|
Chapter 1 [1] H. Kimizuka, K. Koketsu, Ion transport through cell membrane, J. Theor. Biol. 6 (1964) 290-305. [2] B. Hille, Ionic channels in excitable membranes - current problems and biophysical approaches, Biophys. J. 22 (1978) 283-294. [3] N. Unwin, The structure of ion channels in membranes of excitable cells, Neuron 3 (1989) 665-676. [4] Y. Kamiyama, J. Israelachvili, Effect of pH and salt on the adsorption and interactions of an amphoteric polyelectrolyte, Macromolecules 25 (1992) 5081-5088. [5] H. Grib, L. Bonnal, J. Sandeaux, R. Sandeaux, C. Gavach, N. Mameri, Extraction of amphoteric amino acids by an electromembrane process. pH and electrical state control by electrodialysis with bipolar membranes, J. Chem. Technol. Biot. 73 (1998) 64-70. [6] J.E. Rothman, J. Lenard, Membrane asymmetry, Science 195 (1977) 743-753. [7] M.S. Bretscher, Membrane structure - some general principles, Science 181 (1973) 622-629. [8] C.C. Harrell, Z.S. Siwy, C.R. Martin, Conical nanopore membranes: controlling the nanopore shape, Small 2 (2006) 194-198. [9] F. Xia, W. Guo, Y. Mao, X. Hou, J. Xue, H. Xia, L. Wang, Y. Song, H. Ji, Q. Ouyang, Y. Wang, L. Jiang, Gating of single synthetic nanopores by proton-driven DNA molecular motors, J. Am. Chem. Soc. 130 (2008) 8345-8350. [10] M. Ali, P. Ramirez, H.Q. Nguyen, S. Nasir, J. Cervera, S. Mafe, W. Ensinger, Single cigar-shaped nanopores functionalized with amphoteric amino acid chains: experimental and theoretical characterization, ACS Nano 6 (2012) 3631-3640. [11] J.M. Perry, K. Zhou, Z.D. Harms, S.C. Jacobson, Ion transport in nanofluidic funnels, ACS Nano 4 (2010) 3897-3902. [12] P.Y. Apel, I.V. Blonskaya, O.L. Orelovitch, P. Ramirez, B.A. Sartowska, Effect of nanopore geometry on ion current rectification, Nanotechnology 22 (2011) 175302. [13] J.P. Hsu, H.H. Wu, C.Y. Lin, S. Tseng, Ion current rectification behavior of bioinspired nanopores having a pH-tunable zwitterionic surface, Anal. Chem. 89 (2017) 3952-3958. [14] Y. Kong, X. Fan, M. Zhang, X. Hou, Z. Liu, J. Zhai, L. Jiang, Nanofluidic diode based on branched alumina nanochannels with tunable ionic rectification, ACS Appl. Mater. Interfaces 5 (2013) 7931-7936. [15] C.Y. Li, Z.Q. Wu, C.G. Yuan, K. Wang, X.H. Xia, Propagation of concentration polarization affecting ions transport in branching nanochannel array, Anal. Chem. 87 (2015) 8194-8202. [16] L. Zaraska, E. Kurowska, G.D. Sulka, M. Jaskuła, Porous alumina membranes with branched nanopores as templates for fabrication of Y-shaped nanowire arrays, J. Solid State Electrochem. 16 (2012) 3611-3619. [17] H. Jo, N. Haberkorn, J.A. Pan, M. Vakili, K. Nielsch, P. Theato, Fabrication of chemically tunable, hierarchically branched polymeric nanostructures by multi-branched anodic aluminum oxide templates, Langmuir 32 (2016) 6437-6444. [18] R.B. Schoch, J. Han, P. Renaud, Transport phenomena in nanofluidics, Rev. Mod. Phys. 80 (2008) 839-883. [19] M. Miansari, J.R. Friend, L.Y. Yeo, Enhanced ion current rectification in 2D graphene-based nanofluidic devices, Adv. Sci. (Weinh) 2 (2015) 1500062. [20] M.L. Kovarik, K. Zhou, S.C. Jacobson, Effect of conical nanopore diameter on ion current rectification, J. Phys. Chem. B 113 (2009) 15960-15966. [21] T. Yamamoto, M. Doi, Electrochemical mechanism of ion current rectification of polyelectrolyte gel diodes, Nat. Commun. 