跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/11 07:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳岱隆
研究生(外文):Tai-Lung Chen
論文名稱:臨場分析化學價態對鋅催化劑應用於二氧化碳還原反應選擇性之影響
論文名稱(外文):In situ unraveling effect of dynamic chemical state on selective CO2 reduction upon zinc electrocatalyst
指導教授:陳浩銘陳浩銘引用關係
指導教授(外文):Hao-Ming Chen
口試委員:廖尉斯張慕傑林律吟郭聰榮
口試委員(外文):Wei-Ssu LiaoMu-Chieh ChangLu-Yin LinTsung-Rong Kuo
口試日期:2020-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:116
中文關鍵詞:臨場光譜電化學二氧化碳還原化學價態鋅催化劑反應機制
外文關鍵詞:In situ spectroscopyCO2 electrochemical reductionChemical statesZn catalystsCatalytic mechanism
DOI:10.6342/NTU202002152
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自工業革命以來,為應付日新月異的各項科技進步對於能源的需求是與日俱增,為了供應如此鉅額的能量而長期使用化石燃料的後果便是溫室效應等全球化的氣候變異。近幾年來環保意識開始抬頭,人們開始意識到尋求替代的綠色能源之重要性,其中的二氧化碳電催化還原反應便是一個可行的解決方案,低成本、高可行性且對反應條件要求極低,在室溫室壓下便能進行反應為其賣點。然而二氧化碳還原反應之產物相對於水分解反應而言較為多元,可能產生: 一氧化碳、甲酸、甲烷、乙烯或乙醇等產物。為了能將產物實際拿來作為能源使用還需透過純化的步驟將各成分分離出來,這必然會使得其中成本上升而減低經濟效益,因此催化劑對於產物之選擇性就會顯得極為重要。
本實驗使用鋅材料作為催化劑來探討在電催化過程中,對產物之選擇性與催化金屬化學價態之間的關聯性,相較於其他大部分文獻都在探討催化劑晶面對於產物選擇性之影響,發現經過電催化的過程後晶面往往無法維持,故推論可能有其他更穩定的變因也會影響產物的選擇性,故選定金屬催化材料之化學價態來做討論。藉由合成一系列的鋅材料之氧化程度來破壞表層之緻密氧化層,進而使鋅材料本身在電化學催化反應下更容易改變其化學價態,再輔以臨場的同步輻射鑑定技術之K邊緣X光吸收光譜及X光繞射來觀測在催化過程中材料之化學價態與結構之變化。推論出鋅之化學價態可能是影響二電子產物甲酸和一氧化碳之選擇性的關鍵因素。
Early from the Industrial Revolution in 19th century, constant science and technology breakthrough have been achieved and also accompanied by elevating energy consumption. For supporting energy needs, fossil fuels have been massively used and caused serious environmental issues. Hence, the development of new strategies for processing excess CO2 emissions is really urgent and electrochemical CO2 reduction reaction could be one of the best candidates for its features of low cost and high accessibility. Unraveling the reaction mechanism of electrocatalysts toward CO2 reduction reaction (CO2RR) is a crucial step for further promoting efficient and selective reduction of CO2 to valuable chemicals. To understand the mechanism of zinc electrocatalyst toward CO2RR, a series of thermal oxidized zinc foils were prepared for achieving the correlation between chemical state of electrocatalyst and selectivity. The destruction of dense oxide layer on the surface of zinc foil through thermal oxidation process resulted in a 4-fold improvement of faradaic efficiency (FE) of formate. Furthermore, the evidence provided by in situ X-ray absorption spectroscopy (XAS) and X-ray diffraction significantly demonstrated that the Zn(II) and Zn(0) species was responsible for the production of carbon monoxide (CO) and formate, respectively. The results from in situ measurements revealed that the chemical state of zinc electrocatalysts dominates the product profile for CO2RR, which provides a promising approach for tuning the product selectivity of zinc electrocatalyst.
