|
(1) Valtazanos, P.; Ruedenberg, K. Bifurcations and Transition States . Theor. Chem. Acc. 1986, 69, 281–307. (2) Quapp, W.; Hirsch, M.; Heidrich, D. Bifurcation of Reaction Pathways: the Set of Valley Ridge Inflection Points of a Simple Three-Dimensional Potential Energy Surface. Theor. Chem. Acc. 1998, 100, 285–299. (3) Ramquet, M.-N.; Dive, G.; Dehareng, D. Critical Points and Reaction Paths Characterization on a Potential Energy Hypersurface. J. Chem. Phys. 2000, 112, 4923–4934. (4) Quapp, W. How Does a Reaction Path Branching Take Place? A Classification of Bifurcation Events. J. Mol. Struct. 2004, 695-696, 95–101. (5) Ess, D. H.; Wheeler, S. E.; Iafe, R. G.; Xu, L.; Celebi-Olçüm, N.; Houk, K. N. Bifurcations on Potential Energy Surfaces of Organic Reactions. Angew. Chem., Int. Ed. 2008, 47, 7592–7601. (6) Collins, P.; Carpenter, B. K.; Ezra, G. S.; Wiggins, S. Nonstatistical Dynamics on Potentials Exhibiting Reaction Path Bifurcations and Valley-Ridge Inflection Points. J. Chem. Phys. 2013, 139, 154108. (7) Martín-Sómer, A.; Yáñez, M.; Hase, W. L.; Gaigeot, M.-P.; Spezia, R. Post-Transition State Dynamics in Gas Phase Reactivity: Importance of Bifurcations and Rotational Activation. J. Chem. Theory Comput. 2016, 12, 974–982. (8) Tantillo, D. J. Importance of Inherent Substrate Reactivity in Enzyme-Promoted Carbocation Cyclization/Rearrangements. Angew. Chem., Int. Ed. 2017, 56, 10040–10045. (9) Cane, D. E. Enzymic Formation of Sesquiterpenes. Chem. Rev. 1990, 90, 1089–1103. (10) Christianson, D. W. Structural Biology and Chemistry of the Terpenoid Cyclases. Chem. Rev. 2006, 106, 3412–3442. (11) Siebert, M. R.; Zhang, J.; Addepalli, S. V.; Tantillo, D. J.; Hase, W. L. The Need for Enzymatic Steering in Abietic Acid Biosynthesis: Gas-Phase Chemical Dynamics Simulations of Carbocation Rearrangements on a Bifurcating Potential Energy Surface. J. Am. Chem. Soc. 2011, 133, 8335-8343. (12) Ye, L.; Wang, Y.; Aue, D. H.; Zhang, L. Experimental and Computational Evidence for Gold Vinylidenes: Generation from Terminal Alkynes via a Bifurcation Pathway and Facile C–H Insertions. J. Am. Chem. Soc. 2012, 134, 31–34. (13) Hong, Y. J.; Tantillo, D. J. Biosynthetic Consequences of Multiple Sequential Post-Transition State Bifurcations. Nat. Chem. 2014, 6, 104–111. (14) Baumann, M.; Baxendale, I. R. Sustainable Synthesis of Thioimidazoles via Carbohydrate-Based Multicomponent Reactions. Org. Lett. 2014, 16, 6076–6079. (15) Burns, J. M. Computational Evidence for a Reaction Pathway Bifurcation in Sasaki-Type (4 + 3)-Cycloadditions. Org. Biomol. Chem. 2018, 16, 1828–1836. (16) Tantillo, D. J., Applied Theoretical Organic Chemistry; World Scientific: 2018. (17) Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J. Current Status of Transition-State Theory. J. Phys. Chem. 1996, 100, 12771–12800. (18) Tantillo, D. J. Hiscotropic Rearrangements. http : / / blueline . ucdavis . edu /2ndTier/3rdTier/Hisco.html. (19) Hare, S. R.; Pemberton, R. P.; Tantillo, D. J. Navigating Past a Fork in the Road:Carbocation− Interactions can Manipulate Dynamic Behavior of Reactions FacingPost-Transition State Bifurcations. J. Am. Chem. Soc. 2017, 139, 7485–7493. (20) Fukui, K. Formulation of the Reaction