跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/23 19:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許喬茵
研究生(外文):Chiao-Yin Hsu
論文名稱:應用於紅外光發光二極體之Cs4PbI6鈣鈦礦奈米晶體
論文名稱(外文):Cs4PbI6 Perovskite Nanocrystals for the Application in Near-Infrared Light-Emitting Diodes
指導教授:劉如熹劉如熹引用關係
指導教授(外文):Ru-Shi Liu
口試委員:陳振中魏大華何麗貞林群哲
口試委員(外文):Jhen-Jhong ChenDa-Hua WeiLi-Jhen HeChun-Che Lin
口試日期:2020-05-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:78
中文關鍵詞:鈣鈦礦紅外線微乳膠法
外文關鍵詞:Cs4PbI6perovskitenear-infrared light-emitting diode
DOI:10.6342/NTU202001113
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據世界衛生組織最新統計,失智症(含阿茲海默症)為世界上第五大死亡原因,僅次於缺血性心臟病、腦中風、慢性肺阻塞疾病、下呼吸道感染等。全球目前平均每三秒鐘則增加一人罹患失智症,其中阿茲海默症約佔失智症之60%至70%,且死亡率亦步步攀升,因此研發治療或延緩阿茲海默症之方法已成為許多學者相繼研究之領域。於非侵入之方法中,科學家利用紅外線組織穿透性佳之特性,使用將其照射於大腦患部,促進組織之細胞生成修復。
現今微型化發光設備日益蓬勃發展,故為找尋適用於微型化發光設備之材料,本研究則以微乳膠法合成奈米級之零維鈣鈦礦Cs4PbI6晶體為紅外線之發光材料,藉由調控碘化鋅與碘化鉛之比例、銫前驅物注入反應溶劑之含量與表面有機配位體之酸鹼比例以組成最佳合成配方,再經而探討不同陽離子於合成零維Cs4PbI6之影響。經同步輻射之晶格分析與電子顯微鏡之影像鑑定,隨著摻入之碘化鋅由0 M升至0.0097 M,Cs4PbI6之比例逐漸上升,推測其原因為Zn-I之解離能小於Pb-I之解離能,此可提供足量之碘離子,使Cs4PbI6更易於形成。銫前驅物之注入量與有機配位體油胺之比例增加,亦有助於銫離子分離[PbI6]4-八面體,則可形成純相Cs4PbI6而零維鈣鈦礦Cs4PbI6之晶型為rhombohedron。利用激發放射光譜儀測量,可知此奈米晶之發光波長位置為698奈米,且半高寬為34奈米,其為一窄半高寬之近紅外光。再利用變溫光譜量測,可於低溫下觀察Cs4PbI6具兩放射峰,亦藉時間衰變光譜分析,推測奈秒級之A波長為激子放光,微秒級之B波長為缺陷態放光。將其封裝於次毫米發光二極體,並於3 V與9.3 mA下進行穿透能力實驗,於0.5公分下之肉片厚度,仍可觀測到紅外線之螢光,其強度為原先之20%。
本研究乃將鈣鈦礦Cs4PbI6材料應用於次毫米發光二極體晶片,發現其可發紅外光且其量子效率不亞於可見光之效率,並可應用於微型紅外光發光二極體,作為治療阿茲海默症方法之一。
According to the latest information released by the World Health Organization, Dementia (including Alzheimer's disease) is the fifth leading cause of death in the world, next to Ischemic Heart Disease, Stroke, Chronic Obstruction Pulmonary Disease, and Lower Respiratory Tract Infections. At present, an average of one person suffers from dementia every three seconds. Alzheimer's disease accounts for about 60% to 70% of Dementia, and the mortality rate is increasing. Therefore, the development of the pharmacological and non-pharmacological methods for treating Alzheimer's disease has been investigated. In non-drug methods, scientists have developed a method that uses low-infrared light to penetrate human tissues. This method of irradiating the brain with infrared light not only promotes the growth of various types of cells but also stimulates cell repair.
