跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/08 21:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊曉涵
研究生(外文):Hsiao-Han Chuang
論文名稱:分歧反應的二維反應位能面
論文名稱(外文):Two-Dimensional Potential Energy Surfaces of the Reactions with Post-Transition-State Bifurcation
指導教授:許昭萍鄭原忠
指導教授(外文):CHao-Ping HsuYuan-CHung Cheng
口試委員:林志民林倫年江志強
口試委員(外文):Jim Jr-Min LinMichitoshi HayashiJyh-Chiang Jiang
口試日期:2020-04-15
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:118
中文關鍵詞:理論計算反應位能面分歧反應選擇性
外文關鍵詞:Potential energyPost-transition-state bifurcationBifurcation reactionSelectivity
DOI:10.6342/NTU202001503
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
化學的核心領域之一是研究化學反應,理論計算提供實驗學家另一個觀點去詮釋它。在一般的化學反應裡,因為過渡態(過渡態可以評估化學反應的機制)的生命期很短,實驗上並不容易測得。然而,在理論計算與超級電腦的幫助下,過渡態可以被預估,進而提供預測反應機制的可能性。本篇論文旨在探討一種特殊的化學反應:分岐反應,它的選擇性不能被經典的過渡態理論解釋。另外兩個短篇的研究分別為質子偶合電子的轉移反應以及震動運動中的簡諧性的回顧。

分歧反應是主要研究計畫,在本篇論文的第一章至第六章,以及附錄A、B和C。一個過渡態卻產生兩個產物是為分歧反應。有機化學家對自然界如何選擇分歧反應的產物的機制產生極大的興趣(第一章)。從理論化學家的觀點,這個反應需要多維度的位能曲面(第二章)。傳統的計算方法利用分子動力學模擬多維度的反應(第三章),但是如何分析分子動力學產生的軌跡需要反應位能面的幫助。我們在第四章定義一個人工的反應座標,來建立非對稱性的分歧反應的二維位能曲面。在第五章,使用此位能曲面分析分子動力學的軌跡。這個分析方法需要將位能曲面上的分子結構,與分子動態學的軌跡的分子結構,擺放在相同的坐標系下,因此在附錄A,我們提供其公式推導以及程式碼連結。最後,第六章應用上述方法模擬有機分子的分歧反應的二維位能曲面及軌跡,此曲面的形狀吻合軌跡的模擬結果,這些頃斜的位能曲面可以詮釋非對稱性的分歧反應的選擇性。

第七章使用質子和電子偶合的經典系統模擬其結果。質子和電子偶合的轉移反應定義為質子和電子同時從提供者轉移至接受者。因為電子和質子偶合,常用的波恩-歐本海默假設並不成立,因此必須使用因此必須使用非絕熱態替代絕熱態。我們使用直接偶和方法建構非絕熱態,而此方法不需要做絕熱態與非絕熱態的轉換。

第八章描述非簡諧振動的推導細節。在簡諧假設框架之外,非簡諧在分子震動貢獻相當重要的角色,例如化學鍵的伸長或解離。我們利用擾動理論分析非簡諧性的貢獻至第二擾動理論,其中,紛擾動的哈密爾敦函數使用簡諧假設,而擾動的算符使用不同簡正模的偶合建構。

附錄C描述轉動運動的推導及技術細節,因為校正兩個物體在空間中的位置與方向是分析軌跡的必要細節(第五章)。附錄D描述電子結構理論的概要背景,此為描述電子如何在分子中運動的基礎。因為電子是費米子,它們遵守一些量子力學中的公理,並且在任何化學鍵的斷裂或生成都扮演重要的角色。另一方面,視系統的特性來看,原子核可以使用古典力學處理(第一章)或是使用量子力學處理(第七章)。因此,附錄E簡介如何使用離散變數表徵處理質子的波函數。
Chemical reactions are the heart of chemistry, and they are no longer elusive
or magical in small flasks with the advent of theoretical and computational chemistry. For a given chemical reaction, the transition state is hard to observe for experimental chemists because of the extremely short life time which is beyond the limitation for most of traditional instruments. It is possible to reveal the structure and other properties of the transition state through current powerful super-computers and reasonable approximations from quantum chemistry. For exploring chemical reactions, we put an emphasis on the reactions with post-transition-state bifurcation (PTSBs), where its selectivity cannot be explained by conventional transition-state theory. Another two minor projects are also included; proton-coupled electron transfer (PCET) reactions and the study of anharmonicity for vibration.

PTSB is the main research project in this dissertation, and it is included in parts I to IV (chapters 1 to 6), and appendices A to C. Here, a single transition state bifurcates into two product states. How the selectivity for the product is determined has been an interesting problem for organic chemists (chapter 1). From the perspective of a theoretical chemist, this problem involves developing a multi-dimensional potential energy surface (chapter 2). Traditional methods employ molecular dynamics to capture all the degrees of freedom (chapter 3), but analyzing the resulting trajectories requires the existence of potential energy hypersurfaces. We propose a method to build two-dimensional potential energy surfaces (2D-PESs) for general PTSBs in chapter 4, and maps trajectories on the above PESs in chapter 5. The mapping between static PESs and dynamic trajectories requires the transformation of the coordinate of the structures belonging to the trajectories into the same Cartesian coordinate system as that of the PES, which is elucidated in appendix C. Finally, we illustrates the above approach with representative examples from the field of organic chemistry in chapter 6.