Coordinate. J. Phys. Chem. 1970, 74, 4161–4163. (21) Quapp, W.; Hirsch, M.; Heidrich, D. An Approach to Reaction Path Branching Using Valley-Ridge Inflection Points of Potential-Energy Surfaces. Theor. Chem. Acc. 2004, 112, 40–51. (22) Frisch, M. J. et al. Gaussian 09., version Revision A.02, Wallingford CT, 2009. (23) Shao, Y. et al. Advances in Molecular Quantum Chemistry Contained in the QChem 4 Program Package. Mol. Phys. 2015, 113, 184–215. (24) Hare, S. R.; Tantillo, D. J. Dynamic Behavior of Rearranging Carbocations - Implications for Terpene Biosynthesis. Beilstein J. Org. Chem. 2016, 12, 377–390. (25) Shaik, S.; Danovich, D.; Sastry, G. N.; Ayala, P. Y.; Bernhard Schlegel, H. Dissociative Electron Transfer, Substitution, and Borderline Mechanisms in Reactions of Ketyl Radical Anions. Differences and Difficulties in Their Reaction Paths. J. Am. Chem. Soc. 1997, 119, 9237–9245. (26) Müller, K. Reaction Paths on Multidimensional Energy Hypersurfaces. Angew. Chem., Int. Ed. 1980, 19, 1–13. (27) Kraka, E. Reaction Path Hamiltonian and the Unified Reaction Valley Approach. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011, 1, 531–556. (28) Miller, W. H.; Handy, N. C.; Adams, J. E. Reaction Path Hamiltonian for Polyatomic Molecules. J. Chem. Phys. 1980, 72, 99. (29) Kraka, E.; Wu, A.; Cremer, D. Mechanism of the Diels−Alder Reaction Studied with the United Reaction Valley Approach: Mechanistic Differences between Symmetry-Allowed and Symmetry-Forbidden Reactions. J. Phys. Chem. A 2003, 107, 9008–9021. (30) Kraka, E.; Cremer, D. Computational Analysis of the Mechanism of Chemical Reactions in Terms of Reaction Phases: Hidden Intermediates and Hidden Transition States. Acc. Chem. Res. 2010, 43, 591–601. (31) Quapp, W. Reduced Gradient Methods and Their Relation to Reaction Paths. J. Theor. Comput. Chem. 2003, 02, 385–417. (32) Quapp, W.; Hirsch, M.; Heidrich, D. Following the Streambed Reaction on Potential-Energy Surfaces: a New Robust Method. Theor. Chem. Acc. 2000, 105, 145–155. (33) Baker, J.; Gill, P. M. W. An Algorithm for the Location of Branching Points on Reaction Paths. J. Comput. Chem. 1988, 9, 465–475. (34) Minyaev, R. M.; Wales, D. J. Gradient Line Reaction Path of HF Addition to Ethylene. Chem. Phys. Lett. 1994, 218, 413–421. (35) Ohno, K.; Maeda, S. A Scaled Hypersphere Search Method for the Topography of Reaction Pathways on the Potential Energy Surface. Chem. Phys. Lett. 2004, 384, 277 –282. (36) Maeda, S.; Ohno, K. Global Mapping of Equilibrium and Transition Structures on Potential Energy Surfaces by the Scaled Hypersphere Search Method: Applications to Ab Initio Surfaces of Formaldehyde and Propyne Molecules. J. Phys. Chem. A 2005, 109, 5742–5753. (37) Maeda, S.; Ohno, K.; Morokuma, K. Systematic Exploration of the Mechanism of Chemical Reactions: the Global Reaction Route Mapping (GRRM) Strategy Using the ADDF and AFIR Methods. Phys. Chem. Chem. Phys. 2013, 15, 3683–3701. (38) Maeda, S.; Osada, Y.; Harabuchi, Y.; Taketsugu, T.; Morokuma, K.; Ohno, K. Global Reaction Route Mapping (GRRM)., version 17, Hokkaido University, 2017. (39) Maeda, S.; Harabuchi, Y.; Ono, Y.; Taketsugu, T.; Morokuma, K. Intrinsic Reaction Coordinate: Calculation, Bifurcation, and Automated Search. Int. J. Quantum Chem. 2015, 115, 258–269. (40) Tsutsumi, T.; Ono, Y.; Arai, Z.; Taketsugu, T. Visualization of the Intrinsic Reaction Coordinate and Global Reaction Route Map by Classical Multidimensional Scaling. J. Chem. Theory Comput. 