跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/10 19:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:戴滋頤
研究生(外文):Tzu-Yi Tai
論文名稱:拓樸手性[2]交環烷之絕對結構鑑定及其酸/鹼控制之旋光度方向翻轉行為
論文名稱(外文):Absolute Configurations of Topologically Chiral [2]Catenanes and the Acid/Base-Flippable Directions of Their Optical Rotations
指導教授:邱勝賢
指導教授(外文):Sheng-Hsien Chiu
口試委員:陳平徐秀福賴建成李文山
口試委員(外文):Richard P. ChengHsiu-Fu HsuChien-Chen LaiWen-Shan Li
口試日期:2020-07-27
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:86
中文關鍵詞:絕對結構交環烷旋光度開關拓樸手性
外文關鍵詞:absolute configurationcatenaneoptical rotationswitchtopologically chiral
DOI:10.6342/NTU202002191
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,關於手性[2]車輪烷與[2]交環烷的建構,因其可互相轉換之構形異構物具有應用於鏡像選擇之感測及不對稱催化等方面的潛力,而引起了越來越多關注。過去三十年中,雖有許多[2]交環烷之合成被報導出來,但在這些分子當中,卻僅有少數具有拓樸手性。在本研究中,我們成功地以鈉離子為模板,合成出一個拓樸手性[2]交環烷,並且透過高效液相層析及X射線單晶繞射分析,明確地鑑定出拓樸手性[2]交環烷的兩個鏡像異構物之絕對結構。此外,我們更進一步展示透過依序加入酸使[2]交環烷的胺基被酸化及加入鹼使[2]交環烷的銨基被去質子化,此手性[2]交環烷之旋光度方向可在左旋 (負) 及右旋 (正) 之間被反覆地調控。這也是第一個拓樸手性[2]交環烷能夠展現類似胺基酸之 Clough-Lutz-Jirgensons (CLJ) 行為的例子。
The construction of chiral [2]rotaxanes and [2]catenanes has drawn increasing attention for the possibility of their switchable coconformers leading to innovative applications in enantioselective sensing and asymmetric catalysis. The past three decades have witnessed many syntheses of organic [2]catenanes, but only a few of these molecules have possessed topological chirality. Herein, we used a Na+ ion templating approach to synthesize a topologically chiral [2]catenane and then determined the absolute configurations of its two enantiomers unambiguously based on HPLC resolution and X-ray crystal analysis. We also reveal that the optical rotations of the two [2]catenane enantiomers can be flipped reversibly from positive (or negative) to negative (or positive), and vice versa, over several cycles of the sequential addition of acid and base to protonate/deprotonate their amine/ammonium functionalities, the first example of the Clough-Lutz-Jirgensons (CLJ) behavior for a mechanically interlocked topologically chiral catenane.
中文摘要 i
英文摘要 ii
論文發表 iii
目錄 iv
圖目錄 vi
流程目錄 viii
表目錄 ix
第一章 簡介 1
1.1 超分子化學 (Supramolecular chemistry) 1
1.2 交環烷分子 (Catenane) 2
1.3 拓樸手性交環烷分子 (Topologically chiral catenane) 2
1.4 拓樸手性交環烷分子之合成 4
1.5 軸手性交環烷分子 (Axially chiral catenane) 10
1.6 軸手性交環烷分子之合成 10
1.7 機械平面手性車輪烷分子 (Mechanically planar chiral rotaxane) 12
1.8 機械平面手性車輪烷分子之合成 13
1.9 手性內鎖分子之應用 17
1.10 手性光學的分子開關 (Chiroptical molecular switch) 19
第二章 研究動機 23
第三章 結果與討論 25
3.1 拓樸手性[2]交環烷之合成 25
3.2 實驗結果與討論 27
3.3 結論 33
實驗部分 34
參考文獻 48
附錄 52
1. Dietrich-Buchecker, C. O.; Sauvage, J.-P.; Kintzinger, J. P. Tetrahedron Lett. 1983, 24, 5095–5098.
2. (a) Dougherty, D. A. Science 1996, 271, 163–168. (b) Ma, J.-C; Dougherty, D. A. Chem. Rev. 1997, 97, 1303–1324. (c) Gokel, G. W.; De Wall, S. L.; Meadows, E. S. Eur. J. Org. Chem. 2000, 17, 2967–2978. (d) Gokel, G. W.; Barbour, L. J.; Ferdani, R.; Hu, J.-X. Acc. Chem. Res. 2002, 35, 878–886.