In chapter 7, a detailed discussion of PCET prototype systems was included. PCET involves transfer of both protons and electrons simultaneously from donor to acceptor. Since electrons and protons are coupled, adiabatic approximation is not suitable in this scenario and it is imperative to replace adiabatic states with diabatic states. Here, we use direct coupling (DC) to build diabatic states.

Beyond harmonic approximation, anharmonicity plays a crucial role in vibration especially in the bond stretching/dissociations process at high frequencies in the potential energy surface. This effect of polyatomic molecule is investigated using second-order perturbation theory, where unperturbed Hamiltonian uses harmonic approximation and perturbation operator is constructed by coupling with different normal modes. In chapter 8, we elaborates the detail derivation of above processes which is usually ignored in the literature.

In appendix C, we reviews the derivation and technical procedure of rotation, where alignment of two objects is necessary to map trajectories (chapter 5). In appendix D, we gives a brief background of electronic structure theory which is the foundation to describe how electrons move. Since electrons are fermions, they follow certain axioms in quantum mechanics and are involved in any bond formation/breaking process. On the other hand, nuclei can be treated classically (chapter 1) or quantum mechanically (chapter 7) on different limited conditions. In appendix E, we describes how to build proton wavefunction as a quantum object under discrete variable representation.
Contents
口試委員會審定書ii
Acknowledgements iii
摘要v
Abstract vii
I Introduction 1
1 Reactions with Post-Transition-State Bifurcation (PTSB) 3
II Literature Review 9
2 Multidimensional Potential Energy Hypersurface 11
3 Born–Oppenheimer Molecular Dynamics (BOMD) 15
III Methodology 21
4 Construction of 2D-PESs of PTSBs 23
4.1 2D-PES of Special Case: Symmetric PTSBs . . . . . . . . . . . . . . . . 25
4.2 2D-PES of General Cases: Asymmetric PTSBs . . . . . . . . . . . . . . 26
5 BOMD Trajectories and Their Mapping to 2D-PESs 29
IV Results and Discussion 31
6 Symmetric and Asymmetric PTSBs 33
6.1 Symmetric PTSB: H3CO Isomerization . . . . . . . . . . . . . . . . . . 33
6.2 Asymmetric PTSBs: Net C C Insertion for Nitrenes . . . . . . . . . . . 36
V Other Research Projects 41
7 Proton-Coupled Electron Transfer (PCET) 43
7.1 Classification of Concerted PCET: HAT and EPT . . . . . . . . . . . . . 44
7.2 Vibronic Coupling of a Model System . . . . . . . . . . . . . . . . . . . 46
8 Review of Anharmonicity Constants 51
8.1 Rayleigh-Schrodinger Perturbation Theory . . . . . . . . . . . . . . . . . 52
8.2 Choose the Zeroth-Order Hamiltonian as Harmonic Oscillator . . . . . . 55
VI Appendix 67
A Cartesian Coordinate for the Stationary Structures in Methoxyl Radical Isomerization
69
A.0.1 Transition-State Structures . . . . . . . . . . . . . . . . . . . . . 69
A.0.2 Local Minimum Structures . . . . . . . . . . . . . . . . . . . . . 70
B Time Evolution of Dynamic Trajectories 73
C Superimposition of Two Conformers: Rotation 77
D Electronic Structure Theory 83
D.1 Derivation of Hartree-Fock Approximation . . . . . . . . . . . . . . . . 84
D.2 Correlation Energy and Ground State Methods . . . . . . . . . . . . . . . 90
E Proton Wavefunction under Discrete Variable Representation 97
Bibliography 99
Copy of Permission 115
(1) Valtazanos, P.; Ruedenberg, K. Bifurcations and Transition States . Theor. Chem. Acc. 1986, 69, 281–307.
(2) Quapp, W.; Hirsch, M.; Heidrich, D. Bifurcation of Reaction Pathways: the Set of Valley Ridge Inflection Points of a Simple Three-Dimensional Potential Energy Surface. Theor. Chem. Acc. 1998, 100, 285–299.
(3) Ramquet, M.-N.; Dive, G.; Dehareng, D. Critical Points and Reaction Paths Characterization on a Potential Energy Hypersurface. J. Chem. Phys. 2000, 112, 4923–4934.
(4) Quapp, W. How Does a Reaction Path Branching Take Place? A Classification of Bifurcation Events. J. Mol. Struct. 2004, 695-696, 95–101.
(5) Ess, D. H.; Wheeler, S. E.; Iafe, R. G.; Xu, L.; Celebi-Olçüm, N.; Houk, K. N. Bifurcations on Potential Energy Surfaces of Organic Reactions. Angew. Chem., Int. Ed. 2008, 47, 7592–7601.
(6) Collins, P.; Carpenter, B. K.; Ezra, G. S.; Wiggins, S. Nonstatistical Dynamics on Potentials Exhibiting Reaction Path Bifurcations and Valley-Ridge Inflection Points. J. Chem. Phys. 2013, 139, 154108.
(7) Martín-Sómer, A.; Yáñez, M.; Hase, W. L.; Gaigeot, M.-P.; Spezia, R. Post-Transition State Dynamics in Gas Phase Reactivity: Importance of Bifurcations and Rotational Activation. J. Chem. Theory Comput. 2016, 12, 974–982.
