuanyao Liu, and Aisheng Huang, EDTA-Functionalized Covalent Organic Framework for the Removal of Heavy-Metal Ions. ACS Applied Materials and Interfaces, 2019. 11(35): 32186-32191.
96. Li, Zhuo Dai, Huai Qiang Zhang, Xiao Hong Xiong, and Feng Luo, U(VI) adsorption onto covalent organic frameworks-TpPa-1. Journal of Solid State Chemistry, 2019. 277: 484-492.
97. Xiong, Xiao Hong, Zhi Wu Yu, Le Le Gong, Yuan Tao, Zhi Gao, Li Wang, Wen Hui Yin, Li Xiao Yang, and Feng Luo, Ammoniating Covalent Organic Framework (COF) for High-Performance and Selective Extraction of Toxic and Radioactive Uranium Ions. Advanced Science, 2019. 6(16): 1900547.
98. Hu, Kun, Yuanxia Lv, Fanggui Ye, Tao Chen, and Shulin Zhao, Boric-Acid-Functionalized Covalent Organic Framework for Specific Enrichment and Direct Detection of cis-Diol-Containing Compounds by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2019. 91(9): 6353-6362.
99. Romero, Vanesa, Soraia P. S. Fernandes, Laura Rodriguez-Lorenzo, Yury V. Kolen'ko, Begoña Espiña, and Laura M. Salonen, Recyclable magnetic covalent organic framework for the extraction of marine biotoxins. Nanoscale, 2019. 11(13): 6072-6079.
100. Li, Ya, Chang Wang, Shujuan Ma, Haiyang Zhang, Junjie Ou, Yinmao Wei, and Mingliang Ye, Fabrication of Hydrazone-Linked Covalent Organic Frameworks Using Alkyl Amine as Building Block for High Adsorption Capacity of Metal Ions. ACS Applied Materials and Interfaces, 2019. 11(12): 11706-11714.
101. Liu, Jing-Min, Shi-Wen Lv, Xin-Yue Yuan, Hui-Lin Liu, and Shuo Wang, Facile construction of magnetic core–shell covalent organic frameworks as efficient solid-phase extraction adsorbents for highly sensitive determination of sulfonamide residues against complex food sample matrices. RSC Advances, 2019. 9(25): 14247-14253.
102. Wen, Rui, Yang Li, Meicheng Zhang, Xinghua Guo, Xing Li, Xiaofeng Li, Jun Han, Sheng Hu, Wang Tan, Lijian Ma, and Shoujian Li, Graphene-synergized 2D covalent organic framework for adsorption: A mutual promotion strategy to achieve stabilization and functionalization simultaneously. Journal of Hazardous Materials, 2018. 358: 273-285.
103. Sun, Qi, Briana Aguila, Lyndsey D. Earl, Carter W. Abney, Lukasz Wojtas, Praveen K. Thallapally, and Shengqian Ma, Covalent Organic Frameworks as a Decorating Platform for Utilization and Affinity Enhancement of Chelating Sites for Radionuclide Sequestration. Advanced Materials, 2018. 30(20): 1705479.
104. Liu, Zhongshan, Hongwei Wang, Junjie Ou, Lianfang Chen, and Mingliang Ye, Construction of hierarchically porous monoliths from covalent organic frameworks (COFs) and their application for bisphenol A removal. Journal of Hazardous Materials, 2018. 355: 145-153.
105. Zhou, Zhiming, Wanfu Zhong, Kaixun Cui, Zanyong Zhuang, Lingyun Li, Liuyi Li, Jinhong Bi, and Yan Yu, A covalent organic framework bearing thioether pendant arms for selective detection and recovery of Au from ultra-low concentration aqueous solution. Chemical Communications, 2018. 54(71): 9977-9980.
106. Feng, X., G. E. Fryxell, L. Q. Wang, A. Y. Kim, J. Liu, and K. M. Kemner, Functionalized Monolayers on Ordered Mesoporous Supports. Science, 1997. 276(5314): 923.