誌謝 I
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VII
表目錄 XII
第一章 緒論 1
1.1 全球暖化與能源危機 1
1.2 二氧化碳的捕捉與再利用 3
1.3 電催化二氧化碳還原反應 7
1.3.1 電催化二氧化碳還原之催化劑 7
1.3.2 電催化二氧化碳還原反應之反應條件 9
1.3.3二氧化碳還原反應之困境 10
1.3.4 二氧化碳還原-中間產物 11
1.3.5 產物選擇性之調控 12
1.4 鋅金屬催化劑 26
1.5 研究動機 28
第二章 實驗步驟與儀器分析原理 29
2.1 本研究之實驗流程 29
2.2 本研究所使用之藥品 30
2.3 實驗材料之製備 32
2.3.1 O-Zn-200、O-Zn-300、O-Zn-400、O-Zn-500之製備 32
2.4 樣品之鑑定與分析 33
2.4.1掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 34
2.4.2 能量色散X光光譜儀 (Energy Dispersive X-Ray Spectroscopy, EDS) 36
2.4.3 X光繞射分析 (X-ray Diffraction, XRD) 37
2.4.4 X光光電子能譜儀 (X-Ray Photoelectron Spectroscopy, XPS) 與縱深分析 (Depth Analysis) 41
2.4.5拉曼光譜 (Raman Spectroscopy) 42
2.5電催化二氧化碳還原反應之分析與量測 44
2.5.1 實驗架設 44
2.5.2 線性掃描伏安法 (Linear Sweeping Voltammetry, LSV) 48
2.5.3電化學阻抗 (Electrochemical Impedance Spectroscopy, EIS) 及電阻電降補償 (iR-drop compensation) 48
2.5.4 計時電流法 (Chronoamperometry, CA) 50
2.6二氧化碳還原產物之鑑定與分析 51
2.6.1 氣相層析質譜儀 (Gas Chromatography – Mass Spectrometry, GC-MS) 51
2.6.2 核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR) 54
2.7同步輻射光源與臨場分析 56
2.7.1 同步輻射光源 56
2.7.2 臨場同步X光繞射分析與架設 61
2.7.3 X光吸收光譜 (X-ray Absorption Spectroscopy, XAS) 62
2.7.4 X光吸收近邊緣結構光譜 (X-ray Absorption Near Edge Structure, XANES) 66
2.7.5 X光吸收延伸精細結構光譜 (Extend X-ray Absorption Fine Structure, EXAFS) 68
第三章 實驗結果與討論 71
3.1 鋅材料之鑑定 71
3.1.1 鋅箔之縱深X光光電子光譜分析 71
3.2 氧化鋅衍生物之材料鑑定與分析 74
3.2.1 氧化鋅衍生物之X光光電子能譜分析 74
3.2.2 掃描式電子顯微鏡分析 81
3.2.3 X光繞射分析 84
3.3 氧化鋅衍生物之電催化二氧化碳還原活性分析 87
3.3.1 線性掃描伏安法分析 88
3.3.2 二氧化碳還原產物法拉第效率分析 91
3.3.3 二氧化碳還原產物部分電流分析 93
3.4 氧化鋅衍生物之電化學臨場實驗分析 96
3.4.1 臨場X光繞射分析 97
3.4.2 臨場X光吸收光譜分析 99
3.5 鋅催化材料之二氧化碳還原機構探討 101
第四章 結論 105
參考資料 107
1.Central, C., Rising Global Temperatures and CO2. 2017.
2.Smil, V. Energy Transitions: Global and National Perspectives. & BP Statistical Review of World Energy.
3.Abas, N.; Kalair, A.; Khan, N., Review of fossil fuels and future energy technologies. Futures 2015, 69, 31-49.
4.Davis, S. J.; Caldeira, K.; Matthews, H. D., Future CO2 Emissions and Climate Change from Existing Energy Infrastructure. Science 2010, 329 (5997), 1330-1333.
5.Koytsoumpa, E. I.; Bergins, C.; Kakaras, E., The CO2 economy: Review of CO2 capture and reuse technologies. J. Supercrit. Fluids 2018, 132, 3-16.
6.Leung, D. Y. C.; Caramanna, G.; Maroto-Valer, M. M., An overview of current status of carbon dioxide capture and storage technologies. Renew Sust Energ Rev 2014, 39, 426-443.
7.Bert Metz, O. D., Heleen de Coninck, Manuela Loos, Leo Meyer, IPCC Special Report on Carbon Dioxide Capture and Storage. 2005.
8.Babu, P.; Linga, P.; Kumar, R.; Englezos, P., A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 2015, 85, 261-279.
9.Hori, Y.; Kikuchi, K.; Suzuki, S., Production of CO and CH4 in Electrochemical Reduction of CO2 at Metal Electrodes in Aqueous Hydrogencarbonate Solution. Chem. Lett. 1985, 14 (11), 1695-1698.