(8) Tantillo, D. J. Importance of Inherent Substrate Reactivity in Enzyme-Promoted Carbocation Cyclization/Rearrangements. Angew. Chem., Int. Ed. 2017, 56, 10040–10045.
(9) Cane, D. E. Enzymic Formation of Sesquiterpenes. Chem. Rev. 1990, 90, 1089–1103.
(10) Christianson, D. W. Structural Biology and Chemistry of the Terpenoid Cyclases. Chem. Rev. 2006, 106, 3412–3442.
(11) Siebert, M. R.; Zhang, J.; Addepalli, S. V.; Tantillo, D. J.; Hase, W. L. The Need for Enzymatic Steering in Abietic Acid Biosynthesis: Gas-Phase Chemical Dynamics Simulations of Carbocation Rearrangements on a Bifurcating Potential Energy Surface. J. Am. Chem. Soc. 2011, 133, 8335-8343.
(12) Ye, L.; Wang, Y.; Aue, D. H.; Zhang, L. Experimental and Computational Evidence for Gold Vinylidenes: Generation from Terminal Alkynes via a Bifurcation Pathway and Facile C–H Insertions. J. Am. Chem. Soc. 2012, 134, 31–34.
(13) Hong, Y. J.; Tantillo, D. J. Biosynthetic Consequences of Multiple Sequential Post-Transition State Bifurcations. Nat. Chem. 2014, 6, 104–111.
(14) Baumann, M.; Baxendale, I. R. Sustainable Synthesis of Thioimidazoles via Carbohydrate-Based Multicomponent Reactions. Org. Lett. 2014, 16, 6076–6079.
(15) Burns, J. M. Computational Evidence for a Reaction Pathway Bifurcation in Sasaki-Type (4 + 3)-Cycloadditions. Org. Biomol. Chem. 2018, 16, 1828–1836.
(16) Tantillo, D. J., Applied Theoretical Organic Chemistry; World Scientific: 2018.
(17) Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J. Current Status of Transition-State Theory. J. Phys. Chem. 1996, 100, 12771–12800.
(18) Tantillo, D. J. Hiscotropic Rearrangements. http : / / blueline . ucdavis . edu /2ndTier/3rdTier/Hisco.html.
(19) Hare, S. R.; Pemberton, R. P.; Tantillo, D. J. Navigating Past a Fork in the Road:Carbocation− Interactions can Manipulate Dynamic Behavior of Reactions FacingPost-Transition State Bifurcations. J. Am. Chem. Soc. 2017, 139, 7485–7493.
(20) Fukui, K. Formulation of the Reaction Coordinate. J. Phys. Chem. 1970, 74, 4161–4163.
(21) Quapp, W.; Hirsch, M.; Heidrich, D. An Approach to Reaction Path Branching Using Valley-Ridge Inflection Points of Potential-Energy Surfaces. Theor. Chem. Acc. 2004, 112, 40–51.
(22) Frisch, M. J. et al. Gaussian 09., version Revision A.02, Wallingford CT, 2009.
(23) Shao, Y. et al. Advances in Molecular Quantum Chemistry Contained in the QChem 4 Program Package. Mol. Phys. 2015, 113, 184–215.
(24) Hare, S. R.; Tantillo, D. J. Dynamic Behavior of Rearranging Carbocations - Implications for Terpene Biosynthesis. Beilstein J. Org. Chem. 2016, 12, 377–390.
(25) Shaik, S.; Danovich, D.; Sastry, G. N.; Ayala, P. Y.; Bernhard Schlegel, H. Dissociative Electron Transfer, Substitution, and Borderline Mechanisms in Reactions of Ketyl Radical Anions. Differences and Difficulties in Their Reaction Paths. J. Am. Chem. Soc. 1997, 119, 9237–9245.
(26) Müller, K. Reaction Paths on Multidimensional Energy Hypersurfaces. Angew. Chem., Int. Ed. 1980, 19, 1–13.
(27) Kraka, E. Reaction Path Hamiltonian and the Unified Reaction Valley Approach. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011, 1, 531–556.
(28) Miller, W. H.; Handy, N. C.; Adams, J. E. Reaction Path Hamiltonian for Polyatomic Molecules. J. Chem. Phys. 1980, 72, 99.
(29) Kraka, E.; Wu, A.; Cremer, D. Mechanism of the Diels−Alder Reaction Studied with the United Reaction Valley Approach: Mechanistic Differences between Symmetry-Allowed and Symmetry-Forbidden Reactions. J. Phys. Chem. A 2003, 107, 9008–9021.
(30) Kraka, E.; Cremer, D. Computational Analysis of the Mechanism of Chemical Reactions in Terms of Reaction Phases: Hidden Intermediates and Hidden Transition States. Acc. Chem. Res. 2010, 43, 591–601.
(31) Quapp, W. Reduced Gradient Methods and Their Relation to Reaction Paths. J. Theor. Comput. Chem. 2003, 02, 385–417.
(32) Quapp, W.; Hirsch, M.; Heidrich, D. Following the Streambed Reaction on Potential-Energy Surfaces: a New Robust Method. Theor. Chem. Acc. 2000, 105, 145–155.