5 (2014) 4162. [22] H.S. White, A. Bund, Ion current rectification at nanopores in glass membranes, Langmuir 24 (2008) 2212-2218. [23] W.J. Lan, D.A. Holden, H.S. White, Pressure-dependent ion current rectification in conical-shaped glass nanopores, J. Am. Chem. Soc. 133 (2011) 13300-13303. [24] Z. Siwy, Y. Gu, H.A. Spohr, D. Baur, A. Wolf-Reber, R. Spohr, P. Apel, Y.E. Korchev, Rectification and voltage gating of ion currents in a nanofabricated pore, Europhys. Lett. 60 (2002) 349-355. [25] J. Gao, W. Guo, D. Feng, H. Wang, D. Zhao, L. Jiang, High-performance ionic diode membrane for salinity gradient power generation, J. Am. Chem. Soc. 136 (2014) 12265-12272. [26] M. Ali, S. Mafe, P. Ramirez, R. Neumann, W. Ensinger, Logic gates using nanofluidic diodes based on conical nanopores functionalized with polyprotic acid chains, Langmuir 25 (2009) 11993-11997. [27] W. Guo, H. Xia, L. Cao, F. Xia, S. Wang, G. Zhang, Y. Song, Y. Wang, L. Jiang, D. Zhu, Integrating ionic gate and rectifier within one solid-state nanopore via modification with dual-responsive copolymer brushes, Adv. Funct. Mater. 20 (2010) 3561-3567. [28] H. Daiguji, Y. Oka, K. Shirono, Nanofluidic diode and bipolar transistor, Nano Lett. 5 (2005) 2274-2280. [29] I. Vlassiouk, Z.S. Siwy, Nanofluidic diode, Nano Lett. 7 (2007) 552-556. [30] R. Karnik, C. Duan, K. Castelino, H. Daiguji, A. Majumdar, Rectification of ionic current in a nanofluidic diode, Nano Lett. 7 (2007) 547-551. [31] L. Wen, J. Ma, Y. Tian, J. Zhai, L. Jiang, A photo-induced, and chemical-driven, smart-gating nanochannel, Small 8 (2012) 838-842. [32] K. Xiao, L. Chen, Z. Zhang, G. Xie, P. Li, X.Y. Kong, L. Wen, L. Jiang, A tunable ionic diode based on a biomimetic structure-tailorable nanochannel, Angew. Chem. Int. Ed. Engl. 56 (2017) 8168-8172. [33] I. Boussouar, Q. Chen, X. Chen, Y. Zhang, F. Zhang, D. Tian, H.S. White, H. Li, Single nanochannel platform for detecting chiral drugs, Anal. Chem. 89 (2017) 1110-1116. [34] J.H. Yuan, F.Y. He, D.C. Sun, X.H. Xia, A simple method for preparation of through-hole porous anodic alumina membrane, Chem. Mater. 16 (2004) 1841-1844. [35] S. Wu, F. Wildhaber, O. Vazquez-Mena, A. Bertsch, J. Brugger, P. Renaud, Facile fabrication of nanofluidic diode membranes using anodic aluminium oxide, Nanoscale 4 (2012) 5718-5723. [36] O. Jessensky, F. Müller, U. Gösele, Self-organized formation of hexagonal pore arrays in anodic alumina, Appl. Phys. Lett. 72 (1998) 1173-1175. [37] C.Y. Li, F.X. Ma, Z.Q. Wu, H.L. Gao, W.T. Shao, K. Wang, X.H. Xia, Solution-pH-modulated rectification of ionic current in highly ordered nanochannel arrays patterned with chemical functional groups at designed positions, Adv. Funct. Mater. 23 (2013) 3836-3844. [38] A.P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina, J. Appl. Phys. 84 (1998) 6023-6026. [39] R.C. Rollings, A.T. Kuan, J.A. Golovchenko, Ion selectivity of graphene nanopores, Nat. Commun. 