10.Hori, Y.; Murata, A.; Takahashi, R., Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc., Faraday Trans.1: Physical Chemistry in Condensed Phases 1989, 85 (8), 2309-2326.
11.Hori, Y., Electrochemical CO2 Reduction on Metal Electrodes. In Modern Aspects of Electrochemistry, Vayenas, C. G.; White, R. E.; Gamboa-Aldeco, M. E., Eds. Springer New York: New York, NY, 2008; pp 89-189.
12.Azuma, M.; Hashimoto, K.; Hiramoto, M.; Watanabe, M.; Sakata, T., Carbon dioxide reduction at low temperature on various metal electrodes. J. Electroanal. Chem. Interf. Electrochem. 1989, 260 (2), 441-445.
13.Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; Norskov, J. K.; Jaramillo, T. F.; Chorkendorff, I., Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chem Rev 2019.
14.Paik, W.; Andersen, T. N.; Eyring, H., Kinetic studies of the electrolytic reduction of carbon dioxide on the mercury electrode. Electrochimica Acta 1969, 14 (12), 1217-1232.
15.Pacansky, J.; Wahlgren, U.; Bagus, P. S., SCF ab‐initio ground state energy surfaces for CO2 and CO2−. J. Chem. Phys. 1975, 62 (7), 2740-2744.
16.Hori, Y.; Murata, A.; Takahashi, R.; Suzuki, S., Electroreduction of carbon monoxide to methane and ethylene at a copper electrode in aqueous solutions at ambient temperature and pressure. J. Am. Chem. Soc. 1987, 109 (16), 5022-5023.
17.Kim, J. J.; Summers, D. P.; Frese, K. W., Reduction of CO2 and CO to methane on Cu foil electrodes. J. Electroanal. Chem. Interf. Electrochem. 1988, 245 (1), 223-244.
18.Cook, R. L., Evidence for Formaldehyde, Formic Acid, and Acetaldehyde as Possible Intermediates during Electrochemical Carbon Dioxide Reduction at Copper. J. Electrochem. Soc. 1989, 136 (7), 1982.
19.Zhu, D. D.; Liu, J. L.; Qiao, S. Z., Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide. Adv Mater 2016, 28 (18), 3423-52.
20.Wang, Y.; Liu, J.; Wang, Y.; Al-Enizi, A. M.; Zheng, G., Tuning of CO2 Reduction Selectivity on Metal Electrocatalysts. Small 2017, 13 (43).
21.Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F., Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 2014, 136 (40), 14107-13.
22.Peterson, A. A.; Nørskov, J. K., Activity Descriptors for CO2 Electroreduction to Methane on Transition-Metal Catalysts. J. Phys. Chem. Lett. 2012, 3 (2), 251-258.
23.Feaster, J. T.; Shi, C.; Cave, E. R.; Hatsukade, T.; Abram, D. N.; Kuhl, K. P.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F., Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes. ACS Catal. 2017, 7 (7), 4822-4827.
24.Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K., How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3 (9), 1311-1315.
25.Mistry, H.; Varela, A. S.; Kühl, S.; Strasser, P.; Cuenya, B. R., Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 2016, 1 (4).
26.Kortlever, R.; Shen, J.; Schouten, K. J.; Calle-Vallejo, F.; Koper, M. T., Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. J. Phys. Chem. Lett. 2015, 6 (20), 4073-82.
27.Zhu, W.; Michalsky, R.; Metin, O.; Lv, H.; Guo, S.; Wright, C. J.; Sun, X.; Peterson, A. A.; Sun, S., Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 2013, 135 (45), 16833-6.
28.Wang, Z.; Yang, G.; Zhang, Z.; Jin, M.; Yin, Y., Selectivity on Etching: Creation of High-Energy Facets on Copper Nanocrystals for CO2 Electrochemical Reduction. ACS Nano 2016, 10 (4), 4559-64.
29.Liu, X.; Xiao, J.; Peng, H.; Hong, X.; Chan, K.; Norskov, J. K., Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 2017, 8, 15438.
30.Takahashi, I.; Koga, O.; Hoshi, N.; Hori, Y., Electrochemical reduction of CO2 at copper single crystal Cu(S)-[n(111)×(111)] and Cu(S)-[n(110)×(100)] electrodes. J. Electroanal. Chem. 2002, 533 (1), 135-143.