(33) Baker, J.; Gill, P. M. W. An Algorithm for the Location of Branching Points on Reaction Paths. J. Comput. Chem. 1988, 9, 465–475.
(34) Minyaev, R. M.; Wales, D. J. Gradient Line Reaction Path of HF Addition to Ethylene. Chem. Phys. Lett. 1994, 218, 413–421.
(35) Ohno, K.; Maeda, S. A Scaled Hypersphere Search Method for the Topography of Reaction Pathways on the Potential Energy Surface. Chem. Phys. Lett. 2004, 384, 277 –282.
(36) Maeda, S.; Ohno, K. Global Mapping of Equilibrium and Transition Structures on Potential Energy Surfaces by the Scaled Hypersphere Search Method: Applications to Ab Initio Surfaces of Formaldehyde and Propyne Molecules. J. Phys. Chem. A 2005, 109, 5742–5753.
(37) Maeda, S.; Ohno, K.; Morokuma, K. Systematic Exploration of the Mechanism of Chemical Reactions: the Global Reaction Route Mapping (GRRM) Strategy Using the ADDF and AFIR Methods. Phys. Chem. Chem. Phys. 2013, 15, 3683–3701.
(38) Maeda, S.; Osada, Y.; Harabuchi, Y.; Taketsugu, T.; Morokuma, K.; Ohno, K. Global Reaction Route Mapping (GRRM)., version 17, Hokkaido University, 2017.
(39) Maeda, S.; Harabuchi, Y.; Ono, Y.; Taketsugu, T.; Morokuma, K. Intrinsic Reaction Coordinate: Calculation, Bifurcation, and Automated Search. Int. J. Quantum Chem. 2015, 115, 258–269.
(40) Tsutsumi, T.; Ono, Y.; Arai, Z.; Taketsugu, T. Visualization of the Intrinsic Reaction Coordinate and Global Reaction Route Map by Classical Multidimensional Scaling. J. Chem. Theory Comput. 2018, 14, 4263–4270.
(41) Hirsch, M.; Quapp, W.; Heidrich, D. The Set of Valley–Ridge Inflection Points on the Potential Energy Surface of Water. Phys. Chem. Chem. Phys. 1999, 1, 5291–5299.
(42) Peng, C.; Bernhard Schlegel, H. Combining Synchronous Transit and Quasi-Newton Methods to Find Transition States. Isr. J. Chem. 1993, 33, 449–454.
(43) Quapp, W.; Schmidt, B. An Empirical, Variational Method of Approach to Unsymmetric Valley-Ridge Inflection Points. Theor. Chem. Acc. 2011, 128, 47–61.
(44) Lee, S.; Goodman, J. M. Rapid Route-Finding for Bifurcating Organic Reactions. J. Am. Chem. Soc. 2020, 142, 9210–9219.
(45) Heidrich, D., The Reaction Path in Chemistry: Current Approaches and Perspectives;Springer Netherlands: Dordrecht, 1995.
(46) Domcke, W.; Yarkony, D.; Köppel, H., Conical Intersections: Electronic Structure,Dynamics & Spectroscopy, Hardcover; 2004-10-01; World Scientific: River Edge, NJ, 2014.
(47) Eyring, H.; Gershinowitz, H.; Sun, C. E. The Absolute Rate of Homogeneous Atomic Reactions. J. Chem. Phys. 1935, 3, 786–796.
(48) Schatz, G. C.; Kuppermann, A. Role of Direct and Resonant (Compound State) Processes and of Their Interferences in the Quantum Dynamics of the Collinear H + H2 Exchange Reaction. J. Chem. Phys. 1973, 59, 964–965.
(49) Su, N. Q.; Chen, J.; Sun, Z.; Zhang, D. H.; Xu, X. H + H2 Quantum Dynamics Using Potential Energy Surfaces Based on the XYG3 Type of Doubly Hybrid Density Functionals: Validation of the Density Functional. J. Chem. Phys. 2015, 142, 084107.
(50) Ditchfield, R.; Hehre, W. J.; Pople, J. A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724–728.
(51) Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100.
(52) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37,785–789.
(53) Tobergte, D. R.; Curtis, S., Ideas of Quantum Chemistry; Elsevier Science: 2017.
(54) Minyaev, R. M.; Getmanskii, I. V.; Quapp, W. A Second-Order Saddle Point in the Reaction Coordinate for the Isomerization of the NH5 Complex: Ab Initio Calculation. Russian J. Phys. Chem. 2004, 78, 1494–1498.
(55) Cramer, C. J., Essentials of Computational Chemistry: Theories and Models; Wiley: 2005.
(56) Elber, R.; Karplus, M. A Method for Determining Reaction Paths in Large Molecules: Application to Myoglobin. Chem. Phys. Lett. 1987, 139, 375–380.
(57) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths. J. Chem. Phys. 2000, 113, 9901–9904.
(58) Behn, A.; Zimmerman, P. M.; Bell, A. T.; Head-Gordon, M. Efficient Exploration of Reaction Paths via a Freezing String Method. J. Chem. Phys. 2011, 135, 224108.
(59) Bernhard Schlegel, H Exploring Potential Energy Surfaces for Chemical Reactions: an Overview of Some Practical Methods. J. Comput. Chem. 2003, 24, 1514–1527.
(60) Jensen, F., Introduction to Computational Chemistry, Third; John Wiley & Sons: Chichester, UK, 2016, p 664.