2018, 14, 4263–4270. (41) Hirsch, M.; Quapp, W.; Heidrich, D. The Set of Valley–Ridge Inflection Points on the Potential Energy Surface of Water. Phys. Chem. Chem. Phys. 1999, 1, 5291–5299. (42) Peng, C.; Bernhard Schlegel, H. Combining Synchronous Transit and Quasi-Newton Methods to Find Transition States. Isr. J. Chem. 1993, 33, 449–454. (43) Quapp, W.; Schmidt, B. An Empirical, Variational Method of Approach to Unsymmetric Valley-Ridge Inflection Points. Theor. Chem. Acc. 2011, 128, 47–61. (44) Lee, S.; Goodman, J. M. Rapid Route-Finding for Bifurcating Organic Reactions. J. Am. Chem. Soc. 2020, 142, 9210–9219. (45) Heidrich, D., The Reaction Path in Chemistry: Current Approaches and Perspectives;Springer Netherlands: Dordrecht, 1995. (46) Domcke, W.; Yarkony, D.; Köppel, H., Conical Intersections: Electronic Structure,Dynamics & Spectroscopy, Hardcover; 2004-10-01; World Scientific: River Edge, NJ, 2014. (47) Eyring, H.; Gershinowitz, H.; Sun, C. E. The Absolute Rate of Homogeneous Atomic Reactions. J. Chem. Phys. 1935, 3, 786–796. (48) Schatz, G. C.; Kuppermann, A. Role of Direct and Resonant (Compound State) Processes and of Their Interferences in the Quantum Dynamics of the Collinear H + H2 Exchange Reaction. J. Chem. Phys. 1973, 59, 964–965. (49) Su, N. Q.; Chen, J.; Sun, Z.; Zhang, D. H.; Xu, X. H + H2 Quantum Dynamics Using Potential Energy Surfaces Based on the XYG3 Type of Doubly Hybrid Density Functionals: Validation of the Density Functional. J. Chem. Phys. 2015, 142, 084107. (50) Ditchfield, R.; Hehre, W. J.; Pople, J. A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724–728. (51) Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100. (52) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37,785–789. (53) Tobergte, D. R.; Curtis, S., Ideas of Quantum Chemistry; Elsevier Science: 2017. (54) Minyaev, R. M.; Getmanskii, I. V.; Quapp, W. A Second-Order Saddle Point in the Reaction Coordinate for the Isomerization of the NH5 Complex: Ab Initio Calculation. Russian J. Phys. Chem. 2004, 78, 1494–1498. (55) Cramer, C. J., Essentials of Computational Chemistry: Theories and Models; Wiley: 2005. (56) Elber, R.; Karplus, M. A Method for Determining Reaction Paths in Large Molecules: Application to Myoglobin. Chem. Phys. Lett. 1987, 139, 375–380. (57) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths. J. Chem. Phys. 2000, 113, 9901–9904. (58) Behn, A.; Zimmerman, P. M.; Bell, A. T.; Head-Gordon, M. Efficient Exploration of Reaction Paths via a Freezing String Method. J. Chem. Phys. 2011, 135, 224108. (59) Bernhard Schlegel, H Exploring Potential Energy Surfaces for Chemical Reactions: an Overview of Some Practical Methods. J. Comput. Chem. 2003, 24, 1514–1527. (60) Jensen, F., Introduction to Computational Chemistry, Third; John Wiley & Sons: Chichester, UK, 2016, p 664. (61) Efrima, S.; Bixon, M. Outer-Sphere Electron-Transfer Reactions in Polar Solvents. J. Chem. Phys. 1976, 64, 3639–3647. (62) Hammes-Schiffer, S. Theoretical