Nowadays, miniaturized light-emitting devices are booming. To find materials suitable for miniaturized light-emitting devices, a zero-dimensional perovskite Cs4PbI6 nanocrystal was synthesized by the microemulsion method as infrared light-emitting materials. The ratio of zinc iodide to lead iodide, the content of cesium precursors and the acid-base ratio of the surface organic ligands have been adjusted to form the best synthetic formula, following by comparing the effects of the remaining different cations on the synthesis of zero-dimensional Cs4PbI6. By XRD of NSRRC and SEM image identification, the percentage of Cs4PbI6 gradually increased when the zinc iodide was incorporated from 0% to 57%. It is speculated that the dissociation energy of Zn-I is smaller than that of Pb-I, so iodide ions can be provided to make Cs4PbI6 easier to form. Increasing the proportion of cesium precursor and the organic ligand oleylamine also contributes to the separation of [PbI6]4-octahedron from cesium ions, which can form a pure phase Cs4PbI6. The crystal form of zero-dimensional perovskite Cs4PbI6 is Rhombohedron. The emission position measured by the excitation-emission spectrometer is 698 nm, and the full width at half maximum is 34 nm, which is a narrow near-infrared light. By temperature dependence of luminescence spectra, it can be observed that Cs4PbI6 has two emission peaks at low temperature. By time decay spectroscopy analysis, it is speculated that the nanosecond A wavelength is excitonic emission and the microsecond B wavelength is defect state emission.
The infrared-emitting material is packaged in a Mini light-emitting diode, and a penetration test of meat pieces was performed at 3 V and 9.3 mA. The fluorescence intensity at the initial penetration thickness of 0.5 cm is 20% of the original. As the thickness of the slice increases, its penetrating fluorescence intensity gradually approaches zero. The results are consistent with the performance of the previous literature.
This thesis is the application of the perovskite Cs4PbI6 material to a light-emitting diode in sub-millimeters. It was found that it can emit infrared light and its quantum efficiency is no less than that of visible light. It can also be applied to miniature infrared light-emitting diodes as one of the strategies for treating Alzheimer's disease.
口試委員會審訂 I
誌謝 II
摘要 III
Abstract IV
總目錄 VI
圖目錄 IX
表目錄 XIV
第一章 緒論 1
1.1阿茲海默症之概述 1
1.1.1 阿茲海默症之成因 1
1.1.2 用於阿茲海默症之治療 2
1.2紅外光應用於微型發光二極體 3
1.2.1 電致發光二極體 4
1.2.2 光致發光發光二極體 6
1.2.3 次毫米(Mini)與微(Micro)發光二極體 7
1.3 鈣鈦礦之概述 8
1.3.1 有機無機式鈣鈦礦材料 10
1.3.2 全無機式鈣鈦礦材料 11
1.3.3. 鈣鈦礦之結構維度與穩定性探討 12
1.3.3.1 鈣鈦礦結構崩解機制 13
1.3.3.2 鈣鈦礦之熱淬滅效應 14
1.3.4 提升鈣鈦礦穩定性之策略 15
1.3.5 鈣鈦礦材料之環境毒性 17