107. Mon, Marta, Francesc Lloret, Jesús Ferrando-Soria, Carlos Martí-Gastaldo, Donatella Armentano, and Emilio Pardo, Selective and Efficient Removal of Mercury from Aqueous Media with the Highly Flexible Arms of a BioMOF. Angewandte Chemie International Edition, 2016. 55(37): 11167-11172.
108. Merí-Bofí, Laura, Sergio Royuela, Félix Zamora, M. Luisa Ruiz-González, José L. Segura, Riansares Muñoz-Olivas, and María José Mancheño, Thiol grafted imine-based covalent organic frameworks for water remediation through selective removal of Hg(ii). Journal of Materials Chemistry A, 2017. 5(34): 17973-17981.
109. Gao, Liang, Chi-Ying Vanessa Li, Kwong-Yu Chan, and Zhe-Ning Chen, Metal–Organic Framework Threaded with Aminated Polymer Formed in Situ for Fast and Reversible Ion Exchange. Journal of the American Chemical Society, 2014. 136(20): 7209-7212.
110. Meyn, Martina, Klaus Beneke, and Gerhard Lagaly, Anion-exchange reactions of layered double hydroxides. Inorganic Chemistry, 1990. 29(26): 5201-5207.
111. Wang, Ping, Qing Xu, Zhongping Li, Weiming Jiang, Qiuhong Jiang, and Donglin Jiang, Exceptional Iodine Capture in 2D Covalent Organic Frameworks. Advanced Materials, 2018. 30(29): 1801991.
112. Wang, Chang, Yu Wang, Rile Ge, Xuedan Song, Xueqing Xing, Qike Jiang, Hui Lu, Ce Hao, Xinwen Guo, Yanan Gao, and Donglin Jiang, A 3D Covalent Organic Framework with Exceptionally High Iodine Capture Capability. Chemistry-A European Journal, 2018. 24(3): 585-589.
113. Waller, Peter J., Steven J. Lyle, Thomas M. Osborn Popp, Christian S. Diercks, Jeffrey A. Reimer, and Omar M. Yaghi, Chemical Conversion of Linkages in Covalent Organic Frameworks. Journal of the American Chemical Society, 2016. 138(48): 15519-15522.
114. Duong, Phuoc H. H., Valerie A. Kuehl, Bruce Mastorovich, John O. Hoberg, Bruce A. Parkinson, and Katie D. Li-Oakey, Carboxyl-functionalized covalent organic framework as a two-dimensional nanofiller for mixed-matrix ultrafiltration membranes. Journal of Membrane Science, 2019. 574: 338-348.
115. Patel, Hasmukh A., Ferdi Karadas, Ali Canlier, Joonho Park, Erhan Deniz, Yousung Jung, Mert Atilhan, and Cafer T. Yavuz, High capacity carbon dioxide adsorption by inexpensive covalent organic polymers. Journal of Materials Chemistry, 2012. 22(17): 8431-8437.
116. Biswal, Bishnu P., Suman Chandra, Sharath Kandambeth, Binit Lukose, Thomas Heine, and Rahul Banerjee, Mechanochemical Synthesis of Chemically Stable Isoreticular Covalent Organic Frameworks. Journal of the American Chemical Society, 2013. 135(14): 5328-5331.
117. Zhao, Wei, Lieyin Xia, and Xikui Liu, Covalent organic frameworks (COFs): perspectives of industrialization. CrystEngComm, 2018. 20(12): 1613-1634.
118. Kandambeth, Sharath, Kaushik Dey, and Rahul Banerjee, Covalent Organic Frameworks: Chemistry beyond the Structure. Journal of the American Chemical Society, 2019. 141(5): 1807-1822.
119. Klontzas, Emmanouel, Emmanuel Tylianakis, and George E. Froudakis, Designing 3D COFs with Enhanced Hydrogen Storage Capacity. Nano Letters, 2010. 10(2): 452-454.