7 (2016). [40] J.Z. Ji, Q. Kang, Y. Zhou, Y.P. Feng, X. Chen, J.Y. Yuan, W. Guo, Y. Wei, L. Jiang, Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs, Adv. Funct. Mater. 27 (2017). [41] W. Lee, S.J. Park, Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures, Chem. Rev. 114 (2014) 7487-7556. [42] C.Y. Lin, C. Combs, Y.S. Su, L.H. Yeh, Z.S. Siwy, Rectification of concentration polarization in mesopores leads to high conductance ionic diodes and high performance osmotic power, J. Am. Chem. Soc. 141 (2019) 3691-3698. [43] Z. Zeng, Y. Ai, S. Qian, pH-regulated ionic current rectification in conical nanopores functionalized with polyelectrolyte brushes, Phys. Chem. Chem. Phys. 16 (2014) 2465-2474. [44] D.H. Lin, C.Y. Lin, S. Tseng, J.P. Hsu, Influence of electroosmotic flow on the ionic current rectification in a pH-regulated, conical nanopore, Nanoscale 7 (2015) 14023-14031. [45] Z. Zhang, X.Y. Kong, K. Xiao, Q. Liu, G. Xie, P. Li, J. Ma, Y. Tian, L. Wen, L. Jiang, Engineered asymmetric heterogeneous membrane: a concentration-gradient-driven energy harvesting device, J. Am. Chem. Soc. 137 (2015) 14765-14772. [46] J.J. Su, D.Y. Ji, J.L. Tang, H. Li, Y.P. Feng, L.X. Cao, L. Jiang, W. Guo, Anomalous pore-density dependence in nanofluidic osmotic power generation, Chinese J. Chem. 36 (2018) 417-420. [47] L.H. Yeh, F. Chen, Y.T. Chiou, Y.S. Su, Anomalous pH-dependent nanofluidic salinity gradient power, Small 13 (2017). [48] M. Kosmulski, pH-dependent surface charging and points of zero charge II. Update, J. Colloid Interf. Sci. 275 (2004) 214-224. [49] D. Constantin, Z.S. Siwy, Poisson-Nernst-Planck model of ion current rectification through a nanofluidic diode, Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 76 (2007) 041202. [50] L.H. Yeh, J.P. Hsu, Effects of double-layer polarization and counterion condensation on the electrophoresis of polyelectrolytes, Soft Matter 7 (2011) 396-411. [51] H. Ohshima, Electrophoresis of soft particles, Adv. Colloid Interface Sci. 62 (1995) 189-235. [52] L.H. Yeh, M. Zhang, S. Qian, Ion transport in a pH-regulated nanopore, Anal. Chem. 85 (2013) 7527-7534. [53] J.P. Hsu, S.C. Lin, C.Y. Lin, S. Tseng, Power generation by a pH-regulated conical nanopore through reverse electrodialysis, J. Power Sources 366 (2017) 169-177. [54] J.P. Hsu, S.T. Yang, C.Y. Lin, S. Tseng, Ionic current rectification in a conical nanopore: influences of electroosmotic flow and type of salt, J. Phys. Chem. C 121 (2017) 4576-4582. [55] M. Elzbieciak, S. Zapotoczny, P. Nowak, R. Krastev, M. Nowakowska, P. Warszynski, Influence of pH on the structure of multilayer films composed of strong and weak polyelectrolytes, Langmuir 25 (2009) 3255-3259. [56] L.H. Yeh, M. Zhang, S. Qian, J.P. Hsu, S. Tseng, Ion concentration polarization in polyelectrolyte-modified nanopores, J. Phys. Chem. C 116 (2012) 8672-8677. [57] T. Cosgrove, T.M. Obey, B. Vincent, The configuration of sodium poly(styrene sulfonate) at polystyrene solution interfaces, J. Colloid Interf. Sci. 111 (1986) 