跳到主要內容

臺灣博碩士論文加值系統

(100.24.118.144) 您好!臺灣時間:2022/12/06 05:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳姵吟
研究生(外文):Pei-Yin Chen
論文名稱:亮度對比於深度知覺判斷之角色
論文名稱(外文):Role of Luminance Contrast in Depth Perception
指導教授:陳建中陳建中引用關係
指導教授(外文):Chien-Chung Chen
口試委員:克里斯多福.泰勒黃榮村櫻井正二郎吳建德吳佳瑾黃從仁
口試委員(外文):Christopher W. TylerJong-Tsun HuangShojiro SakuraiChien-Te WuChia-Ching WuTsung-Ren Huagn
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:心理學研究所
學門:社會及行為科學學門
學類:心理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:199
中文關鍵詞:立體視覺雙眼視差亮度對比增益機制雙眼像差平均機制心理物理學功能性磁振造影
外文關鍵詞:stereopsisbinocular disparitycontrast gain controldisparity averagingpsychophysicsfMRI
DOI:10.6342/NTU201904254
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於人類雙眼位於臉上不同的位置,因此觀看的景象投射到兩眼視網膜上會產生像差,視覺系統會根據此雙眼像差形成立體深度知覺。由於雙眼像差的大小由物體與觀看者間的物理距離所決定,因此一般認為由雙眼像差產生的深度知覺不會隨著影像亮度對比而改變。然而本研究顯示影像亮度對比會影響由雙眼像差產生的深度知覺,且此研究結果無法被現有的雙眼像差能量模型所解釋,因此我們提出一個雙眼像差處理模型以解釋影像亮度對比對由雙眼像差產生之深度知覺的影響,此模型包含亮度對比增益機制及雙眼像差平均機制。本研究以四個心理物理學實驗檢驗亮度對比於此模型各階段如何影響深度知覺,並透過一個功能性磁振造影實驗探討此亮度對比對深度知覺之影響發生在視覺處理的哪階段。首先,我們操弄隨機點陣立體視覺圖形的亮度對比確認影像亮度對比的改變如何影響深度知覺,研究結果顯示深度知覺與影像亮度對呈非線性關係,表示雙眼像差的處理過程包含亮度對比增益機制。此外,當操弄影像的立體表面結構時,研究結果亦顯示立體表面結構的視差梯度及波紋周期數皆會影響深度知覺。我們更進一步分別操弄左右兩眼所見之影像亮度對比相同與否,來探討雙眼影像亮度對比如何整合並影響立體知覺。研究結果顯示深度知覺會隨雙眼間亮度對比差異的增加而下降。最後,我們同時操弄帶通雜訊之立體視覺圖形的亮度對比及空間頻率,了解立體知覺是否會隨影像空間頻率而改變。研究結果顯示帶通雜訊之立體視覺圖形的深度知覺雖然會隨影像亮度對比變化,但不受影像空間頻率影響。以上研究結果皆可被我們提出之雙眼像差處理模型中的亮度對比增益機制及雙眼像差平均機制所解釋,說明亮度對比在深度知覺運算上,扮演重要的角色。除此之外,功能性磁振造影的研究結果亦顯示,腦區V3A及KO可能是參與亮度對比對深度知覺之影響的腦區。
In stereo perception, the visual system combines a pair of horizontally shifted images in the two eyes to generate a 3D percept. The difference in horizontal location of the images seen by the left and right eyes is called binocular disparity and is defined only by the geometry of a scene. Thus, the perceived depth from disparity is generally considered to be independent from luminance contrast. However, luminance contrast does affect stereo perception. Such an effect cannot be explained by existing disparity energy models, because they predict no effect of luminance contrast on depth perception. We proposed a model that involves a contrast gain control followed by disparity averaging to account for the luminance contrast effect on perceived depth. In this study, we conducted four psychophysical experiments to examine each part of the working model we proposed in order to understand the role of luminance contrast in disparity processing, and one fMRI experiment to explore the related brain areas to the luminance contrast effect on perceived depth from disparity. We first used random-dot stereograms as stimuli to test the effect of luminance contrast on perceived depth. Our results suggested a profound nonlinear luminance contrast effect on perceived depth from disparity. We then varied the depth modulation frequency to investigate the effect of 3D surface configuration on perceived depth. Our results showed that both the disparity gradient and the number of modulation cycles had an effect on perceived depth from disparity. We further manipulated the interocular luminance contrast difference in the random-dot stereogram to explore the binocular summation in depth perception. Our results demonstrated that the perceived depth was determined by both luminance contrast level and interocular luminance contrast difference. Finally, we changed the spatial frequency of the bandpass noise patterns to test whether the spatial frequency of the test images affected the perceived depth. Our results showed that the perceived depth did not vary with the image spatial frequency. All these results can be accounted for by the contrast gain control mechanism and disparity averaging operation in our model. Moreover, our neuroimaging evidence showed that such luminance contrast effects on perceived depth might relate to the disparity specific luminance contrast activations in cortical area V3A and KO. In sum, we demonstrated that luminance contrast plays an important role in disparity processing.