(61) Efrima, S.; Bixon, M. Outer-Sphere Electron-Transfer Reactions in Polar Solvents. J. Chem. Phys. 1976, 64, 3639–3647.
(62) Hammes-Schiffer, S. Theoretical Perspectives on Proton-Coupled Electron Transfer Reactions. Acc. Chem. Res. 2001, 34, 273–281.
(63) Gonzalez-Lafont, A.; Truong, T. N.; Truhlar, D. G. Direct Dynamics Calculations with Neglect of Diatomic Differential Overlap Molecular Orbital Theory with Specific Reaction Parameters. J. Phys. Chem. 1991, 95, 4618–4627.
(64) Hase, W. L.; Kihyung, S.; Gordon, M. S. Direct Dynamics Simulations. Comput. Sci. Eng. 2003, 5, 36–44.
(65) Pratihar, S.; Ma, X.; Homayoon, Z.; Barnes, G. L.; Hase, W. L. Direct Cemical Dynamics Simulations. J. Am. Chem. Soc. 2017, 139, 3570–3590.
(66) Bolhuis, P. G.; Chandler, D.; Dellago, C.; Geissler, P. L. Transition Path Sampling: Throwing Ropes Over Rough Mountain Passes, in the Dark. Annu. Rev. Phys. Chem. 2002, 53, 291–318.
(67) Bunker, D. L. Monte Carlo Calculation of Triatomic Dissociation Rates. I. N2O and O3. J. Chem. Phys. 1962, 37, 393–403.
(68) Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19.
(69) Lemkul, J. A.; Huang, J.; Roux, B.; MacKerell, A. D. An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications. Chem. Rev. 2016, 116, 4983–5013.
(70) Steinfeld, J. I.; Francisco, J. S.; Hase, W. L., Chemical Kinetics and Dynamics; Prentice Hall: Upper Saddle River, N.J., 1999.
(71) Marx, D.; Hutter, J., Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods; Cambridge University Press: 2009.
(72) Sun, L.; Hase, W. L. In Reviews in Computational Chemistry; Reviews in computational chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003, pp 79–146.
(73) Wang, I. S. Y.; Karplus, M. Dyanmics of Organic Reactions. J. Am. Chem. Soc. 1973, 95, 8160–8164.
(74) Manthe, U.; Meyer, H. D.; Cederbaum, L. S. Wave-Packet Dynamics within the Multiconfiguration Hartree Framework: General Aspects and Application to NOCl. J. Chem. Phys. 1992, 97, 3199–3213.
(75) Chu, T.-S.; Zhang, Y.; Han, K.-L. The Time-Dependent Quantum Wave Packet Approach to the Electronically Nonadiabatic Processes in Chemical Reactions. Int. Rev. Phys. Chem. 2006, 25, 201–235.
(76) Peslherbe, G. H.; Wang, H.; Hase, W. L. In Advances in Chemical Physics: Monte Carlo Methods in Chemical Physics, Prigogine, I., Rice, S. A., Eds.; Advances in chemical physics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1999, pp 171–201.
(77) Ussing, B. R.; Hang, C.; Singleton, D. A. Dynamic Effects on the Periselectivity, Rate, Isotope Effects, and Mechanism of Cycloadditions of Ketenes with Cyclopentadiene. J. Am. Chem. Soc. 2006, 128, 7594–7607.
(78) Wilson, E. B.; Decius, J. C.; Cross, P. C., Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra; Dover Publications: New York, 1980.
(79) Lasorne, B.; Dive, G.; Lauvergnat, D.; Desouter-Lecomte, M. Wave Packet Dynamics Along Bifurcating Reaction Paths. J. Chem. Phys. 2003, 118, 5831–5840.
(80) Harabuchi, Y.; Ono, Y.; Maeda, S.; Taketsugu, T. Analyses of Bifurcation of Reaction Pathways on a Global Reaction Route Map: a Case Study of Gold Cluster Au5. J. Chem. Phys. 2015, 143, 014301.
(81) Taketsugu, T.; Tajima, N.; Hirao, K. Approaches to Bifurcating Reaction Path. J. Chem. Phys. 1996, 105, 1933–1939.
(82) Kabsch, W. A Discussion of the Solution for the Best Rotation to Relate Two Sets of Vectors. Acta Cryst. 1978, 34, 827–828.
(83) Campos, R. B.; Tantillo, D. J. Designing Reactions with Post-Transition State Bifurcations: Asynchronous Nitrene Insertions into C–C Bonds. Chem 2019, 5, 227–236.
(84) Tsutsumi, T.; Harabuchi, Y.; Ono, Y.; Maeda, S.; Taketsugu, T. Analyses of Trajectory on-the-fly Based on the Global Reaction Route Map. Phys. Chem. Chem. Phys. 2018, 20, 1364–1372.
(85) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results Obtained with the Correlation Energy Density Functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989, 157, 200–206.
(86) Becke, A. D. A New Mixing of Hartree–Fock and Local DensityFunctional Theories. J. Chem. Phys. 1993, 98, 1372–1377.
(87) Kumeda, Y.; Taketsugu, T. Isotope Effect on Bifurcating Reaction Path: Valley–Ridge Inflection Point in Totally Symmetric Coordinate. J. Chem. Phys. 2000, 113, 477–484.
