|
1. Dietrich-Buchecker, C. O.; Sauvage, J.-P.; Kintzinger, J. P. Tetrahedron Lett. 1983, 24, 5095–5098. 2. (a) Dougherty, D. A. Science 1996, 271, 163–168. (b) Ma, J.-C; Dougherty, D. A. Chem. Rev. 1997, 97, 1303–1324. (c) Gokel, G. W.; De Wall, S. L.; Meadows, E. S. Eur. J. Org. Chem. 2000, 17, 2967–2978. (d) Gokel, G. W.; Barbour, L. J.; Ferdani, R.; Hu, J.-X. Acc. Chem. Res. 2002, 35, 878–886. 3. (a) Hunter, C. A.; Sanders, J. K. M. J. Am Chem. Soc. 1990, 112, 5525–5534. (b) Hamilton, D. G.; Davies, J. E.; Prodi, L.; Sanders, J. K. M. Chem. Eur. J. 1998, 4, 608–620. 4. (a) Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; Mcree, D. E.; Khazanovich, N. Nature 1993, 366, 324–327. (b) Whitesides, G. M.; Simanek, E. E.; Mathias, J. P.; Seto, C. T.; Chin, D. N.; Mammen, M.; Gordon, D. M. Acc. Chem. Res. 1995, 28, 37–44. (c) Mascal, M.; Hext, N. M.; Warmuth, R.; Moore, M. H.; Turkenburg, J. P. Angew. Chem. Int. Ed. 1996, 35, 2204–2206. 5. Lehn, J. M. Supramolecular Chemistry: Concepts and Perspectives; VCH, 1995. 6. (a) Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 2495–2496. (b) Gokel, G. W. Crown Ethers and Cryptands; Royal Society of Chemistry, 1991. (c) Cram, D. J.; Cram, J. M. Container Molecules and Their Guests; Royal Society of Chemistry, 1997. (d) Vögtle, F.; Weber, E. Host guest complex chemistry macrocycles: synthesis, structures, applications; Springer, 1985. 7. Atwood, J. L. Inclusion phenomena and molecular recognition; Plenum Press, 1990. 8. Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Science 1991, 254, 1312–1319. 9. Please refer to a special issue: Nature 2001, 413, 185–230. 10. Amabilino, D. B.; Stoddart, J. F. Chem. Rev. 1995, 95, 2725–2828. 11. Erbas-Cakmak, S.; Leigh, D. A.; McTernan, C. T.; Nussbaumer, A. L. Chem. Rev. 2015, 115, 10081–10206. 12. (a) Evans, N. H.; Beer, P. D. Chem. Soc. Rev. 2014, 43, 4658–4683. (b) Dietrich-Buchecker, C. O.; Sauvage, J.-P.; Kern, J. M. J. Am. Chem. Soc. 1984, 106, 3043–3045. 13. Frisch, H. L.; Wasserman, E. J. Am. Chem. Soc. 1961, 83, 3789–3795. 14. Mitchell, D. K.; Sauvage, J.-P. Angew. Chem. Int. Ed. Engl. 1988, 27, 930–931. 15. (a) Bruns, C. J.; Stoddart, J. F. The Nature of the Mechanical Bond: From Molecules to Machines; Wiley: Hoboken, NJ, 2016. (b) Jamieson, E. M. G.; Modicom, F.; Goldup, S. M. Chem. Soc. Rev. 2018, 47, 5266–5311. 16. Kaida, Y.; Okamoto, Y.; Chambron, J.-C.; Mitchell, D. K.; Sauvage, J.-P. Tetrahedron Lett. 1993, 34, 1019–1022. 17. Ottens-Hildebrandt, S.; Schmidt, T.; Harren, J.; Vögtle, F. Liebigs Ann. 1995, 1855–1860. 18. (a) Yamamoto, C.; Okamoto, Y.; Schmidt, T.; Jäger, R.; Vögtle, F. J. Am. Chem. Soc. 1997, 119, 10547–10548. (b) Mohry, A.; Vögtle, F.; Nieger, M.; Hupfer, H. Chirality 2000, 12, 76–83. 19. Loren, J. C.; Gantzel, P.; Linden, A.; Siegel, J. S. Org. Biomol. Chem. 2005, 3, 3105–3116. 20. Denis, M.; Lewis, J. E. M.; Modicom, F.; Goldup, S. M. Chem. 2019, 5, 1512–1520. 21. McArdle, C. P.; Van, S.; Jennings, M. C.; Puddephatt, R. J. J. Am. Chem. Soc. 2002, 124, 3959-3965. 22. Theil, A.; Mauve, C.; Adeline, M.-T.; Marinetti, A.; Sauvage, J.-P. Angew. Chem. Int. Ed. 2006, 45, 2104–2107. 23. Makita, Y.; Kihara, N.; Nakakoji, N.; Takata, T.; Inagaki, S.; Yamamoto, C.; Okamoto, Y. Chem. Lett. 2007, 36, 162–163. 