31.Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P., Particle size effects in the catalytic electroreduction of CO(2) on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136 (19), 6978-86.
32.Wang, L.; Nitopi, S. A.; Bertheussen, E.; Orazov, M.; Morales-Guio, C. G.; Liu, X.; Higgins, D. C.; Chan, K.; Nørskov, J. K.; Hahn, C.; Jaramillo, T. F., Electrochemical Carbon Monoxide Reduction on Polycrystalline Copper: Effects of Potential, Pressure, and pH on Selectivity toward Multicarbon and Oxygenated Products. ACS Catal. 2018, 8 (8), 7445-7454.
33.Hori, Y.; Takahashi, R.; Yoshinami, Y.; Murata, A., Electrochemical Reduction of CO at a Copper Electrode. J. Phys. Chem. B 1997, 101 (36), 7075-7081.
34.Lum, Y.; Yue, B.; Lobaccaro, P.; Bell, A. T.; Ager, J. W., Optimizing C–C Coupling on Oxide-Derived Copper Catalysts for Electrochemical CO2 Reduction. J. Phys. Chem. C 2017, 121 (26), 14191-14203.
35.Raciti, D.; Mao, M.; Wang, C., Mass transport modelling for the electroreduction of CO2 on Cu nanowires. Nanotechnology 2018, 29 (4), 044001.
36.Gupta, N.; Gattrell, M.; MacDougall, B., Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J. Appl. Electrochem. 2005, 36 (2), 161-172.
37.Hall, A. S.; Yoon, Y.; Wuttig, A.; Surendranath, Y., Mesostructure-Induced Selectivity in CO2 Reduction Catalysis. J. Am. Chem. Soc. 2015, 137 (47), 14834-7.
38.Varela, A. S.; Kroschel, M.; Reier, T.; Strasser, P., Controlling the selectivity of CO2 electroreduction on copper: The effect of the electrolyte concentration and the importance of the local pH. Catal. Today 2016, 260, 8-13.
39.Murata, A.; Hori, Y., Product Selectivity Affected by Cationic Species in Electrochemical Reduction of CO2 and CO at a Cu Electrode. Bull. Chem. Soc. Jpn. 1991, 64 (1), 123-127.
40.Singh, M. R.; Kwon, Y.; Lum, Y.; Ager, J. W., 3rd; Bell, A. T., Hydrolysis of Electrolyte Cations Enhances the Electrochemical Reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 2016, 138 (39), 13006-13012.
41.Varela, A. S.; Ju, W.; Reier, T.; Strasser, P., Tuning the Catalytic Activity and Selectivity of Cu for CO2 Electroreduction in the Presence of Halides. ACS Catal. 2016, 6 (4), 2136-2144.
42.Gao, D.; Arán-Ais, R. M.; Jeon, H. S.; Roldan Cuenya, B., Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2019, 2 (3), 198-210.
43.Kim, D.; Kley, C. S.; Li, Y.; Yang, P., Copper nanoparticle ensembles for selective electroreduction of CO2 to C–C products. Proc. Natl. Acad. Sci. U.S.A. 2017, 114 (40), 10560.
44.Grosse, P.; Gao, D.; Scholten, F.; Sinev, I.; Mistry, H.; Roldan Cuenya, B., Dynamic Changes in the Structure, Chemical State and Catalytic Selectivity of Cu Nanocubes during CO2 Electroreduction: Size and Support Effects. Angew. Chem. Int. Ed. 2018, 57 (21), 6192-6197.
45.Dutta, A.; Rahaman, M.; Luedi, N. C.; Mohos, M.; Broekmann, P., Morphology Matters: Tuning the Product Distribution of CO2 Electroreduction on Oxide-Derived Cu Foam Catalysts. ACS Catal. 2016, 6 (6), 3804-3814.
46.Dutta, A.; Rahaman, M.; Mohos, M.; Zanetti, A.; Broekmann, P., Electrochemical CO2 Conversion Using Skeleton (Sponge) Type of Cu Catalysts. ACS Catal. 2017, 7 (8), 5431-5437.
47.Reller, C.; Krause, R.; Volkova, E.; Schmid, B.; Neubauer, S.; Rucki, A.; Schuster, M.; Schmid, G., Selective Electroreduction of CO2 toward Ethylene on Nano Dendritic Copper Catalysts at High Current Density. Adv. Energy Mater. 2017, 7 (12), 1602114.