(88) Yanai, T.; Taketsugu, T.; Hirao, K. Theoretical Study of Bifurcating Reaction Paths. J. Chem. Phys. 1997, 107, 1137–1146.
(89) Powers, D. E.; Pushkarsky, M. B.; Miller, T. A. Rovibronic Analysis of the Laser Induced Fluorescence Excitation Spectrum of the Jet-Cooled Methoxy Radical. J. Chem. Phys. 1997, 106, 6863–6877.
(90) Rodger, A.; Schipper, P. E. Symmetry Selection Rules for Reaction Mechanisms. Chem. Phys. 1986, 107, 329–342.
(91) Harabuchi, Y.; Taketsugu, T. A Significant Role of the Totally Symmetric Valley-Ridge Inflection Point in the Bifurcating Reaction Pathway. Theor. Chem. Acc. 2011, 130, 305–315.
(92) Reetz, M. T. Dyotropic Rearrangements, a New Class of Orbital-Symmetry Controlled Reactions. Type I. Angew. Chem., Int. Ed. 1972, 11, 129–130.
(93) Reetz, M. T. Dyotropic Rearrangements, a New Class of Orbital-Symmetry Controlled Reactions. Type II. Angew. Chem., Int. Ed. 1972, 11, 130–131.
(94) Reetz, M. T. Primary and Secondary Orbital Effects in Dyotropic Rearrangements. Tetrahedron 1973, 29, 2189 –2194.
(95) Reetz, M. T. Dyotropic Rearrangements and Related - Exchange Processes. Adv. Organomet. Chem. 1977, 16, ed. by Stone, F. G. A.; West, R., 33 –65.
(96) Fernández, I.; Cossío, F. P.; Sierra, M. A. Dyotropic Reactions: Mechanisms and Synthetic Applications. Chem. Rev. 2009, 109, 6687–6711.
(97) Gutierrez, O.; Tantillo, D. J. Analogies between Synthetic and Biosynthetic Reactions in which [1,2]-Alkyl Shifts are Combined with other Events: Dyotropic, Schmidt, and Carbocation Rearrangements. J. Org. Chem. 2012, 77, 8845–8850.
(98) Huynh, M. H. V.; Meyer, T. J. Proton-Coupled Electron Transfer. Chem. Rev. 2007, 107, 5004–5064.
(99) Hammes-Schiffer, S.; Stuchebrukhov, A. A. Theory of Coupled Electron and Proton Transfer Reactions. Chem. Rev. 2010, 110, 6939–6960.
(100) Marcus, R. A. Chemical and Electrochemical Electron-Transfer Theory. Annu. Rev. Phys. Chem. 1964, 15, 155.
(101) Mayer, J. M. Proton-Coupled Electron Transfer: a Reaction Chemist’s View. Annu. Rev. Phys. Chem. 2004, 55, 363–390.
(102) Anson, C. W.; Ghosh, S.; Hammes-Schiffer, S.; Stahl, S. S. Co(salophen)-Catalyzed Aerobic Oxidation of p-Hydroquinone: Mechanism and Implications for Aerobic Oxidation Catalysis. J. Am. Chem. Soc. 2016, 138, 4186–4193.
(103) Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Catalytic Alkylation of Remote C–H Bonds Enabled by Proton-Coupled Electron Transfer. Nature 2016, 539, 268–271.
(104) Gentry, E. C.; Knowles, R. R. Synthetic Applications of Proton-Coupled Electron Transfer. Acc. Chem. Res. 2016, 49, 1546–1556.
(105) Horvath, S.; Fernandez, L. E.; Soudackov, A. V.; Hammes-Schiffer, S. Insights into Proton-Coupled Electron Transfer Mechanisms of Electrocatalytic H2 Oxidation and Production. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 15663–15668.
(106) Solis, B. H.; Maher, A. G.; Dogutan, D. K.; Nocera, D. G.; Hammes-Schiffer, S. Nickel Phlorin Intermediate Formed by Proton-Coupled Electron Transfer in Hydrogen Evolution Mechanism. Proc. Natl. Acad. Sci. U. S. A. 2015, 113, 485–492.
(107) Farazdel, A.; Dupuis, M.; Clementi, E.; Aviram, A. Electric-Field Induced Intramolecular Electron Transfer in Spiro -Electron Systems and Their Suitability as Molecular Electronic Devices. A Theoretical Study. J. Am. Chem. Soc. 1990, 112, 4206–4214.
(108) Zhang, L. Y.; Friesner, R. A.; Murphy, R. B. Ab Initio Quantum Chemical Calculation of Electron Transfer Matrix Elements for Large Molecules. J. Chem. Phys. 1997, 107, 450–459.
(109) Kitaura, K.; Ikeo, E.; Asada, T.; Nakano, T.; Uebayasi, M. Fragment Molecular Orbital Method: an Approximate Computational Method for Large Molecules. Chem. Phys. Lett. 1999, 313, 701–706.
(110) Mayer, J. M.; Hrovat, D. A.; Thomas, J. L.; Borden, W. T. Proton-Coupled Electron Transfer Versus Hydrogen Atom Transfer in Benzyl/Toluene, Methoxyl/Methanol, and Phenoxyl/Phenol Self-Exchange Reactions. J. Am. Chem. Soc. 2002, 124, 11142–11147.