120. Luisa Ojeda, María, Juan Marcos Esparza, Antonio Campero, Salomón Cordero, Isaac Kornhauser, and Fernando Rojas, On comparing BJH and NLDFT pore-size distributions determined from N2 sorption on SBA-15 substrata. Physical Chemistry Chemical Physics, 2003. 5(9): 1859-1866.
121. Guo, Z., J. Li, Z. Guo, Q. Guo, and B. Zhu, Phosphorus removal from aqueous solution in parent and aluminum-modified eggshells: thermodynamics and kinetics, adsorption mechanism, and diffusion process. Environmental Science and Pollution Research, 2017. 24(16): 14525-14536.
122. Zhu, Yingjie, Xiaoli Du, Can Gao, and Zhenya Yu, Adsorption Behavior of Inorganic and Organic Phosphate by Iron Manganese Plaques on Reed Roots in Wetlands. Sustainability, 2018. 10: 4578.
123. Singh, Devendra Kumar, Sweta Mohan, Vijay Kumar, and Syed Hadi Hasan, Kinetic, isotherm and thermodynamic studies of adsorption behaviour of CNT/CuO nanocomposite for the removal of As(iii) and As(v) from water. RSC Advances, 2016. 6(2): 1218-1230.
124. Ali, Imran, Zeid A. Al-Othman, Abdulrahman Alwarthan, Mohd Asim, and Tabrez A. Khan, Removal of arsenic species from water by batch and column operations on bagasse fly ash. Environmental Science and Pollution Research, 2014. 21(5): 3218-3229.
125. Fan, Shangwu, Chuan Yang, Liuyang He, Juanli Deng, Litong Zhang, and Laifei Cheng, The effects of phosphate coating on friction performance of C/C and C/SiC brake materials. Tribology International, 2017. 114: 337-348.
126. Adden, Nina, Lara J. Gamble, David G. Castner, Andrea Hoffmann, Gerhard Gross, and Henning Menzel, Phosphonic Acid Monolayers for Binding of Bioactive Molecules to Titanium Surfaces. Langmuir, 2006. 22(19): 8197-8204.
127. Mahanta, Narahari and J. Paul Chen, A novel route to the engineering of zirconium immobilized nano-scale carbon for arsenate removal from water. Journal of Materials Chemistry A, 2013. 1(30): 8636-8644.
128. Tamayo, Rocío, Rodrigo Espinoza-González, Francisco Gracia, Ubirajara Pereira Rodrigues-Filho, Marcos Flores, and Elisban Sacari, As(III) Removal from Aqueous Solution by Calcium Titanate Nanoparticles Prepared by the Sol Gel Method. Nanomaterials (Basel, Switzerland), 2019. 9(5): 733.
129. Lee, Min-Sang, Mira Park, Hak Yong Kim, and Soo-Jin Park, Effects of Microporosity and Surface Chemistry on Separation Performances of N-Containing Pitch-Based Activated Carbons for CO2/N2 Binary Mixture. Scientific Reports, 2016. 6(1): 23224.
130. Cassone, Giuseppe, Donatella Chillé, Claudia Foti, Ottavia Giuffré, Rosina Celeste Ponterio, Jiri Sponer, and Franz Saija, Stability of hydrolytic arsenic species in aqueous solutions: As3+vs. As5+. Physical Chemistry Chemical Physics, 2018. 20(36): 23272-23280.
131. Peacock, C. J. and G. Nickless, The Dissociation Constants of some Phosphorus(V) Acids. Zeitschrift für Naturforschung A, 1969. 24(2): 245-247.
132. Kiriukhin, Michael Y. and Kim D. Collins, Dynamic hydration numbers for biologically important ions. Biophysical Chemistry, 2002. 99(2): 155-168.
133. Ring, Joseph, Lorenz Lindenthal, Matthias Weil, and Berthold Stöger, Crystal structure of sodium dihydrogen arsenate. Acta Crystallographica Section E Crystallographic Communications, 2017. 73: 1520-1522.
134. Wertz, David L. and Gary A. Cook, Phosphoric acid solutions. I: Molecular association in a 57.8 molal aqueous solution. Journal of Solution Chemistry, 1985. 14(1): 41-48.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