|
1.Central, C., Rising Global Temperatures and CO2. 2017. 2.Smil, V. Energy Transitions: Global and National Perspectives. & BP Statistical Review of World Energy. 3.Abas, N.; Kalair, A.; Khan, N., Review of fossil fuels and future energy technologies. Futures 2015, 69, 31-49. 4.Davis, S. J.; Caldeira, K.; Matthews, H. D., Future CO2 Emissions and Climate Change from Existing Energy Infrastructure. Science 2010, 329 (5997), 1330-1333. 5.Koytsoumpa, E. I.; Bergins, C.; Kakaras, E., The CO2 economy: Review of CO2 capture and reuse technologies. J. Supercrit. Fluids 2018, 132, 3-16. 6.Leung, D. Y. C.; Caramanna, G.; Maroto-Valer, M. M., An overview of current status of carbon dioxide capture and storage technologies. Renew Sust Energ Rev 2014, 39, 426-443. 7.Bert Metz, O. D., Heleen de Coninck, Manuela Loos, Leo Meyer, IPCC Special Report on Carbon Dioxide Capture and Storage. 2005. 8.Babu, P.; Linga, P.; Kumar, R.; Englezos, P., A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 2015, 85, 261-279. 9.Hori, Y.; Kikuchi, K.; Suzuki, S., Production of CO and CH4 in Electrochemical Reduction of CO2 at Metal Electrodes in Aqueous Hydrogencarbonate Solution. Chem. Lett. 1985, 14 (11), 1695-1698. 10.Hori, Y.; Murata, A.; Takahashi, R., Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc., Faraday Trans.1: Physical Chemistry in Condensed Phases 1989, 85 (8), 2309-2326. 11.Hori, Y., Electrochemical CO2 Reduction on Metal Electrodes. In Modern Aspects of Electrochemistry, Vayenas, C. G.; White, R. E.; Gamboa-Aldeco, M. E., Eds. Springer New York: New York, NY, 2008; pp 89-189. 12.Azuma, M.; Hashimoto, K.; Hiramoto, M.; Watanabe, M.; Sakata, T., Carbon dioxide reduction at low temperature on various metal electrodes. J. Electroanal. Chem. Interf. Electrochem. 1989, 260 (2), 441-445. 13.Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; Norskov, J. K.; Jaramillo, T. F.; Chorkendorff, I., Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chem Rev 2019. 14.Paik, W.; Andersen, T. N.; Eyring, H., Kinetic studies of the electrolytic reduction of carbon dioxide on the mercury electrode. Electrochimica Acta 1969, 14 (12), 1217-1232. 15.Pacansky, J.; Wahlgren, U.; Bagus, P. S., SCF ab‐initio ground state energy surfaces for CO2 and CO2−. J. Chem. Phys. 1975, 62 (7), 2740-2744. 16.Hori, Y.; Murata, A.; Takahashi, R.; Suzuki, S., Electroreduction of carbon monoxide to methane and ethylene at a copper electrode in aqueous solutions at ambient temperature and pressure. J. Am. Chem. Soc. 1987, 109 (16), 5022-5023. 17.Kim, J. J.; Summers, D. P.; Frese, K. W., Reduction of CO2 and CO to methane on Cu foil electrodes. J. Electroanal. Chem. Interf. Electrochem. 1988, 245 (1), 223-244. 18.Cook, R. L., Evidence for Formaldehyde, Formic Acid, and Acetaldehyde as Possible Intermediates during Electrochemical Carbon Dioxide Reduction at Copper. J. Electrochem. Soc. 1989, 136 (7), 1982. 19.Zhu, D. D.; Liu, J. L.; Qiao, S. Z., Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide. Adv Mater 2016, 28 (18), 3423-52. 20.Wang, Y.; Liu, J.; Wang, Y.; Al-Enizi, A. M.; Zheng, G., Tuning of CO2 Reduction Selectivity on Metal Electrocatalysts. Small 2017, 13 (43). 21.Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F., Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 2014, 136 (40), 14107-13. 22.Peterson, A. A.; Nørskov, J. K., Activity Descriptors for CO2 Electroreduction to Methane on Transition-Metal Catalysts. J. Phys. Chem. Lett. 2012, 3 (2), 251-258. 23.Feaster, J. T.; Shi, C.; Cave, E. R.; Hatsukade, T.; Abram, D. N.; Kuhl, K. P.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F., Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes. ACS Catal. 