(111) Skone, J. H.; Soudackov, A. V; Hammes-Schiffer, S. Calculation of Vibronic Couplings for Phenoxyl/Phenol and Benzyl/Toluene Self-Exchange Reactions: Implications for Proton-Coupled Electron Transfer Mechanisms. J. Am. Chem. Soc. 2006, 128, 16655–16663.
(112) Hammes-Schiffer, S. Proton-Coupled Electron Transfer: Classification Scheme and Guide to Theoretical Methods. Energy Environ. Sci. 2012, 5, 7696.
(113) Cukier, R. I. Proton-Coupled Electron Transfer Reactions: Evaluation of Rate Constants. J. Phys. Chem. 1996, 100, 15428–15443.
(114) Cukier, R. I.; Nocera, D. G. Proton-Coupled Electron Transfer. Annu. Rev. Phys. Chem. 1998, 49, 337–369.
(115) Ludlow, M. K.; Skone, J. H.; Hammes-Schiffer, S. Substituent Effects on the Vibronic Coupling for the Phenoxyl/Phenol Self-Exchange Reaction. J. Phys. Chem. B 2008, 112, 336–343.
(116) Lingwood, M.; Hammond, J. R.; Hrovat, D. A.; Mayer, J. M.; Borden, W. T. MPW1K Performs Much Better than B3LYP in DFT Calculations on Reactions that Proceed by Proton-Coupled Electron Transfer (PCET). J. Chem. Theory Comput. 2006, 2, 740–745.
(117) Sirjoosingh, A.; Hammes-Schiffer, S. Diabatization Schemes for Generating Charge- Localized Electron-Proton Vibronic States in Proton-Coupled Electron Transfer Systems. J. Chem. Theory Comput. 2011, 7, 2831–2841.
(118) Sirjoosingh, A.; Hammes-Schiffer, S. Proton-Coupled Electron Transfer Versus Hydrogen Atom Transfer: Generation of Charge-Localized Diabatic States. J. Phys. Chem. A 2011, 115, 2367–2377.
(119) Harshan, A. K.; Yu, T.; Soudackov, A. V.; Hammes-Schiffer, S. Dependence of Vibronic Coupling on Molecular Geometry and Environment: Bridging Hydrogen Atom Transfer and Electron-Proton Transfer. J. Am. Chem. Soc. 2015, 137, 13545–13555.
(120) Inagaki, T.; Yamamoto, T.; Kato, S. Proton-Coupled Electron Transfer of the Phenoxyl/Phenol Couple: Effect of Hartree-Fock Exchange on Transition Structures. J. Comput. Chem. 2011, 32, 3081–3091.
(121) Subotnik, J. E.; Yeganeh, S.; Cave, R. J.; Ratner, M. A. Constructing Diabatic states from Adiabatic States: Extending Generalized Mulliken-Hush to Multiple Charge Centers with Boys Localization. J. Chem. Phys. 2008, 129, 244101.
(122) Yang, C.-H.; Hsu, C.-P. A Multi-State Fragment Charge Difference Approach for Diabatic States in Electron Transfer: Extension and Automation. J. Chem. Phys. 2013, 139, 154104.
(123) Colbert, D. T.; Miller, W. H. A Novel Discrete Variable Representation for Quantum Mechanical Reactive Scattering via the S-matrix Kohn Method. J. Chem. Phys. 1992, 96, 1982.
(124) Calbo, D. A.; Allen, W. D.; Remington, R. B.; Yamaguchi, Y.; Schaefer, H. F. A Systematic Study of Molecular Vibrational Anharmonicity and Vibration-Rotation Interaction by Self-Consistent-Field Higher-Derivative Methods. Asymmetric Top Molecules. Chem. Phys. 1988, 123, 187 –239.
(125) Carter, S.; Bowman, J. M.; Handy, N. C. Extensions and Tests of MULTIMODE: a Code to Obtain Accurate Vibration/Rotation Energies of Many-Mode Molecules. Theor. Chem. Acc. 1998, 100, 191–198.
(126) Okumura, M.; Yeh, L. I.; Lee, Y. T. The Vibrational Predissociation Spectroscopy of Hydrogen Cluster Ions. J. Chem. Phys. 1985, 83, 3705–3706.
(127) Miller, W. H.; Hernandez, R.; Handy, N. C.; Jayatilaka, D.; Willetts, A. Ab Initio Calculation of Anharmonic Constants for a Transition State, with Application to Semiclassical Transition State Tunneling Probabilities. Chem. Phys. Lett. 1990, 172, 62–68.
(128) Mills, I. M. In Molecular Spectroscopy: Modern Research, Volume 1, Rao, K. N., Mathews, C. W., Eds., 1972, pp 115–140.
(129) Redlich, O. On the Anharmonicity of Vibrations of Polyatomic Molecules. I. J. Chem. Phys. 1941, 9, 298–305.
(130) Scott, A. P.; Radom, L. Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Moller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. J. Phys. Chem. 1996, 100, 16502–16513.
(131) Merrick, J. P.; Moran, D.; Radom, L. An Evaluation of Harmonic Vibrational Frequency Scale Factors. J. Phys. Chem. A 2007, 111, 11683–11700.
(132) Hoy, A. R.; Mills, I. M.; Strey, G. Anharmonic Force Constant Calculations. Mol. Phys. 1972, 24, 1265–1290.