Perspectives on Proton-Coupled Electron Transfer Reactions. Acc. Chem. Res. 2001, 34, 273–281. (63) Gonzalez-Lafont, A.; Truong, T. N.; Truhlar, D. G. Direct Dynamics Calculations with Neglect of Diatomic Differential Overlap Molecular Orbital Theory with Specific Reaction Parameters. J. Phys. Chem. 1991, 95, 4618–4627. (64) Hase, W. L.; Kihyung, S.; Gordon, M. S. Direct Dynamics Simulations. Comput. Sci. Eng. 2003, 5, 36–44. (65) Pratihar, S.; Ma, X.; Homayoon, Z.; Barnes, G. L.; Hase, W. L. Direct Cemical Dynamics Simulations. J. Am. Chem. Soc. 2017, 139, 3570–3590. (66) Bolhuis, P. G.; Chandler, D.; Dellago, C.; Geissler, P. L. Transition Path Sampling: Throwing Ropes Over Rough Mountain Passes, in the Dark. Annu. Rev. Phys. Chem. 2002, 53, 291–318. (67) Bunker, D. L. Monte Carlo Calculation of Triatomic Dissociation Rates. I. N2O and O3. J. Chem. Phys. 1962, 37, 393–403. (68) Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. (69) Lemkul, J. A.; Huang, J.; Roux, B.; MacKerell, A. D. An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications. Chem. Rev. 2016, 116, 4983–5013. (70) Steinfeld, J. I.; Francisco, J. S.; Hase, W. L., Chemical Kinetics and Dynamics; Prentice Hall: Upper Saddle River, N.J., 1999. (71) Marx, D.; Hutter, J., Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods; Cambridge University Press: 2009. (72) Sun, L.; Hase, W. L. In Reviews in Computational Chemistry; Reviews in computational chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003, pp 79–146. (73) Wang, I. S. Y.; Karplus, M. Dyanmics of Organic Reactions. J. Am. Chem. Soc. 1973, 95, 8160–8164. (74) Manthe, U.; Meyer, H. D.; Cederbaum, L. S. Wave-Packet Dynamics within the Multiconfiguration Hartree Framework: General Aspects and Application to NOCl. J. Chem. Phys. 1992, 97, 3199–3213. (75) Chu, T.-S.; Zhang, Y.; Han, K.-L. The Time-Dependent Quantum Wave Packet Approach to the Electronically Nonadiabatic Processes in Chemical Reactions. Int. Rev. Phys. Chem. 2006, 25, 201–235. (76) Peslherbe, G. H.; Wang, H.; Hase, W. L. In Advances in Chemical Physics: Monte Carlo Methods in Chemical Physics, Prigogine, I., Rice, S. A., Eds.; Advances in chemical physics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1999, pp 171–201. (77) Ussing, B. R.; Hang, C.; Singleton, D. A. Dynamic Effects on the Periselectivity, Rate, Isotope Effects, and Mechanism of Cycloadditions of Ketenes with Cyclopentadiene. J. Am. Chem. Soc. 2006, 128, 7594–7607. (78) Wilson, E. B.; Decius, J. C.; Cross, P. C., Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra; Dover Publications: New York, 1980. (79) Lasorne, B.; Dive, G.; Lauvergnat, D.; Desouter-Lecomte, M. Wave Packet Dynamics Along Bifurcating Reaction Paths. J. Chem. Phys. 2003, 118, 5831–5840. (80) Harabuchi, Y.; Ono, Y.; Maeda, S.; Taketsugu, T. Analyses of Bifurcation of Reaction Pathways on a Global Reaction Route Map: a Case Study of Gold Cluster Au5. J. Chem. Phys. 2015, 143, 014301. (81) Taketsugu, T.; Tajima, N.; Hirao, K. Approaches to Bifurcating Reaction Path. J. Chem. Phys. 1996, 105, 1933–1939. (82) Kabsch, W. A Discussion of the Solution for the Best Rotation to Relate Two Sets of Vectors. Acta Cryst. 