1.4零維鈣鈦礦Cs4BX6(B = Pb、Sn、X = Cl、Br、I)材料之簡介 18
1.4.1 零維鈣鈦礦材料Cs4BX6之合成 18
1.4.2 零維鈣鈦礦材料Cs4BX6之發光機制探討 22
1.4.2.1 包埋CsBX3奈米晶體之Cs4BX6文獻探討 23
1.4.2.2 放可見光之純Cs4BX6文獻探討 25
1.4.2.3 未放可見光之純Cs4BX6文獻探討 27
1.5 不同陽離子摻入之全無機式鈣鈦礦材料 28
1.5.1 一維鈣鈦礦CsBX3(B = Pb、Sn、……,X = Cl、Br、I)材料 28
1.6 研究動機與目的 34
第二章 實驗步驟與儀器分析原理 35
圖 2-1本研究鈣鈦礦量子點之分析示意圖。 35
2.1 化學藥品 35
2.2 實驗步驟 37
2.2.1 Cs4PbI6鈣鈦礦奈米晶體之合成 37
2.3 儀器分析原理 39
2.3.1 粉末X光繞射儀(powder X-ray diffraction microscopy; XRD) 39
2.3.2 掃描式電子顯微鏡(scanning electron microscope; SEM) 41
2.3.3 穿透式電子顯微鏡(transmission electron microscopy; TEM) 42
2.3.4 光激發光譜儀(photoluminescence spectrometer; PL) 44
2.3.5變溫光譜儀(thermoluminescence; TL) 46
2.3.6 量子效率(photoluminescence quantum yield; PLQY) 46
第三章 結果與討論 48
3.1 開發零維鈣鈦礦結構應用於紅外光發光二極體 48
3.1.1 調控實驗條件以探討對於Cs4PbI6之合成影響 48
3.1.2 Cs4PbI6之最佳實驗條件之晶體結構分析 60
3.1.3 Cs4PbI6之光學性質分析 63
3.1.3.1 於常溫下之光學性質表現 63
3.1.3.2 於變溫下之光學性質表現 64
3.1.3.3 於高壓下之光學性質表現 67
3.1.4 Cs4PbI6應用於紅外光發光二極體 69
3.1.4.1 紅外光發光二極體用於生物組織穿透實驗 70
第四章 結論 72
參考文獻 73
[1]Hardy, J.; Allsop, D., Amyloid Deposition as The Central Event in The Aetiology of Alzheimer's Disease. Trends Pharmacol Sci. 1991, 12, 383-388.
[2]Mudher, A.; Lovestone, S., Alzheimer’s Disease – Do Tauists and Baptists Finally Shake Hands? Trends Neurosci. 2002, 25, 22-26.
[3]Panza, F.; Lozupone, M.; Logroscino, G.; Imbimbo, B. P., A critical appraisal of amyloid-beta-targeting therapies for Alzheimer disease. Nat Rev Neurol 2019, 15, 73-88.
[4]Chen, S. F.; Su, W. S.; Wu, C. H.; Lan, T. H.; Yang, F. Y., Transcranial Ultrasound Stimulation Improves Long-Term Functional Outcomes and Protects Against Brain Damage in Traumatic Brain Injury. Mol. Neurobiol. 2018, 55, 7079-7089.
[5]Berman, M. H.; Halper, J. P.; Nichols, T. W.; Jarrett, H.; Lundy, A.; Huang, J. H., Photobiomodulation with Near Infrared Light Helmet in a Pilot, Placebo Controlled Clinical Trial in Dementia Patients Testing Memory and Cognition. J. Neurol. Neurosci. 2017, 8, 1-8.
[6]Wu, Q.; Cao, F.; Kong, L.; Yang, X., InP Quantum Dots-Based Electroluminescent Devices. Chin. Phys. B 2019, 28, 18103-18109.
[7]Ishii, A.; Miyasaka, T., Sensitized Yb(3+) Luminescence in CsPbCl3 Film for Highly Efficient Near-Infrared Light-Emitting Diodes. Adv. Sci. 2020, 7, 1903142-1903148.
[8]Pust, P.; Schmidt, P. J.; Schnick, W., A Revolution in Lighting. Nat. Mater. 2015, 14, 454-458.
[9]Forrester, W.; Hinde, R., Crystal Structure of Barium Titanate. Nature 1945, 156, 177-177.
[10]Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050-6051.
[11]Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643-647.
[12]Meng, L.; You, J.; Yang, Y., Addressing The Stability Issue of Perovskite Solar Cells for Commercial Applications. Nat. Commun. 2018, 9, 5265-5268.