(133) Chaban, G. M.; Jung, J.; Gerber, R. B. Ab Initio Calculation of Anharmonic Vibrational States of Polyatomic Systems: Electronic Structure Combined with Vibrational Self-Consistent Field. J. Chem. Phys. 1999, 111, 1823–1829.
(134) Jung, J. O.; Gerber, R. B. Vibrational Wave Functions and Spectroscopy of (H2O)n, n=2,3,4,5: Vibrational Self-Consistent Field with Correlation Corrections. J.Chem. Phys. 1996, 105, 10332–10348.
(135) Gao, L. G.; Zheng, J. J.; Fernández-Ramos, A.; Truhlar, D. G.; Xu, X. Kinetics of the Methanol Reaction with OH at Interstellar, Atmospheric, and Combustion Temperatures. J. Am. Chem. Soc. 2018, 140, 2906–2918.
(136) Wu, J.; Gao, L. G.; Ren, W.; Truhlar, D. G. Anharmonic Kinetics of the Cyclopentane Reaction with Hydroxyl Radical. Chem. Sci. 2020, 11, 2511–2523.
(137) Pavošević, F.; Culpitt, T.; Hammes-Schiffer, S. Multicomponent Quantum Chemistry: Integrating Electronic and Nuclear Quantum Effects via the Nuclear-Electronic Orbital Method. Chem. Rev. 2020, 120, 4222–4253.
(138) Almlöf, J. In Geometrical Derivatives of Energy Surfaces and Molecular Properties; Springer Netherlands: 1986, pp 303–316.
(139) Sakurai, J. J.; Tuan, S. F., Modern Quantum Mechanics, Rev. ed.; Addison-Wesley Pub. Co.: 1994.
(140) Wilson, E. B.; Howard, J. B. The Vibration-Rotation Energy Levels of Polyatomic Molecules I. Mathematical Theory of Semirigid Asymmetrical Top Molecules. J. Chem. Phys. 1936, 4, 260–268.
(141) Nielsen, H. H. The Vibration-Rotation Energies of Molecules. Rev. Mod. Phys. 1951, 23, 90–136.
(142) Skone, G.; Cameron, S.; Voiculescu, I. Doing a Good Turn: the Use of Quaternions for Rotation in Molecular Docking. J. Chem. Inf. Model. 2013, 53, 3367–3372.
(143) Sehnal, D. Superimposing Multiple Structures and Exploring Protein Binding Sites., MA thesis, Faculty of Informatics, Masaryk University, 2010.
(144) Belongie, S. Rodrigues’ Rotation Formula. https://mathworld.wolfram.com/RodriguesRotationFormula.html.
(145) Kabsch, W. A Solution for the Best Rotation to Relate Two Sets of Vectors. Acta Cryst. 1976, 32, 922–923.
(146) Schönemann, P. H. A Generalized Solution of the Orthogonal Procrustes Problem. Psychometrika 1966, 31, 1–10.
(147) Coutsias, E. A.; Seok, C.; Dill, K. A. Using Quaternions to Calculate RMSD. J. Comput. Chem. 2004, 25, 1849–1857.
(148) Mirsky, L. Diagonal Elements of Orthogonal Matrices. Amer. Math. Monthly 1959, 66, 19.
(149) Levine, I. N., Quantum Chemistry; Pearson: 2009, pp 126–165.
(150) Tokmakoff, A. Time-Dependent Quantum Mechanics and Spectroscopy. https://tdqms.uchicago.edu.
(151) Barrow, J., The Constants of Nature: The Numbers that Encode the Deepest Secrets of the Universe; Vintage: 2009.
(152) Lwdin, P.-O. In Advances in Chemical Physics, Prigogine, I., Ed.; Advances in Chemical Physics, Vol. 2; John Wiley & Sons, Inc.: 1958, pp 207–322.
(153) Mok, D. K. W.; Neumann, R.; Handy, N. C. Dynamical and Nondynamical Correlation. J. Phys. Chem. 1996, 100, 6225–6230.
(154) Kato, T. On the Eigenfunctions of Many-Particle Systems in Quantum Mechanics. Commun. Pure Appl. Math. 1957, 10, 151–177.
(155) Roos, B. O.; Lindh, R.; Malmqvist, P. A.; Veryazov, V.; Widmark, P.-O., Multiconfigurational Quantum Chemistry; Wiley: Hoboken, New Jersey, 2016.
(156) Perdew, J. P.; Ruzsinszky, A.; Tao, J.; Staroverov, V. N.; Scuseria, G. E.; Csonka, G. I. Prescription for the Design and Selection of Density Functional Approximations: More Constraint Satisfaction with Fewer Fits. J. Chem. Phys. 2005, 123, 62201.
(157) Parrish, R. M. et al. Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. J. Chem. Theory Comput. 2017, 13, 3185–3197.
(158) Shizgal, B., Spectral Methods in Chemistry and Physics; Scientific Computation; Springer Netherlands: Dordrecht, 2015.
(159) Gatti, F.; Lasorne, B.; Meyer, H.-D.; Nauts, A., Applications of Quantum Dynamics in Chemistry; Lecture notes in chemistry, Vol. 98; Springer International Publishing: Cham, 2017.
(160) Light, J. C. Discrete-Variable Representations and Their Utilization. Adv. Chem. Phys. 2000, 114.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top