Chapter 1: Introduction 1
1.1 Detecting binocular disparity 2
1.2 Effect of luminance contrast on depth perception 5
1.3 Insufficient of current model for disparity processing 8
1.4 The working model 10
1.5 Overview of this thesis 13
Chapter 2: The effect of luminance contrast on perceived depth from disparity 17
2.1 Methods 20
2.2 Results 24
2.3 Discussion 30
2.4 Conclusion 37
Chapter 3: The effect of disparity gradient and surface corrugation on perceived depth from disparity 39
3.1 Methods 41
3.2 Results 44
3.3 Discussion 48
3.4 Conclusion 58
Chapter 4: Luminance-disparity interaction in human visual cortices 61
4.1 Methods 64
4.2 Results 72
4.3 Discussion 83
4.4 Conclusion 86
Chapter 5: Binocular contrast summation in depth perception 87
5.1 Methods 90
5.2 Results 92
5.3 Discussion 95
5.4 Conclusion 102
Chapter 6: The effect of spatial frequency on perceived depth from disparity 105
6.1 Methods 108
6.2 Results 111
6.3 Discussion 120
6.4 Conclusion 127
Chapter 7: General discussion 129
7.1 Model for disparity processing 132
7.2 Contributions and limitations 135
Reference 141
Appendices 151
Appendix 1: Luminance contrast threshold 151
Appendix 2: The individual data for Chapter 3 155
Appendix 3: The individual ROIs for Chapter 4 159
Appendix 4: The individual data for Chapter 4 169
Appendix 5: The individual data for Chapter 5 175
Appendix 6: The result of linear conditions for Chapter 5 181
Appendix 7: The individual data for Chapter 6 185
Appendix 8: The results of grating conditions for Chapter 6 193
Curriculum Vitae 197
Adams, D. L., & Zeki, S. (2001). Functional organization of macaque V3 for stereoscopic depth. Journal of Neurophysiology, 86, 2195-2203.
Albrecht, D. G., & Geisler, W. S. (1991). Motion selectivity and the contrast-response function of simple cells in the visual cortex. Visual Neuroscience, 7, 531-546.
Albrecht, D. G., & Hamilton, D. B. (1982). Striate cortex of monkey and cat: Contrast response function. Journal of Neurophysiology, 48, 217-237. doi:10.1152/jn.1982.48.1.217
Anzai, A., Ohzawa, I., & Freeman, R. D. (1999). Neural mechanisms for encoding binocular disparity: Receptive field position versus phase. Journal of Neurophysiology, 82, 874-890. doi:10.1152/jn.1999.82.2.874
Backus, B. T., Fleet, D. J., Parker, A. J., & Heeger, D. J. (2001). Human cortical activity correlates with stereoscopic depth perception. Journal of Neurophysiology, 86, 2054-2068.
Baker, D. H., Meese, T. S., & Georgeson, M. A. (2007). Binocular interaction: Contrast matching and contrast discrimination are predicted by the same model. Spatial Vision, 20, 397-413. doi:10.1163/156856807781503622
Blakemore, C. (1970). The range and scope of binocular depth discrimination in man. The Journal of Physiology, 211, 599-622. doi:10.1113/jphysiol.1970.sp009296
Bradshaw, M. F., & Rogers, B. J. (1999). Sensitivity to horizontal and vertical corrugations defined by binocular disparity. Vision Research, 39, 3049-3056. doi:10.1016/s0042-6989(99)00015-2
Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433-436.
Bulthoff, H., Fahle, M., & Wegmann, M. (1991). Perceived depth scales with disparity gradient. Perception, 20(2), 145-153. doi:10.1068/p200145
Burt, P., & Julesz, B. (1980). A disparity gradient limit for binocular fusion. Science, 208, 615-617.
Carney, T., Tyler, C. W., Watson, A. B., Makous, W., Beutter, B., Chen, C.-C., . . . Klein, S. A. (2000). Modelfest: Year one results and plans for future years. Paper presented at the Human Vision and Electronic Imaging V, Bellingham, WA.