24. Bordoli, R. J.; Goldup, S. M. J. Am. Chem. Soc. 2014, 136, 4817–4820. 25. Kameta, N.; Nagawa, Y.; Karikomi, M.; Hiratani, K. Chem. Commun. 2006, 3714–3716. 26. (a) Langeveld-Voss, B. M. W.; Christiaans, M. P. T.; Janssen, R. A. J.; Meijer, E. W. Macromolecules 1998, 31, 6702–6704. (b) Nagata, Y.; Yamada, T.; Adachi, T.; Akai, Y.; Yamamoto, T.; Suginome, M. J. Am. Chem. Soc. 2013, 135, 10104–10113. 27. (a) Guschlbauer, W.; Courtois, Y. FEBS Lett. 1968, 1, 183–186. (b) Sanji, T.; Kato, N.; Tanaka, M. Chem. - Asian J. 2008, 3, 46–50. (c) Lu, W.; Du, G.; Liu, K.; Jiang, L.; Liang, J.; Shen, Z. J. Phys. Chem. A 2014, 118, 283–292. 28. Suk, J.-m.; Naidu, V. R.; Liu, X.; Lah, M. S.; Jeong, K.-S. J. Am. Chem. Soc. 2011, 133, 13938–13941. 29. Haghdani, S.; Hoff, B. H.; Koch, H.; Åstrand, P.-O. J. Phys. Chem. A 2017, 121, 4765–4777. 30. (a) Autschbach, J.; Nitsch-Velasquez, L.; Rudolph, M. Top. Curr. Chem. 2011, 298, 1–98. (b) Simpson, S.; Izydorczak, A. M. J. Chem. Educ. 2018, 95, 1872–1874. 31. Kundrat, M. D.; Autschbach, J. J. Am. Chem. Soc. 2008, 130, 4404–4414. 32. Nitsch-Velasquez, L.; Autschbach, J. Chirality 2010, 22, E81–E95. 33. Bottari, G.; Leigh, D. A.; Pérez, E. M. J. Am. Chem. Soc. 2003, 125, 13360–13361. 34. (a) Tung, S.-T.; Lai, C.-C.; Liu, Y.-H.; Peng, S.-M.; Chiu, S.-H. Angew. Chem. Int. Ed. 2013, 52, 13269–13272. (b) Inthasot, A.; Tung, S.-T.; Chiu, S.-H. Acc. Chem. Res. 2018, 51, 1324–1337. 35. Kraml, C. M.; Zhou, D.; Byrne, N.; McConnell, O. J. Chromatogr. A 2005, 1100, 108–115. 36. (a) Flack, H. D. Acta Crystallogr., Sect. A: Found. Crystallogr. 1983, A39, 876–881. (b) Parsons, S. Tetrahedron: Asymmetry 2017, 28, 1304–1313. 37. A few methods have been proposed in the literature (see refs[15] [18b] for assigning the stereochemistry of topologically chiral [2]catenanes. Here, we used the method described in refs[15b] [20] to assign the absolute configuration of 1a: For the two interlocked macrocycles in the solid state structure of the [2]catenane 1a (Figure 16), the highest-priority atom is the central oxygen atom of the diethylene glycol motif. Among the two carbon atoms adjacent to that oxygen atom, the one that is closest to the oxygen atom linked to the m-xylyl unit (i.e., further away from the nitrogen atom) has higher priority. Thus, the direction of the two interlocked rings can be determined, and we assigned the absolute configuration of the [2]catenane 1a to be (S). 38. (a) Osipov, M. A.; Pickup, B. T.; Dunmur, D. A. Mol. Phys. 1995, 84, 1193–1206. (b) Wang, S.; Cann, N. M. J. Chem. Phys. 2008, 129, 054507. 39. For now, it is unclear to us why the chiral amino/ammonium pairs of [2]catenanes have opposite OR directions. High-accuracy computational modeling of the OR of amino acids (ref 31 and 32) required the identification of every energetically accessible conformer and their relative populations because the chiroptical response of the molecule is the weighted average of all the possible conformations. Similar analysis of the [2]catenane 1, which is more sizable and flexible in its structure when compared with a simple amino acid, appears challenging, and we believe it would be better studied by experts in that field.
|