3. (a) Hunter, C. A.; Sanders, J. K. M. J. Am Chem. Soc. 1990, 112, 5525–5534. (b) Hamilton, D. G.; Davies, J. E.; Prodi, L.; Sanders, J. K. M. Chem. Eur. J. 1998, 4, 608–620.
4. (a) Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; Mcree, D. E.; Khazanovich, N. Nature 1993, 366, 324–327. (b) Whitesides, G. M.; Simanek, E. E.; Mathias, J. P.; Seto, C. T.; Chin, D. N.; Mammen, M.; Gordon, D. M. Acc. Chem. Res. 1995, 28, 37–44. (c) Mascal, M.; Hext, N. M.; Warmuth, R.; Moore, M. H.; Turkenburg, J. P. Angew. Chem. Int. Ed. 1996, 35, 2204–2206.
5. Lehn, J. M. Supramolecular Chemistry: Concepts and Perspectives; VCH, 1995.
6. (a) Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 2495–2496. (b) Gokel, G. W. Crown Ethers and Cryptands; Royal Society of Chemistry, 1991. (c) Cram, D. J.; Cram, J. M. Container Molecules and Their Guests; Royal Society of Chemistry, 1997. (d) Vögtle, F.; Weber, E. Host guest complex chemistry macrocycles: synthesis, structures, applications; Springer, 1985.
7. Atwood, J. L. Inclusion phenomena and molecular recognition; Plenum Press, 1990.
8. Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Science 1991, 254, 1312–1319.
9. Please refer to a special issue: Nature 2001, 413, 185–230.
10. Amabilino, D. B.; Stoddart, J. F. Chem. Rev. 1995, 95, 2725–2828.
11. Erbas-Cakmak, S.; Leigh, D. A.; McTernan, C. T.; Nussbaumer, A. L. Chem. Rev. 2015, 115, 10081–10206.
12. (a) Evans, N. H.; Beer, P. D. Chem. Soc. Rev. 2014, 43, 4658–4683. (b) Dietrich-Buchecker, C. O.; Sauvage, J.-P.; Kern, J. M. J. Am. Chem. Soc. 1984, 106, 3043–3045.
13. Frisch, H. L.; Wasserman, E. J. Am. Chem. Soc. 1961, 83, 3789–3795.
14. Mitchell, D. K.; Sauvage, J.-P. Angew. Chem. Int. Ed. Engl. 1988, 27, 930–931.
15. (a) Bruns, C. J.; Stoddart, J. F. The Nature of the Mechanical Bond: From Molecules to Machines; Wiley: Hoboken, NJ, 2016. (b) Jamieson, E. M. G.; Modicom, F.; Goldup, S. M. Chem. Soc. Rev. 2018, 47, 5266–5311.
16. Kaida, Y.; Okamoto, Y.; Chambron, J.-C.; Mitchell, D. K.; Sauvage, J.-P. Tetrahedron Lett. 1993, 34, 1019–1022.
17. Ottens-Hildebrandt, S.; Schmidt, T.; Harren, J.; Vögtle, F. Liebigs Ann. 1995, 1855–1860.
18. (a) Yamamoto, C.; Okamoto, Y.; Schmidt, T.; Jäger, R.; Vögtle, F. J. Am. Chem. Soc. 1997, 119, 10547–10548. (b) Mohry, A.; Vögtle, F.; Nieger, M.; Hupfer, H. Chirality 2000, 12, 76–83.
19. Loren, J. C.; Gantzel, P.; Linden, A.; Siegel, J. S. Org. Biomol. Chem. 2005, 3, 3105–3116.
20. Denis, M.; Lewis, J. E. M.; Modicom, F.; Goldup, S. M. Chem. 2019, 5, 1512–1520.
21. McArdle, C. P.; Van, S.; Jennings, M. C.; Puddephatt, R. J. J. Am. Chem. Soc. 2002, 124, 3959-3965.
22. Theil, A.; Mauve, C.; Adeline, M.-T.; Marinetti, A.; Sauvage, J.-P. Angew. Chem. Int. Ed. 2006, 45, 2104–2107.
23. Makita, Y.; Kihara, N.; Nakakoji, N.; Takata, T.; Inagaki, S.; Yamamoto, C.; Okamoto, Y. Chem. Lett. 2007, 36, 162–163.