1978, 34, 827–828. (83) Campos, R. B.; Tantillo, D. J. Designing Reactions with Post-Transition State Bifurcations: Asynchronous Nitrene Insertions into C–C Bonds. Chem 2019, 5, 227–236. (84) Tsutsumi, T.; Harabuchi, Y.; Ono, Y.; Maeda, S.; Taketsugu, T. Analyses of Trajectory on-the-fly Based on the Global Reaction Route Map. Phys. Chem. Chem. Phys. 2018, 20, 1364–1372. (85) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results Obtained with the Correlation Energy Density Functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989, 157, 200–206. (86) Becke, A. D. A New Mixing of Hartree–Fock and Local DensityFunctional Theories. J. Chem. Phys. 1993, 98, 1372–1377. (87) Kumeda, Y.; Taketsugu, T. Isotope Effect on Bifurcating Reaction Path: Valley–Ridge Inflection Point in Totally Symmetric Coordinate. J. Chem. Phys. 2000, 113, 477–484. (88) Yanai, T.; Taketsugu, T.; Hirao, K. Theoretical Study of Bifurcating Reaction Paths. J. Chem. Phys. 1997, 107, 1137–1146. (89) Powers, D. E.; Pushkarsky, M. B.; Miller, T. A. Rovibronic Analysis of the Laser Induced Fluorescence Excitation Spectrum of the Jet-Cooled Methoxy Radical. J. Chem. Phys. 1997, 106, 6863–6877. (90) Rodger, A.; Schipper, P. E. Symmetry Selection Rules for Reaction Mechanisms. Chem. Phys. 1986, 107, 329–342. (91) Harabuchi, Y.; Taketsugu, T. A Significant Role of the Totally Symmetric Valley-Ridge Inflection Point in the Bifurcating Reaction Pathway. Theor. Chem. Acc. 2011, 130, 305–315. (92) Reetz, M. T. Dyotropic Rearrangements, a New Class of Orbital-Symmetry Controlled Reactions. Type I. Angew. Chem., Int. Ed. 1972, 11, 129–130. (93) Reetz, M. T. Dyotropic Rearrangements, a New Class of Orbital-Symmetry Controlled Reactions. Type II. Angew. Chem., Int. Ed. 1972, 11, 130–131. (94) Reetz, M. T. Primary and Secondary Orbital Effects in Dyotropic Rearrangements. Tetrahedron 1973, 29, 2189 –2194. (95) Reetz, M. T. Dyotropic Rearrangements and Related - Exchange Processes. Adv. Organomet. Chem. 1977, 16, ed. by Stone, F. G. A.; West, R., 33 –65. (96) Fernández, I.; Cossío, F. P.; Sierra, M. A. Dyotropic Reactions: Mechanisms and Synthetic Applications. Chem. Rev. 2009, 109, 6687–6711. (97) Gutierrez, O.; Tantillo, D. J. Analogies between Synthetic and Biosynthetic Reactions in which [1,2]-Alkyl Shifts are Combined with other Events: Dyotropic, Schmidt, and Carbocation Rearrangements. J. Org. Chem. 2012, 77, 8845–8850. (98) Huynh, M. H. V.; Meyer, T. J. Proton-Coupled Electron Transfer. Chem. Rev. 2007, 107, 5004–5064. (99) Hammes-Schiffer, S.; Stuchebrukhov, A. A. Theory of Coupled Electron and Proton Transfer Reactions. Chem. Rev. 2010, 110, 6939–6960. (100) Marcus, R. A. Chemical and Electrochemical Electron-Transfer Theory. Annu. Rev. Phys. Chem. 1964, 15, 155. (101) Mayer, J. M. Proton-Coupled Electron Transfer: a Reaction Chemist’s View. Annu. Rev. Phys. Chem. 2004, 55, 363–390. (102) Anson, C. W.; Ghosh, S.; Hammes-Schiffer, S.; Stahl, S. S. Co(salophen)-Catalyzed Aerobic Oxidation of p-Hydroquinone: Mechanism and Implications for Aerobic Oxidation Catalysis. J. Am. Chem. Soc. 2016, 138, 4186–4193. (103) Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Catalytic Alkylation of Remote C–H Bonds Enabled by Proton-Coupled Electron Transfer. Nature 2016, 539, 268–271. (104) Gentry, E. C.; Knowles, R. R. Synthetic Applications of Proton-Coupled Electron Transfer. Acc. Chem. Res. 2016, 49, 1546–1556. (105) Horvath, S.; Fernandez, L. E.; Soudackov, A. V.; Hammes-Schiffer, S. Insights into Proton-Coupled Electron Transfer Mechanisms of Electrocatalytic H2 Oxidation and Production. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 15663–15668. (106) Solis, B. H.; Maher, A. G.; Dogutan, D. K.; Nocera, D. G.; Hammes-Schiffer, S. Nickel Phlorin Intermediate Formed by Proton-Coupled Electron Transfer in Hydrogen Evolution Mechanism. Proc. Natl. Acad. Sci. U. S. A. 2015, 113, 485–492. (107) Farazdel, A.; Dupuis, M.; Clementi, E.; Aviram, A. Electric-Field Induced Intramolecular Electron Transfer in Spiro -Electron Systems and Their Suitability as Molecular Electronic Devices. A Theoretical Study. J. Am. Chem. Soc. 1990, 112, 4206–4214. (108) Zhang, L. Y.; Friesner, R. A.; Murphy, R. B. Ab Initio Quantum Chemical Calculation of Electron Transfer Matrix Elements for Large Molecules. J. Chem. Phys. 1997, 107, 450–459. (109) Kitaura, K.; Ikeo, E.; Asada, T.; Nakano, T.; Uebayasi, M. Fragment Molecular Orbital Method: an Approximate Computational Method for Large Molecules. Chem. Phys. Lett. 1999, 313, 701–706. (110) Mayer, J. M.; Hrovat, D. A.; Thomas, J. L.; Borden, W. T. Proton-Coupled Electron Transfer Versus Hydrogen Atom Transfer in Benzyl/Toluene, Methoxyl/Methanol, and Phenoxyl/Phenol Self-Exchange Reactions. J. Am. Chem. Soc. 2002, 124, 11142–11147. (111) Skone, J. H.; Soudackov, A. V; Hammes-Schiffer, S. Calculation of Vibronic Couplings for Phenoxyl/Phenol and Benzyl/Toluene Self-Exchange Reactions: Implications for Proton-Coupled Electron Transfer Mechanisms. J. Am. Chem. Soc. 2006, 128, 16655–16663. (112) Hammes-Schiffer, S. Proton-Coupled Electron Transfer: Classification Scheme and Guide to Theoretical Methods. Energy Environ. Sci. 2012, 5, 7696. (113) Cukier, R. I. Proton-Coupled Electron Transfer Reactions: Evaluation of Rate Constants. J. Phys. Chem. 1996, 100, 15428–15443. (114) Cukier, R. I.; Nocera, D. G. Proton-Coupled Electron Transfer. Annu. Rev. Phys. Chem. 1998, 49, 337–369. (115) Ludlow, M. K.; Skone, J. H.; Hammes-Schiffer, S. Substituent Effects on the Vibronic Coupling for the Phenoxyl/Phenol Self-Exchange Reaction. J. Phys. Chem. B 2008, 112, 336–343. (116) Lingwood, M.; Hammond, J. R.; Hrovat, D. A.; Mayer, J. M.; Borden, W. T. MPW1K Performs Much Better than B3LYP in DFT Calculations on Reactions that Proceed by Proton-Coupled Electron Transfer (PCET). J. Chem. Theory Comput. 2006, 2, 740–745. (117) Sirjoosingh, A.; Hammes-Schiffer, S. Diabatization Schemes for Generating Charge- Localized Electron-Proton Vibronic States in Proton-Coupled Electron Transfer Systems. J. Chem. Theory Comput. 