48.Mandal, L.; Yang, K. R.; Motapothula, M. R.; Ren, D.; Lobaccaro, P.; Patra, A.; Sherburne, M.; Batista, V. S.; Yeo, B. S.; Ager, J. W.; Martin, J.; Venkatesan, T., Investigating the Role of Copper Oxide in Electrochemical CO2 Reduction in Real Time. ACS Appl. Mater. Interfaces 2018, 10 (10), 8574-8584.
49.Mistry, H.; Varela, A. S.; Bonifacio, C. S.; Zegkinoglou, I.; Sinev, I.; Choi, Y. W.; Kisslinger, K.; Stach, E. A.; Yang, J. C.; Strasser, P.; Cuenya, B. R., Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 2016, 7, 12123.
50.Gu, J.; Hsu, C.-S.; Bai, L.; Chen, H. M.; Hu, X., Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364 (6445), 1091-1094.
51.Chang, C.-J.; Hung, S.-F.; Hsu, C.-S.; Chen, H.-C.; Lin, S.-C.; Liao, Y.-F.; Chen, H. M., Quantitatively Unraveling the Redox Shuttle of Spontaneous Oxidation/Electroreduction of CuOx on Silver Nanowires Using in Situ X-ray Absorption Spectroscopy. ACS Cent. Sci. 2019, 5 (12), 1998-2009.
52.Chen, Y.; Li, C. W.; Kanan, M. W., Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 2012, 134 (49), 19969-72.
53.Dinh, C.-T.; García de Arquer, F. P.; Sinton, D.; Sargent, E. H., High Rate, Selective, and Stable Electroreduction of CO2 to CO in Basic and Neutral Media. ACS Energy Lett. 2018, 3 (11), 2835-2840.
54.Sun, K.; Wu, L.; Qin, W.; Zhou, J.; Hu, Y.; Jiang, Z.; Shen, B.; Wang, Z., Enhanced electrochemical reduction of CO2 to CO on Ag electrocatalysts with increased unoccupied density of states. J. Mater. Chem. A 2016, 4 (32), 12616-12623.
55.Zhang, W.; Hu, Y.; Ma, L.; Zhu, G.; Wang, Y.; Xue, X.; Chen, R.; Yang, S.; Jin, Z., Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals. Adv. Sci. 2018, 5 (1), 1700275.
56.Rosen, J.; Hutchings, G. S.; Lu, Q.; Forest, R. V.; Moore, A.; Jiao, F., Electrodeposited Zn Dendrites with Enhanced CO Selectivity for Electrocatalytic CO2 Reduction. ACS Catal. 2015, 5 (8), 4586-4591.
57.Luo, W.; Zhang, J.; Li, M.; Züttel, A., Boosting CO Production in Electrocatalytic CO2 Reduction on Highly Porous Zn Catalysts. ACS Catal. 2019, 9 (5), 3783-3791.
58.Moreno-Garcia, P.; Schlegel, N.; Zanetti, A.; Cedeno Lopez, A.; Galvez-Vazquez, M. J.; Dutta, A.; Rahaman, M.; Broekmann, P., Selective Electrochemical Reduction of CO2 to CO on Zn-Based Foams Produced by Cu2+ and Template-Assisted Electrodeposition. ACS Appl. Mater. Interfaces 2018, 10 (37), 31355-31365.
59.Won da, H.; Shin, H.; Koh, J.; Chung, J.; Lee, H. S.; Kim, H.; Woo, S. I., Highly Efficient, Selective, and Stable CO2 Electroreduction on a Hexagonal Zn Catalyst. Angew. Chem. Int. Ed. 2016, 55 (32), 9297-300.
60.Jeon, H. S.; Sinev, I.; Scholten, F.; Divins, N. J.; Zegkinoglou, I.; Pielsticker, L.; Cuenya, B. R., Operando Evolution of the Structure and Oxidation State of Size-Controlled Zn Nanoparticles during CO2 Electroreduction. J. Am. Chem. Soc. 2018, 140 (30), 9383-9386.
61.Kwon, I. S.; Debela, T. T.; Kwak, I. H.; Seo, H. W.; Park, K.; Kim, D.; Yoo, S. J.; Kim, J.-G.; Park, J.; Kang, H. S., Selective electrochemical reduction of carbon dioxide to formic acid using indium–zinc bimetallic nanocrystals. J. Mater. Chem. A 2019, 7 (40), 22879-22883.