2017, 7 (7), 4822-4827. 24.Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K., How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3 (9), 1311-1315. 25.Mistry, H.; Varela, A. S.; Kühl, S.; Strasser, P.; Cuenya, B. R., Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 2016, 1 (4). 26.Kortlever, R.; Shen, J.; Schouten, K. J.; Calle-Vallejo, F.; Koper, M. T., Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. J. Phys. Chem. Lett. 2015, 6 (20), 4073-82. 27.Zhu, W.; Michalsky, R.; Metin, O.; Lv, H.; Guo, S.; Wright, C. J.; Sun, X.; Peterson, A. A.; Sun, S., Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 2013, 135 (45), 16833-6. 28.Wang, Z.; Yang, G.; Zhang, Z.; Jin, M.; Yin, Y., Selectivity on Etching: Creation of High-Energy Facets on Copper Nanocrystals for CO2 Electrochemical Reduction. ACS Nano 2016, 10 (4), 4559-64. 29.Liu, X.; Xiao, J.; Peng, H.; Hong, X.; Chan, K.; Norskov, J. K., Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 2017, 8, 15438. 30.Takahashi, I.; Koga, O.; Hoshi, N.; Hori, Y., Electrochemical reduction of CO2 at copper single crystal Cu(S)-[n(111)×(111)] and Cu(S)-[n(110)×(100)] electrodes. J. Electroanal. Chem. 2002, 533 (1), 135-143. 31.Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P., Particle size effects in the catalytic electroreduction of CO(2) on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136 (19), 6978-86. 32.Wang, L.; Nitopi, S. A.; Bertheussen, E.; Orazov, M.; Morales-Guio, C. G.; Liu, X.; Higgins, D. C.; Chan, K.; Nørskov, J. K.; Hahn, C.; Jaramillo, T. F., Electrochemical Carbon Monoxide Reduction on Polycrystalline Copper: Effects of Potential, Pressure, and pH on Selectivity toward Multicarbon and Oxygenated Products. ACS Catal. 2018, 8 (8), 7445-7454. 33.Hori, Y.; Takahashi, R.; Yoshinami, Y.; Murata, A., Electrochemical Reduction of CO at a Copper Electrode. J. Phys. Chem. B 1997, 101 (36), 7075-7081. 34.Lum, Y.; Yue, B.; Lobaccaro, P.; Bell, A. T.; Ager, J. W., Optimizing C–C Coupling on Oxide-Derived Copper Catalysts for Electrochemical CO2 Reduction. J. Phys. Chem. C 2017, 121 (26), 14191-14203. 35.Raciti, D.; Mao, M.; Wang, C., Mass transport modelling for the electroreduction of CO2 on Cu nanowires. Nanotechnology 2018, 29 (4), 044001. 36.Gupta, N.; Gattrell, M.; MacDougall, B., Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J. Appl. Electrochem. 2005, 36 (2), 161-172. 37.Hall, A. S.; Yoon, Y.; Wuttig, A.; Surendranath, Y., Mesostructure-Induced Selectivity in CO2 Reduction Catalysis. J. Am. Chem. Soc. 2015, 137 (47), 14834-7. 38.Varela, A. S.; Kroschel, M.; Reier, T.; Strasser, P., Controlling the selectivity of CO2 electroreduction on copper: The effect of the electrolyte concentration and the importance of the local pH. Catal. Today 2016, 260, 8-13. 39.Murata, A.; Hori, Y., Product Selectivity Affected by Cationic Species in Electrochemical Reduction of CO2 and CO at a Cu Electrode. Bull. Chem. Soc. Jpn. 1991, 64 (1), 123-127. 40.Singh, M. R.; Kwon, Y.; Lum, Y.; Ager, J. W., 3rd; Bell, A. T., Hydrolysis of Electrolyte Cations Enhances the Electrochemical Reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 2016, 138 (39), 13006-13012. 41.Varela, A. S.; Ju, W.; Reier, T.; Strasser, P., Tuning the Catalytic Activity and Selectivity of Cu for CO2 Electroreduction in the Presence of Halides. ACS Catal. 2016, 6 (4), 2136-2144. 42.Gao, D.; Arán-Ais, R. M.; Jeon, H. S.; Roldan Cuenya, B., Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2019, 2 (3), 198-210. 43.Kim, D.; Kley, C. S.; Li, Y.; Yang, P., Copper nanoparticle ensembles for selective electroreduction of CO2 to C–C products. Proc. Natl. Acad. Sci. U.S.A. 2017, 114 (40), 10560. 