409-418. Chapter 2 [1] H. Kimizuka, K. Koketsu, Ion transport through cell membrane, J. Theor. Biol. 6 (1964) 290-305. [2] B. Hille, Ionic channels in excitable membranes - current problems and biophysical approaches, Biophys. J. 22 (1978) 283-294. [3] N. Unwin, The structure of ion channels in membranes of excitable cells, Neuron 3 (1989) 665-676. [4] Y. Kamiyama, J. Israelachvili, Effect of pH and salt on the adsorption and interactions of an amphoteric polyelectrolyte, Macromolecules 25 (1992) 5081-5088. [5] H. Grib, L. Bonnal, J. Sandeaux, R. Sandeaux, C. Gavach, N. Mameri, Extraction of amphoteric amino acids by an electromembrane process. pH and electrical state control by electrodialysis with bipolar membranes, J. Chem. Technol. Biot. 73 (1998) 64-70. [6] J.E. Rothman, J. Lenard, Membrane asymmetry, Science 195 (1977) 743-753. [7] M.S. Bretscher, Membrane structure - some general principles, Science 181 (1973) 622-629. [8] C.C. Harrell, Z.S. Siwy, C.R. Martin, Conical nanopore membranes: controlling the nanopore shape, Small 2 (2006) 194-198. [9] F. Xia, W. Guo, Y. Mao, X. Hou, J. Xue, H. Xia, L. Wang, Y. Song, H. Ji, Q. Ouyang, Y. Wang, L. Jiang, Gating of single synthetic nanopores by proton-driven DNA molecular motors, J. Am. Chem. Soc. 130 (2008) 8345-8350. [10] M. Ali, P. Ramirez, H.Q. Nguyen, S. Nasir, J. Cervera, S. Mafe, W. Ensinger, Single cigar-shaped nanopores functionalized with amphoteric amino acid chains: experimental and theoretical characterization, ACS Nano 6 (2012) 3631-3640. [11] J.M. Perry, K. Zhou, Z.D. Harms, S.C. Jacobson, Ion transport in nanofluidic funnels, ACS Nano 4 (2010) 3897-3902. [12] P.Y. Apel, I.V. Blonskaya, O.L. Orelovitch, P. Ramirez, B.A. Sartowska, Effect of nanopore geometry on ion current rectification, Nanotechnology 22 (2011) 175302. [13] J.P. Hsu, H.H. Wu, C.Y. Lin, S. Tseng, Ion current rectification behavior of bioinspired nanopores having a pH-tunable zwitterionic surface, Anal. Chem. 89 (2017) 3952-3958. [14] Y. Kong, X. Fan, M. Zhang, X. Hou, Z. Liu, J. Zhai, L. Jiang, Nanofluidic diode based on branched alumina nanochannels with tunable ionic rectification, ACS Appl. Mater. Interfaces 5 (2013) 7931-7936. [15] C.Y. Li, Z.Q. Wu, C.G. Yuan, K. Wang, X.H. Xia, Propagation of concentration polarization affecting ions transport in branching nanochannel array, Anal. Chem. 87 (2015) 8194-8202. [16] L. Zaraska, E. Kurowska, G.D. Sulka, M. Jaskuła, Porous alumina membranes with branched nanopores as templates for fabrication of Y-shaped nanowire arrays, J. Solid State Electrochem. 16 (2012) 3611-3619. [17] H. Jo, N. Haberkorn, J.A. Pan, M. Vakili, K. Nielsch, P. Theato, Fabrication of chemically tunable, hierarchically branched polymeric nanostructures by multi-branched anodic aluminum oxide templates, Langmuir 32 (2016) 6437-6444. [18] R.B. Schoch, J. Han, P. Renaud, Transport phenomena in nanofluidics, Rev. Mod. Phys. 80 (2008) 839-883. [19] M. Miansari, J.R. Friend, L.Y. Yeo, Enhanced ion current rectification in 2D graphene-based nanofluidic devices, Adv. Sci. (Weinh) 2 (2015) 1500062. [20] M.L. Kovarik, K. Zhou, S.C. Jacobson, Effect of conical nanopore diameter on ion current rectification, J. Phys. Chem. B 113 (2009) 15960-15966. [21] T. Yamamoto, M. Doi, Electrochemical mechanism of ion current rectification of polyelectrolyte gel diodes, Nat. Commun. 