62.Nguyen, D. L. T.; Jee, M. S.; Won, D. H.; Jung, H.; Oh, H.-S.; Min, B. K.; Hwang, Y. J., Selective CO2 Reduction on Zinc Electrocatalyst: The Effect of Zinc Oxidation State Induced by Pretreatment Environment. ACS Sustain. Chem. Eng. 2017, 5 (12), 11377-11386.
63.Goldstein, J.; Newbury, D.; Joy, D.; Lyman, C.; Echlin, P.; Lifshin, E.; Sawyer, L.; Michael, J., Scanning Electron Microscopy and X-ray Microanalysis ISBN: 0306472929. 2003; Vol. XIX.
64.Zuo, J.-M.; Spence, J. C. H., Advanced Transmission Electron Microscopy, Imaging and Diffraction in Nanoscience. 2017.
65.Willmott, P., An Introduction to Synchrotron Radiation: Techniques and Applications. 2011, 341-352.
66.Watts, J.; Wolstenholme, J., An introduction to surface analysis by XPS and AES. An Introduction to Surface Analysis by XPS and AES, by John F. Watts, John Wolstenholme, pp. 224. ISBN 0-470-84713-1. Wiley-VCH , May 2003. 2003.
67.Smith, E.; Dent, G., Modern Raman Spectroscopy: A Practical Approach. 2005.
68.Bard, A. J.; Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, 2nd Edition. Wiley Textbooks: 2000.
69.Stauffer, E., Gas Chromatography and Gas Chromatography-Mass Spectrometry. 2008; pp 235-293.
70.Sparkman, O. D.; Penton, Z.; Kitson, F. G., Gas Chromatography and Mass Spectrometry: A Practical Guide. Gas Chromatography and Mass Spectrometry: A Practical Guide 2011.
71.Gross, J., Mass Spectrometry—A Textbook. 2011.
72.Rankin, N. J.; Preiss, D.; Welsh, P.; Burgess, K. E.; Nelson, S. M.; Lawlor, D. A.; Sattar, N., The emergence of proton nuclear magnetic resonance metabolomics in the cardiovascular arena as viewed from a clinical perspective. Atherosclerosis 2014, 237 (1), 287-300.
73.Mobilio, S.; Boscherini, F.; Meneghini, C., Synchrotron radiation: Basics, methods and applications. 2015; p 1-799.
74.Lin, F.; Liu, Y.; Yu, X.; Cheng, L.; Singer, A.; Shpyrko, O. G.; Xin, H. L.; Tamura, N.; Tian, C.; Weng, T. C.; Yang, X. Q.; Meng, Y. S.; Nordlund, D.; Yang, W.; Doeff, M. M., Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries. Chem. Rev. 2017, 117 (21), 13123-13186.
75.Bokhoven, J.; Lamberti, C., X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications. 2015; p 1-845.
76.Grunwaldt, J. D.; Baiker, A., In situ spectroscopic investigation of heterogeneous catalysts and reaction media at high pressure. Phys. Chem. Chem. Phys. 2005, 7 (20), 3526-39.
77.Gao, W.; Li, Z., Developments in high-temperature corrosion and protection of materials. 2008; p 1-658.
78.El Mel, A. A.; Nakamura, R.; Bittencourt, C., The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes. Beilstein J Nanotechnol 2015, 6, 1348-61.
79.Shaporev, A. S.; Ivanov, V. K.; Baranchikov, A. E.; Polezhaeva, O. S.; Tret’yakov, Y. D., ZnO formation under hydrothermal conditions from zinc hydroxide compounds with various chemical histories. Russ. J. of Inorg. Chem. 2007, 52 (12), 1811-1816.
80.Wang, M.; Zhou, Y.; Zhang, Y.; Hahn, S. H.; Kim, E. J., From Zn(OH)2 to ZnO: a study on the mechanism of phase transformation. CrystEngComm 2011, 13 (20), 6024.
81.Luo, Y. R., Comprehensive Handbook of Chemical Bond Energies. CRC Press: 2007.
82.Yoo, J. S.; Christensen, R.; Vegge, T.; Norskov, J. K.; Studt, F., Theoretical Insight into the Trends that Guide the Electrochemical Reduction of Carbon Dioxide to Formic Acid. ChemSusChem 2016, 9 (4), 358-63.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top