[13]Lai, M. L.; Tay, T. Y.; Sadhanala, A.; Dutton, S. E.; Li, G.; Friend, R. H.; Tan, Z. K., Tunable Near-Infrared Luminescence in Tin Halide Perovskite Devices. J. Phys. Chem. Lett. 2016, 7, 2653-2658.
[14]Moller, C. K., Crystal Structure of Barium Titanate. Nature 1958, 182, 1436-1436.
[15]Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V., Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano. Lett. 2015, 15, 3692-3696.
[16]Saidaminov, M. I.; Almutlaq, J.; Sarmah, S.; Dursun, I.; Zhumekenov, A. A.; Begum, R.; Pan, J.; Cho, N.; Mohammed, O. F.; Bakr, O. M., Pure Cs4PbBr6: Highly Luminescent Zero-Dimensional Perovskite Solids. ACS Energy Lett. 2016, 1, 840-845.
[17]Huang, S.; Li, Z.; Wang, B.; Zhu, N.; Zhang, C.; Kong, L.; Zhang, Q.; Shan, A.; Li, L., Morphology Evolution and Degradation of CsPbBr3 Nanocrystals under Blue Light-Emitting Diode Illumination. ACS Appl. Mater. Interfaces. 2017, 9, 7249-7258.
[18]Zhao, Y.; Riemersma, C.; Pietra, F.; Koole, R.; Donega´, C. d. M.; Meijerink, A., High-Temperature Luminescence Quenching of Colloidal Quantum Dots. ACS Nano 2012, 6, 9058-9067.
[19]Pan, A.; Li, Y.; Wu, Y.; Yan, K.; Jurow, M. J.; Liu, Y.; He, L., Stable Luminous Nanocomposites of CsPbX3 Perovskite Nanocrystals Anchored on Silica for Multicolor Anti-Counterfeit Ink and White-LEDs. Mater. Chem. Front. 2019, 3, 414-419.
[20]Xu, L.; Li, J.; Fang, T.; Zhao, Y.; Yuan, S.; Dong, Y.; Song, J., Synthesis of Stable and Phase-Adjustable CsPbBr3@Cs4PbBr6 Nanocrystals via Novel Anion–Cation Reactions. Nanoscale Adv. 2019, 1, 980-988.
[21]Wang, H. C.; Lin, S. Y.; Tang, A. C.; Singh, B. P.; Tong, H. C.; Chen, C. Y.; Lee, Y. C.; Tsai, T. L.; Liu, R. S., Mesoporous Silica Particles Integrated with All-Inorganic CsPbBr3 Perovskite Quantum-Dot Nanocomposites (MP-PQDs) with High Stability and Wide Color Gamut Used for Backlight Display. Angew. Chem. Int. Ed. Engl. 2016, 55, 7924-7929.
[22]Hong, W. L.; Huang, Y. C.; Chang, C. Y.; Zhang, Z. C.; Tsai, H. R.; Chang, N. Y.; Chao, Y. C., Efficient Low-Temperature Solution-Processed Lead-Free Perovskite Infrared Light-Emitting Diodes. Adv. Mater. 2016, 28, 8029-8036.
[23]Slavney, A. H.; Hu, T.; Lindenberg, A. M.; Karunadasa, H. I., A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications. J. Am. Chem. Soc. 2016, 138, 2138-2141.
[24]Song, J.; Li, J.; Li, X.; Xu, L.; Dong, Y.; Zeng, H., Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3). Adv. Mater. 2015, 27, 7162-7167.
[25]Zhang, Y.; Saidaminov, M. I.; Dursun, I.; Yang, H.; Murali, B.; Alarousu, E.; Yengel, E.; Alshankiti, B. A.; Bakr, O. M.; Mohammed, O. F., Zero-Dimensional Cs4PbBr6 Perovskite Nanocrystals. J. Phys. Chem. Lett. 2017, 8, 961-965.
[26]Jing, Q.; Xu, Y.; Su, Y.; Xing, X.; Lu, Z., A Systematic study of The Synthesis of Cesium Lead Halide Nanocrystals: Does Cs4PbBr6 or CsPbBr3 Form? Nanoscale 2019, 11, 1784-1789.