44.Grosse, P.; Gao, D.; Scholten, F.; Sinev, I.; Mistry, H.; Roldan Cuenya, B., Dynamic Changes in the Structure, Chemical State and Catalytic Selectivity of Cu Nanocubes during CO2 Electroreduction: Size and Support Effects. Angew. Chem. Int. Ed. 2018, 57 (21), 6192-6197. 45.Dutta, A.; Rahaman, M.; Luedi, N. C.; Mohos, M.; Broekmann, P., Morphology Matters: Tuning the Product Distribution of CO2 Electroreduction on Oxide-Derived Cu Foam Catalysts. ACS Catal. 2016, 6 (6), 3804-3814. 46.Dutta, A.; Rahaman, M.; Mohos, M.; Zanetti, A.; Broekmann, P., Electrochemical CO2 Conversion Using Skeleton (Sponge) Type of Cu Catalysts. ACS Catal. 2017, 7 (8), 5431-5437. 47.Reller, C.; Krause, R.; Volkova, E.; Schmid, B.; Neubauer, S.; Rucki, A.; Schuster, M.; Schmid, G., Selective Electroreduction of CO2 toward Ethylene on Nano Dendritic Copper Catalysts at High Current Density. Adv. Energy Mater. 2017, 7 (12), 1602114. 48.Mandal, L.; Yang, K. R.; Motapothula, M. R.; Ren, D.; Lobaccaro, P.; Patra, A.; Sherburne, M.; Batista, V. S.; Yeo, B. S.; Ager, J. W.; Martin, J.; Venkatesan, T., Investigating the Role of Copper Oxide in Electrochemical CO2 Reduction in Real Time. ACS Appl. Mater. Interfaces 2018, 10 (10), 8574-8584. 49.Mistry, H.; Varela, A. S.; Bonifacio, C. S.; Zegkinoglou, I.; Sinev, I.; Choi, Y. W.; Kisslinger, K.; Stach, E. A.; Yang, J. C.; Strasser, P.; Cuenya, B. R., Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 2016, 7, 12123. 50.Gu, J.; Hsu, C.-S.; Bai, L.; Chen, H. M.; Hu, X., Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364 (6445), 1091-1094. 51.Chang, C.-J.; Hung, S.-F.; Hsu, C.-S.; Chen, H.-C.; Lin, S.-C.; Liao, Y.-F.; Chen, H. M., Quantitatively Unraveling the Redox Shuttle of Spontaneous Oxidation/Electroreduction of CuOx on Silver Nanowires Using in Situ X-ray Absorption Spectroscopy. ACS Cent. Sci. 2019, 5 (12), 1998-2009. 52.Chen, Y.; Li, C. W.; Kanan, M. W., Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 2012, 134 (49), 19969-72. 53.Dinh, C.-T.; García de Arquer, F. P.; Sinton, D.; Sargent, E. H., High Rate, Selective, and Stable Electroreduction of CO2 to CO in Basic and Neutral Media. ACS Energy Lett. 2018, 3 (11), 2835-2840. 54.Sun, K.; Wu, L.; Qin, W.; Zhou, J.; Hu, Y.; Jiang, Z.; Shen, B.; Wang, Z., Enhanced electrochemical reduction of CO2 to CO on Ag electrocatalysts with increased unoccupied density of states. J. Mater. Chem. A 2016, 4 (32), 12616-12623. 55.Zhang, W.; Hu, Y.; Ma, L.; Zhu, G.; Wang, Y.; Xue, X.; Chen, R.; Yang, S.; Jin, Z., Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals. Adv. Sci. 2018, 5 (1), 1700275. 56.Rosen, J.; Hutchings, G. S.; Lu, Q.; Forest, R. V.; Moore, A.; Jiao, F., Electrodeposited Zn Dendrites with Enhanced CO Selectivity for Electrocatalytic CO2 Reduction. ACS Catal. 2015, 5 (8), 4586-4591. 57.Luo, W.; Zhang, J.; Li, M.; Züttel, A., Boosting CO Production in Electrocatalytic CO2 Reduction on Highly Porous Zn Catalysts. ACS Catal. 2019, 9 (5), 3783-3791. 58.Moreno-Garcia, P.; Schlegel, N.; Zanetti, A.; Cedeno Lopez, A.; Galvez-Vazquez, M. J.; Dutta, A.; Rahaman, M.; Broekmann, P., Selective Electrochemical Reduction of CO2 to CO on Zn-Based Foams Produced by Cu2+ and Template-Assisted Electrodeposition. ACS Appl. Mater. Interfaces 2018, 10 (37), 31355-31365. 59.Won da, H.; Shin, H.; Koh, J.; Chung, J.; Lee, H. S.; Kim, H.; Woo, S. I., Highly Efficient, Selective, and Stable CO2 Electroreduction on a Hexagonal Zn Catalyst. Angew. Chem. Int. Ed. 2016, 55 (32), 9297-300. 60.Jeon, H. S.; Sinev, I.; Scholten, F.; Divins, N. J.; Zegkinoglou, I.; Pielsticker, L.; Cuenya, B. R., Operando Evolution of the Structure and Oxidation State of Size-Controlled Zn Nanoparticles during CO2 Electroreduction. J. Am. Chem. Soc. 2018, 140 (30), 9383-9386. 