5 (2014) 4162. [22] H.S. White, A. Bund, Ion current rectification at nanopores in glass membranes, Langmuir 24 (2008) 2212-2218. [23] W.J. Lan, D.A. Holden, H.S. White, Pressure-dependent ion current rectification in conical-shaped glass nanopores, J. Am. Chem. Soc. 133 (2011) 13300-13303. [24] Z. Siwy, Y. Gu, H.A. Spohr, D. Baur, A. Wolf-Reber, R. Spohr, P. Apel, Y.E. Korchev, Rectification and voltage gating of ion currents in a nanofabricated pore, Europhys. Lett. 60 (2002) 349-355. [25] J. Gao, W. Guo, D. Feng, H. Wang, D. Zhao, L. Jiang, High-performance ionic diode membrane for salinity gradient power generation, J. Am. Chem. Soc. 136 (2014) 12265-12272. [26] M. Ali, S. Mafe, P. Ramirez, R. Neumann, W. Ensinger, Logic gates using nanofluidic diodes based on conical nanopores functionalized with polyprotic acid chains, Langmuir 25 (2009) 11993-11997. [27] W. Guo, H. Xia, L. Cao, F. Xia, S. Wang, G. Zhang, Y. Song, Y. Wang, L. Jiang, D. Zhu, Integrating ionic gate and rectifier within one solid-state nanopore via modification with dual-responsive copolymer brushes, Adv. Funct. Mater. 20 (2010) 3561-3567. [28] H. Daiguji, Y. Oka, K. Shirono, Nanofluidic diode and bipolar transistor, Nano Lett. 5 (2005) 2274-2280. [29] I. Vlassiouk, Z.S. Siwy, Nanofluidic diode, Nano Lett. 7 (2007) 552-556. [30] R. Karnik, C. Duan, K. Castelino, H. Daiguji, A. Majumdar, Rectification of ionic current in a nanofluidic diode, Nano Lett. 7 (2007) 547-551. [31] L. Wen, J. Ma, Y. Tian, J. Zhai, L. Jiang, A photo-induced, and chemical-driven, smart-gating nanochannel, Small 8 (2012) 838-842. [32] K. Xiao, L. Chen, Z. Zhang, G. Xie, P. Li, X.Y. Kong, L. Wen, L. Jiang, A tunable ionic diode based on a biomimetic structure-tailorable nanochannel, Angew. Chem. Int. Ed. Engl. 56 (2017) 8168-8172. [33] I. Boussouar, Q. Chen, X. Chen, Y. Zhang, F. Zhang, D. Tian, H.S. White, H. Li, Single nanochannel platform for detecting chiral drugs, Anal. Chem. 89 (2017) 1110-1116. [34] J.H. Yuan, F.Y. He, D.C. Sun, X.H. Xia, A simple method for preparation of through-hole porous anodic alumina membrane, Chem. Mater. 16 (2004) 1841-1844. [35] S. Wu, F. Wildhaber, O. Vazquez-Mena, A. Bertsch, J. Brugger, P. Renaud, Facile fabrication of nanofluidic diode membranes using anodic aluminium oxide, Nanoscale 4 (2012) 5718-5723. [36] O. Jessensky, F. Müller, U. Gösele, Self-organized formation of hexagonal pore arrays in anodic alumina, Appl. Phys. Lett. 72 (1998) 1173-1175. [37] C.Y. Li, F.X. Ma, Z.Q. Wu, H.L. Gao, W.T. Shao, K. Wang, X.H. Xia, Solution-pH-modulated rectification of ionic current in highly ordered nanochannel arrays patterned with chemical functional groups at designed positions, Adv. Funct. Mater. 23 (2013) 3836-3844. [38] A.P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina, J. Appl. Phys. 84 (1998) 6023-6026. [39] R.C. Rollings, A.T. Kuan, J.A. Golovchenko, Ion selectivity of graphene nanopores, Nat. Commun. 