[27]Chen, X.; Chen, D.; Li, J.; Fang, G.; Sheng, H.; Zhong, J., Tunable CsPbBr3/Cs4PbBr6 Phase Transformation and Their Optical Spectroscopic Properties. Dalton Trans. 2018, 47, 5670-5678.
[28]Akkerman, Q. A.; Park, S.; Radicchi, E.; Nunzi, F.; Mosconi, E.; De Angelis, F.; Brescia, R.; Rastogi, P.; Prato, M.; Manna, L., Nearly Monodisperse Insulator Cs4PbX6 (X = Cl, Br, I) Nanocrystals, Their Mixed Halide Compositions, and Their Transformation into CsPbX3 Nanocrystals. Nano. Lett. 2017, 17, 1924-1930.
[29]Cha, J. H.; Han, J. H.; Yin, W.; Park, C.; Park, Y.; Ahn, T. K.; Cho, J. H.; Jung, D. Y., Photoresponse of CsPbBr3 and Cs4PbBr6 Perovskite Single Crystals. J. Phys. Chem. Lett. 2017, 8, 565-570.
[30]Zou, S.; Liu, C.; Li, R.; Jiang, F.; Chen, X.; Liu, Y.; Hong, M., From Nonluminescent to Blue-Emitting Cs4PbBr6 Nanocrystals: Tailoring the Insulator Bandgap of 0D Perovskite through Sn Cation Doping. Adv. Mater. 2019, 31, 1900606-1900614.
[31]Quan, L. N.; Bermudez, R. Q.; Voznyy, O.; Walters, G.; Jain, A.; Fan, J. Z.; Zheng, X.; Yang, Z.; Sargent, E. H., Highly Emissive Green Perovskite Nanocrystals in a Solid State Crystalline Matrix. Adv. Mater. 2017, 29, 1605945-1605950.
[32]Gan, Z.; Zheng, F.; Mao, W.; Zhou, C.; Chen, W.; Bach, U.; Tapping, P.; Kee, T. W.; Davis, J. A.; Jia, B.; Wen, X., The Optical Properties of Cs4PbBr6-CsPbBr3 Perovskite Composites. Nanoscale 2019, 11, 14676-14683.
[33]Bastiani, M. D.; Dursun, I.; Zhang, Y.; Alshankiti, B. A.; Miao, X.-H.; Yin, J.; Yengel, E.; Alarousu, E.; Turedi, B.; Almutlaq, J. M.; Saidaminov, M. I.; Mitra, S.; Gereige, I.; AlSaggaf, A.; Zhu, Y.; Han, Y.; Roqan, I. S.; Bredas, J.-L.; Mohammed, O. F.; Bakr, O. M., Inside Perovskites: Quantum Luminescence from Bulk Cs4PbBr6 Single Crystals. Chem. Mater. 2017, 29, 7108-7113.
[34]Liu, R. T.; Zhai, X. P.; Zhu, Z. Y.; Sun, B.; Liu, D. W.; Ma, B.; Zhang, Z. Q.; Sun, C. L.; Zhu, B. L.; Zhang, X. D.; Wang, Q.; Zhang, H. L., Disentangling the Luminescent Mechanism of Cs4PbBr6 Single Crystals from an Ultrafast Dynamics Perspective. J. Phys. Chem. Lett. 2019, 10, 6572-6577.
[35]Almutlaq, J.; Yin, J.; Mohammed, O. F.; Bakr, O. M., The Benefit and Challenges of Zero-Dimensional Perovskites. J. Phys. Chem. Lett. 2018, 9, 4131-4138.
[36]Zou, S.; Liu, Y.; Li, J.; Liu, C.; Feng, R.; Jiang, F.; Li, Y.; Song, J.; Zeng, H.; Hong, M.; Chen, X., Stabilizing Cesium Lead Halide Perovskite Lattice through Mn(II) Substitution for Air-Stable Light-Emitting Diodes. J. Am. Chem. Soc. 2017, 139, 11443-11450.