2011, 7, 2831–2841. (118) Sirjoosingh, A.; Hammes-Schiffer, S. Proton-Coupled Electron Transfer Versus Hydrogen Atom Transfer: Generation of Charge-Localized Diabatic States. J. Phys. Chem. A 2011, 115, 2367–2377. (119) Harshan, A. K.; Yu, T.; Soudackov, A. V.; Hammes-Schiffer, S. Dependence of Vibronic Coupling on Molecular Geometry and Environment: Bridging Hydrogen Atom Transfer and Electron-Proton Transfer. J. Am. Chem. Soc. 2015, 137, 13545–13555. (120) Inagaki, T.; Yamamoto, T.; Kato, S. Proton-Coupled Electron Transfer of the Phenoxyl/Phenol Couple: Effect of Hartree-Fock Exchange on Transition Structures. J. Comput. Chem. 2011, 32, 3081–3091. (121) Subotnik, J. E.; Yeganeh, S.; Cave, R. J.; Ratner, M. A. Constructing Diabatic states from Adiabatic States: Extending Generalized Mulliken-Hush to Multiple Charge Centers with Boys Localization. J. Chem. Phys. 2008, 129, 244101. (122) Yang, C.-H.; Hsu, C.-P. A Multi-State Fragment Charge Difference Approach for Diabatic States in Electron Transfer: Extension and Automation. J. Chem. Phys. 2013, 139, 154104. (123) Colbert, D. T.; Miller, W. H. A Novel Discrete Variable Representation for Quantum Mechanical Reactive Scattering via the S-matrix Kohn Method. J. Chem. Phys. 1992, 96, 1982. (124) Calbo, D. A.; Allen, W. D.; Remington, R. B.; Yamaguchi, Y.; Schaefer, H. F. A Systematic Study of Molecular Vibrational Anharmonicity and Vibration-Rotation Interaction by Self-Consistent-Field Higher-Derivative Methods. Asymmetric Top Molecules. Chem. Phys. 1988, 123, 187 –239. (125) Carter, S.; Bowman, J. M.; Handy, N. C. Extensions and Tests of MULTIMODE: a Code to Obtain Accurate Vibration/Rotation Energies of Many-Mode Molecules. Theor. Chem. Acc. 1998, 100, 191–198. (126) Okumura, M.; Yeh, L. I.; Lee, Y. T. The Vibrational Predissociation Spectroscopy of Hydrogen Cluster Ions. J. Chem. Phys. 1985, 83, 3705–3706. (127) Miller, W. H.; Hernandez, R.; Handy, N. C.; Jayatilaka, D.; Willetts, A. Ab Initio Calculation of Anharmonic Constants for a Transition State, with Application to Semiclassical Transition State Tunneling Probabilities. Chem. Phys. Lett. 1990, 172, 62–68. (128) Mills, I. M. In Molecular Spectroscopy: Modern Research, Volume 1, Rao, K. N., Mathews, C. W., Eds., 1972, pp 115–140. (129) Redlich, O. On the Anharmonicity of Vibrations of Polyatomic Molecules. I. J. Chem. Phys. 1941, 9, 298–305. (130) Scott, A. P.; Radom, L. Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Moller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. J. Phys. Chem. 1996, 100, 16502–16513. (131) Merrick, J. P.; Moran, D.; Radom, L. An Evaluation of Harmonic Vibrational Frequency Scale Factors. J. Phys. Chem. A 2007, 111, 11683–11700. (132) Hoy, A. R.; Mills, I. M.; Strey, G. Anharmonic Force Constant Calculations. Mol. Phys. 1972, 24, 1265–1290. (133) Chaban, G. M.; Jung, J.; Gerber, R. B. Ab Initio Calculation of Anharmonic Vibrational States of Polyatomic Systems: Electronic Structure Combined with Vibrational Self-Consistent Field. J. Chem. Phys. 1999, 111, 1823–1829. (134) Jung, J. O.; Gerber, R. B. Vibrational Wave Functions and Spectroscopy of (H2O)n, n=2,3,4,5: Vibrational Self-Consistent Field with Correlation Corrections. J.Chem. Phys. 1996, 105, 10332–10348. (135) Gao, L. G.; Zheng, J. J.; Fernández-Ramos, A.; Truhlar, D. G.; Xu, X. Kinetics of the Methanol Reaction with OH at Interstellar, Atmospheric, and Combustion Temperatures. J. Am. Chem. Soc. 2018, 140, 2906–2918. (136) Wu, J.; Gao, L. G.; Ren, W.; Truhlar, D. G. Anharmonic Kinetics of the Cyclopentane Reaction with Hydroxyl Radical. Chem. Sci. 2020, 11, 