7 (2016). [40] J.Z. Ji, Q. Kang, Y. Zhou, Y.P. Feng, X. Chen, J.Y. Yuan, W. Guo, Y. Wei, L. Jiang, Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs, Adv. Funct. Mater. 27 (2017). [41] W. Lee, S.J. Park, Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures, Chem. Rev. 114 (2014) 7487-7556. [42] C.Y. Lin, C. Combs, Y.S. Su, L.H. Yeh, Z.S. Siwy, Rectification of concentration polarization in mesopores leads to high conductance ionic diodes and high performance osmotic power, J. Am. Chem. Soc. 141 (2019) 3691-3698. [43] Z. Zeng, Y. Ai, S. Qian, pH-regulated ionic current rectification in conical nanopores functionalized with polyelectrolyte brushes, Phys. Chem. Chem. Phys. 16 (2014) 2465-2474. [44] D.H. Lin, C.Y. Lin, S. Tseng, J.P. Hsu, Influence of electroosmotic flow on the ionic current rectification in a pH-regulated, conical nanopore, Nanoscale 7 (2015) 14023-14031. [45] Z. Zhang, X.Y. Kong, K. Xiao, Q. Liu, G. Xie, P. Li, J. Ma, Y. Tian, L. Wen, L. Jiang, Engineered asymmetric heterogeneous membrane: a concentration-gradient-driven energy harvesting device, J. Am. Chem. Soc. 137 (2015) 14765-14772. [46] J.J. Su, D.Y. Ji, J.L. Tang, H. Li, Y.P. Feng, L.X. Cao, L. Jiang, W. Guo, Anomalous pore-density dependence in nanofluidic osmotic power generation, Chinese J. Chem. 36 (2018) 417-420. [47] L.H. Yeh, F. Chen, Y.T. Chiou, Y.S. Su, Anomalous pH-dependent nanofluidic salinity gradient power, Small 13 (2017). [48] M. Kosmulski, pH-dependent surface charging and points of zero charge II. Update, J. Colloid Interf. Sci. 275 (2004) 214-224. [49] D. Constantin, Z.S. Siwy, Poisson-Nernst-Planck model of ion current rectification through a nanofluidic diode, Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 76 (2007) 041202. [50] L.H. Yeh, J.P. Hsu, Effects of double-layer polarization and counterion condensation on the electrophoresis of polyelectrolytes, Soft Matter 7 (2011) 396-411. [51] H. Ohshima, Electrophoresis of soft particles, Adv. Colloid Interface Sci. 62 (1995) 189-235. [52] L.H. Yeh, M. Zhang, S. Qian, Ion transport in a pH-regulated nanopore, Anal. Chem. 85 (2013) 7527-7534. [53] J.P. Hsu, S.C. Lin, C.Y. Lin, S. Tseng, Power generation by a pH-regulated conical nanopore through reverse electrodialysis, J. Power Sources 366 (2017) 169-177. [54] J.P. Hsu, S.T. Yang, C.Y. Lin, S. Tseng, Ionic current rectification in a conical nanopore: influences of electroosmotic flow and type of salt, J. Phys. Chem. C 121 (2017) 4576-4582. [55] M. Elzbieciak, S. Zapotoczny, P. Nowak, R. Krastev, M. Nowakowska, P. Warszynski, Influence of pH on the structure of multilayer films composed of strong and weak polyelectrolytes, Langmuir 25 (2009) 3255-3259. [56] L.H. Yeh, M. Zhang, S. Qian, J.P. Hsu, S. Tseng, Ion concentration polarization in polyelectrolyte-modified nanopores, J. Phys. Chem. C 116 (2012) 8672-8677. [57] T. Cosgrove, T.M. Obey, B. Vincent, The configuration of sodium poly(styrene sulfonate) at polystyrene solution interfaces, J. Colloid Interf. Sci. 111 (1986) 409-418.
|