[37]Yao, J. S.; Ge, J.; Han, B. N.; Wang, K. H.; Yao, H. B.; Yu, H. L.; Li, J. H.; Zhu, B. S.; Song, J. Z.; Chen, C.; Zhang, Q.; Zeng, H. B.; Luo, Y.; Yu, S. H., Ce(3+)-Doping to Modulate Photoluminescence Kinetics for Efficient CsPbBr3 Nanocrystals Based Light-Emitting Diodes. J. Am. Chem. Soc. 2018, 140, 3626-3634.
[38]Shen, X.; Zhang, Y.; Kershaw, S. V.; Li, T.; Wang, C.; Zhang, X.; Wang, W.; Li, D.; Wang, Y.; Lu, M.; Zhang, L.; Sun, C.; Zhao, D.; Qin, G.; Bai, X.; Yu, W. W.; Rogach, A. L., Zn-Alloyed CsPbI3 Nanocrystals for Highly Efficient Perovskite Light-Emitting Devices. Nano. Lett. 2019, 19, 1552-1559.
[39]Behera, R. K.; Dutta, A.; Ghosh, D.; Bera, S.; Bhattacharyya, S.; Pradhan, N., Doping the Smallest Shannon Radii Transition Metal Ion Ni(II) for Stabilizing alpha-CsPbI3 Perovskite Nanocrystals. J. Phys. Chem. Lett. 2019, 10, 7916-7921.
[40]Eckert, M., Max von Laue and the discovery of X-ray diffraction in 1912. Ann. Phys. 2012, 524, 83-85.
[41]Wang, L.; Liu, H.; Zhang, Y.; Mohammed, O. F., Photoluminescence Origin of Zero-Dimensional Cs4PbBr6 Perovskite. ACS Energy Lett. 2019, 5, 87-99.
[42]Liu, Z.; Bekenstein, Y.; Ye, X.; Nguyen, S. C.; Swabeck, J.; Zhang, D.; Lee, S. T.; Yang, P.; Ma, W.; Alivisatos, A. P., Ligand Mediated Transformation of Cesium Lead Bromide Perovskite Nanocrystals to Lead Depleted Cs4PbBr6 Nanocrystals. J. Am. Chem. Soc. 2017, 139, 5309-5312.
[43]Grandhi, G. K.; Viswanath, N. S. M.; In, J. H.; Cho, H. B.; Im, W. B., Robust, Brighter Red Emission from CsPbI3 Perovskite Nanocrystals via Endotaxial Protection. J. Phys. Chem. Lett. 2020, 3699-3704.
[44]Bhaumik, S.; Bruno, A.; Mhaisalkar, S., Broadband emission from zero-dimensional Cs4PbI6 perovskite nanocrystals. RSC Adv. 2020, 10, 13431-13436.
[45]Liang, Y.; Huang, X.; Huang, Y.; Wang, X.; Li, F.; Wang, Y.; Tian, F.; Liu, B.; Shen, Z. X.; Cui, T., New Metallic Ordered Phase of Perovskite CsPbI3 under Pressure. Adv. Sci. 2019, 6, 1900399-1900406.
[46]Li, S.; Luo, J.; Liu, J.; Tang, J., Self-Trapped Excitons in All-Inorganic Halide Perovskites: Fundamentals, Status, and Potential Applications. J. Phys. Chem. Lett. 2019, 10, 1999-2007.
[47]He, S.; Zhang, L.; Wu, H.; Wu, H.; Pan, G.; Hao, Z.; Zhang, X.; Zhang, L.; Zhang, H.; Zhang, J., Efficient Super Broadband NIR Ca2LuZr2Al3O12:Cr3+,Yb3+Garnet Phosphor for pc‐LED Light Source toward NIR Spectroscopy Applications. Adv. Opt. Mater. 2020, 8.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top