24. Bordoli, R. J.; Goldup, S. M. J. Am. Chem. Soc. 2014, 136, 4817–4820.
25. Kameta, N.; Nagawa, Y.; Karikomi, M.; Hiratani, K. Chem. Commun. 2006, 3714–3716.
26. (a) Langeveld-Voss, B. M. W.; Christiaans, M. P. T.; Janssen, R. A. J.; Meijer, E. W. Macromolecules 1998, 31, 6702–6704. (b) Nagata, Y.; Yamada, T.; Adachi, T.; Akai, Y.; Yamamoto, T.; Suginome, M. J. Am. Chem. Soc. 2013, 135, 10104–10113.
27. (a) Guschlbauer, W.; Courtois, Y. FEBS Lett. 1968, 1, 183–186. (b) Sanji, T.; Kato, N.; Tanaka, M. Chem. - Asian J. 2008, 3, 46–50. (c) Lu, W.; Du, G.; Liu, K.; Jiang, L.; Liang, J.; Shen, Z. J. Phys. Chem. A 2014, 118, 283–292.
28. Suk, J.-m.; Naidu, V. R.; Liu, X.; Lah, M. S.; Jeong, K.-S. J. Am. Chem. Soc. 2011, 133, 13938–13941.
29. Haghdani, S.; Hoff, B. H.; Koch, H.; Åstrand, P.-O. J. Phys. Chem. A 2017, 121, 4765–4777.
30. (a) Autschbach, J.; Nitsch-Velasquez, L.; Rudolph, M. Top. Curr. Chem. 2011, 298, 1–98. (b) Simpson, S.; Izydorczak, A. M. J. Chem. Educ. 2018, 95, 1872–1874.
31. Kundrat, M. D.; Autschbach, J. J. Am. Chem. Soc. 2008, 130, 4404–4414.
32. Nitsch-Velasquez, L.; Autschbach, J. Chirality 2010, 22, E81–E95.
33. Bottari, G.; Leigh, D. A.; Pérez, E. M. J. Am. Chem. Soc. 2003, 125, 13360–13361.
34. (a) Tung, S.-T.; Lai, C.-C.; Liu, Y.-H.; Peng, S.-M.; Chiu, S.-H. Angew. Chem. Int. Ed. 2013, 52, 13269–13272. (b) Inthasot, A.; Tung, S.-T.; Chiu, S.-H. Acc. Chem. Res. 2018, 51, 1324–1337.
35. Kraml, C. M.; Zhou, D.; Byrne, N.; McConnell, O. J. Chromatogr. A 2005, 1100, 108–115.
36. (a) Flack, H. D. Acta Crystallogr., Sect. A: Found. Crystallogr. 1983, A39, 876–881. (b) Parsons, S. Tetrahedron: Asymmetry 2017, 28, 1304–1313.
37. A few methods have been proposed in the literature (see refs[15] [18b] for assigning the stereochemistry of topologically chiral [2]catenanes. Here, we used the method described in refs[15b] [20] to assign the absolute configuration of 1a: For the two interlocked macrocycles in the solid state structure of the [2]catenane 1a (Figure 16), the highest-priority atom is the central oxygen atom of the diethylene glycol motif. Among the two carbon atoms adjacent to that oxygen atom, the one that is closest to the oxygen atom linked to the m-xylyl unit (i.e., further away from the nitrogen atom) has higher priority. Thus, the direction of the two interlocked rings can be determined, and we assigned the absolute configuration of the [2]catenane 1a to be (S).
38. (a) Osipov, M. A.; Pickup, B. T.; Dunmur, D. A. Mol. Phys. 1995, 84, 1193–1206. (b) Wang, S.; Cann, N. M. J. Chem. Phys. 2008, 129, 054507.
39. For now, it is unclear to us why the chiral amino/ammonium pairs of [2]catenanes have opposite OR directions. High-accuracy computational modeling of the OR of amino acids (ref 31 and 32) required the identification of every energetically accessible conformer and their relative populations because the chiroptical response of the molecule is the weighted average of all the possible conformations. Similar analysis of the [2]catenane 1, which is more sizable and flexible in its structure when compared with a simple amino acid, appears challenging, and we believe it would be better studied by experts in that field.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top