2511–2523. (137) Pavošević, F.; Culpitt, T.; Hammes-Schiffer, S. Multicomponent Quantum Chemistry: Integrating Electronic and Nuclear Quantum Effects via the Nuclear-Electronic Orbital Method. Chem. Rev. 2020, 120, 4222–4253. (138) Almlöf, J. In Geometrical Derivatives of Energy Surfaces and Molecular Properties; Springer Netherlands: 1986, pp 303–316. (139) Sakurai, J. J.; Tuan, S. F., Modern Quantum Mechanics, Rev. ed.; Addison-Wesley Pub. Co.: 1994. (140) Wilson, E. B.; Howard, J. B. The Vibration-Rotation Energy Levels of Polyatomic Molecules I. Mathematical Theory of Semirigid Asymmetrical Top Molecules. J. Chem. Phys. 1936, 4, 260–268. (141) Nielsen, H. H. The Vibration-Rotation Energies of Molecules. Rev. Mod. Phys. 1951, 23, 90–136. (142) Skone, G.; Cameron, S.; Voiculescu, I. Doing a Good Turn: the Use of Quaternions for Rotation in Molecular Docking. J. Chem. Inf. Model. 2013, 53, 3367–3372. (143) Sehnal, D. Superimposing Multiple Structures and Exploring Protein Binding Sites., MA thesis, Faculty of Informatics, Masaryk University, 2010. (144) Belongie, S. Rodrigues’ Rotation Formula. https://mathworld.wolfram.com/RodriguesRotationFormula.html. (145) Kabsch, W. A Solution for the Best Rotation to Relate Two Sets of Vectors. Acta Cryst. 1976, 32, 922–923. (146) Schönemann, P. H. A Generalized Solution of the Orthogonal Procrustes Problem. Psychometrika 1966, 31, 1–10. (147) Coutsias, E. A.; Seok, C.; Dill, K. A. Using Quaternions to Calculate RMSD. J. Comput. Chem. 2004, 25, 1849–1857. (148) Mirsky, L. Diagonal Elements of Orthogonal Matrices. Amer. Math. Monthly 1959, 66, 19. (149) Levine, I. N., Quantum Chemistry; Pearson: 2009, pp 126–165. (150) Tokmakoff, A. Time-Dependent Quantum Mechanics and Spectroscopy. https://tdqms.uchicago.edu. (151) Barrow, J., The Constants of Nature: The Numbers that Encode the Deepest Secrets of the Universe; Vintage: 2009. (152) Lwdin, P.-O. In Advances in Chemical Physics, Prigogine, I., Ed.; Advances in Chemical Physics, Vol. 2; John Wiley & Sons, Inc.: 1958, pp 207–322. (153) Mok, D. K. W.; Neumann, R.; Handy, N. C. Dynamical and Nondynamical Correlation. J. Phys. Chem. 1996, 100, 6225–6230. (154) Kato, T. On the Eigenfunctions of Many-Particle Systems in Quantum Mechanics. Commun. Pure Appl. Math. 1957, 10, 151–177. (155) Roos, B. O.; Lindh, R.; Malmqvist, P. A.; Veryazov, V.; Widmark, P.-O., Multiconfigurational Quantum Chemistry; Wiley: Hoboken, New Jersey, 2016. (156) Perdew, J. P.; Ruzsinszky, A.; Tao, J.; Staroverov, V. N.; Scuseria, G. E.; Csonka, G. I. Prescription for the Design and Selection of Density Functional Approximations: More Constraint Satisfaction with Fewer Fits. J. Chem. Phys. 2005, 123, 62201. (157) Parrish, R. M. et al. Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. J. Chem. Theory Comput. 2017, 13, 3185–3197. (158) Shizgal, B., Spectral Methods in Chemistry and Physics; Scientific Computation; Springer Netherlands: Dordrecht, 2015. (159) Gatti, F.; Lasorne, B.; Meyer, H.-D.; Nauts, A., Applications of Quantum Dynamics in Chemistry; Lecture notes in chemistry, Vol. 98; Springer International Publishing: Cham, 2017. (160) Light, J. C. Discrete-Variable Representations and Their Utilization. Adv. Chem. Phys. 2000, 114.
|