61.Kwon, I. S.; Debela, T. T.; Kwak, I. H.; Seo, H. W.; Park, K.; Kim, D.; Yoo, S. J.; Kim, J.-G.; Park, J.; Kang, H. S., Selective electrochemical reduction of carbon dioxide to formic acid using indium–zinc bimetallic nanocrystals. J. Mater. Chem. A 2019, 7 (40), 22879-22883. 62.Nguyen, D. L. T.; Jee, M. S.; Won, D. H.; Jung, H.; Oh, H.-S.; Min, B. K.; Hwang, Y. J., Selective CO2 Reduction on Zinc Electrocatalyst: The Effect of Zinc Oxidation State Induced by Pretreatment Environment. ACS Sustain. Chem. Eng. 2017, 5 (12), 11377-11386. 63.Goldstein, J.; Newbury, D.; Joy, D.; Lyman, C.; Echlin, P.; Lifshin, E.; Sawyer, L.; Michael, J., Scanning Electron Microscopy and X-ray Microanalysis ISBN: 0306472929. 2003; Vol. XIX. 64.Zuo, J.-M.; Spence, J. C. H., Advanced Transmission Electron Microscopy, Imaging and Diffraction in Nanoscience. 2017. 65.Willmott, P., An Introduction to Synchrotron Radiation: Techniques and Applications. 2011, 341-352. 66.Watts, J.; Wolstenholme, J., An introduction to surface analysis by XPS and AES. An Introduction to Surface Analysis by XPS and AES, by John F. Watts, John Wolstenholme, pp. 224. ISBN 0-470-84713-1. Wiley-VCH , May 2003. 2003. 67.Smith, E.; Dent, G., Modern Raman Spectroscopy: A Practical Approach. 2005. 68.Bard, A. J.; Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, 2nd Edition. Wiley Textbooks: 2000. 69.Stauffer, E., Gas Chromatography and Gas Chromatography-Mass Spectrometry. 2008; pp 235-293. 70.Sparkman, O. D.; Penton, Z.; Kitson, F. G., Gas Chromatography and Mass Spectrometry: A Practical Guide. Gas Chromatography and Mass Spectrometry: A Practical Guide 2011. 71.Gross, J., Mass Spectrometry—A Textbook. 2011. 72.Rankin, N. J.; Preiss, D.; Welsh, P.; Burgess, K. E.; Nelson, S. M.; Lawlor, D. A.; Sattar, N., The emergence of proton nuclear magnetic resonance metabolomics in the cardiovascular arena as viewed from a clinical perspective. Atherosclerosis 2014, 237 (1), 287-300. 73.Mobilio, S.; Boscherini, F.; Meneghini, C., Synchrotron radiation: Basics, methods and applications. 2015; p 1-799. 74.Lin, F.; Liu, Y.; Yu, X.; Cheng, L.; Singer, A.; Shpyrko, O. G.; Xin, H. L.; Tamura, N.; Tian, C.; Weng, T. C.; Yang, X. Q.; Meng, Y. S.; Nordlund, D.; Yang, W.; Doeff, M. M., Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries. Chem. Rev. 2017, 117 (21), 13123-13186. 75.Bokhoven, J.; Lamberti, C., X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications. 2015; p 1-845. 76.Grunwaldt, J. D.; Baiker, A., In situ spectroscopic investigation of heterogeneous catalysts and reaction media at high pressure. Phys. Chem. Chem. Phys. 2005, 7 (20), 3526-39. 77.Gao, W.; Li, Z., Developments in high-temperature corrosion and protection of materials. 2008; p 1-658. 78.El Mel, A. A.; Nakamura, R.; Bittencourt, C., The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes. Beilstein J Nanotechnol 2015, 6, 1348-61. 79.Shaporev, A. S.; Ivanov, V. K.; Baranchikov, A. E.; Polezhaeva, O. S.; Tret’yakov, Y. D., ZnO formation under hydrothermal conditions from zinc hydroxide compounds with various chemical histories. Russ. J. of Inorg. Chem. 2007, 52 (12), 1811-1816. 80.Wang, M.; Zhou, Y.; Zhang, Y.; Hahn, S. H.; Kim, E. J., From Zn(OH)2 to ZnO: a study on the mechanism of phase transformation. CrystEngComm 2011, 13 (20), 6024. 81.Luo, Y. R., Comprehensive Handbook of Chemical Bond Energies. CRC Press: 2007. 82.Yoo, J. S.; Christensen, R.; Vegge, T.; Norskov, J. K.; Studt, F., Theoretical Insight into the Trends that Guide the Electrochemical Reduction of Carbon Dioxide to Formic Acid. ChemSusChem 2016, 9 (4), 358-63.
|