Chen, C. C., & Tyler, C. W. (2001). Lateral sensitivity modulation explains the flanker effect in contrast discrimination. Proceedings of the Royal Society B: Biological Sciences, 268, 509-516. doi:DOI 10.1098/rspb.2000.1387
Chen, C. C., & Tyler, C. W. (2015). Shading beats binocular disparity in depth from luminance gradients: Evidence against a maximum likelihood principle for cue combination. PLoS One, 10(8), e0132658. doi:10.1371/journal.pone.0132658
Chen, P. Y., Chen, C. C., & Tyler, C. W. (2016). The perceived depth from disparity as function of luminance contrast. Journal of Vision, 16(11):20, 1-9. doi:10.1167/16.11.20
Clark, J. J., & Yuille, A. L. (1990). Data fusion for sensory information processing systems. Boston, MA: Kluwer Academic Publishers.
Cormack, L. K., Stevenson, S. B., & Landers, D. D. (1997). Interactions of spatial frequency and unequal monocular contrasts in stereopsis. Perception, 26, 1121-1136. doi:10.1068/p261121
Cormack, L. K., Stevenson, S. B., & Schor, C. M. (1991). Interocular correlation, luminance contrast and cyclopean processing. Vision research, 31, 2195-2207.
Cormack, R., & Fox, R. (1985). The computation of retinal disparity. Perception and Psychophysics, 37(2), 176-178.
Cumming, B. G., & Parker, A. J. (1999). Binocular neurons in V1 of awake monkeys are selective for absolute, not relative, disparity. Journal of Neuroscience, 19, 5602-5618.
Cumming, B. G., & Parker, A. J. (2000). Local disparity not perceived depth is signaled by binocular neurons in cortical area V1 of the Macaque. Journal of Neuroscience, 20, 4758-4767.
Da Vinci, L. (1802). Treatise on painting. London, UK: J. Taylor.
Ding, J., Klein, S. A., & Levi, D. M. (2013a). Binocular combination of phase and contrast explained by a gain-control and gain-enhancement model. Journal of Vision, 13(2):13, 1-37. doi:10.1167/13.2.13
Ding, J., Klein, S. A., & Levi, D. M. (2013b). Binocular combination in abnormal binocular vision. Journal of Vision, 13(2):14, 1-31. doi:10.1167/13.2.14
Ding, J., & Sperling, G. (2007). Binocular combination: Measurements and a model. In L. R. Harris & M. R. M. Jenkin (Eds.), Computational vision in neural and machine systems (pp. 257-305). Cambridge, UK: Cambridge University Press.
Dupont, P., De Bruyn, B., Vandenberghe, R., Rosier, A. M., Michiels, J., Marchal, G., . . . Orban, G. A. (1997). The kinetic occipital region in human visual cortex. Cerebral Cortex, 7(3), 283-292. doi:10.1093/cercor/7.3.283
Engel, S. A., Glover, G. H., & Wandell, B. A. (1997). Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cerebral Cortex, 7(2), 181-192.
Engel, S. A., Rumelhart, D. E., Wandell, B. A., Lee, A. T., Glover, G. H., Chichilnisky, E. J., & Shadlen, M. N. (1994). fMRI of human visual cortex. Nature, 369, 525. doi:10.1038/369525a0
Farne, M. (1977). Brightness as an indicator to distance: Relative brightness per se or contrast with the background? Perception, 6, 287-293. doi:10.1068/p060287
Fleet, D. J., Wagner, H., & Heeger, D. J. (1996). Neural encoding of binocular disparity: Energy models, position shifts and phase shifts. Vision Research, 36, 1839-1857.
Foley, J. M. (1994). Human luminance pattern-vision mechanisms: Masking experiments require a new model. Journal of the Optical Society of America A, 11, 1710-1719.
Freeman, R. D., & Ohzawa, I. (1990). On the neurophysiological organization of binocular vision. Vision Research, 30, 1661-1676.
Frisby, J. P., & Stone, J. V. (2010). Seeing: The computational approach to biological vision. Cambridge, MA: The MIT Press.
Fry, G. A., Bridgman, C. S., & Ellerbrock, V. J. (1949). The effects of atmospheric scattering on binocular depth perception. American Journal of Optometry and Archives of American Academy of Optometry, 26(1), 9-15.
Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics (Vol. 1). New York, NY: Wiley.
Halpern, D. L., & Blake, R. R. (1988). How contrast affects stereoacuity. Perception, 17, 483-495. doi:10.1068/p170483
Heckmann, T., & Schor, C. M. (1989). Is edge information for stereoacuity spatially channeled? Vision Research, 29, 593-607.
Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9(2), 181-197.
Horn, B., & Brooks, M. J. (1989). Shape from shading. Cambridge, MA: MIT Press.
Horn, B. K. (1975). Obtaining shape from shading information The Psychology of Computer Vision (pp. 115-155). New York, NY: McGraw-Hill.
Hubel, D. H., & Livingstone, M. S. (1987). Segregation of form, color, and stereopsis in primate area 18. Journal of Neuroscience, 7, 3378-3415.
Julesz, B. (1971). Foundations of cyclopean perception. Chicago, IL: University of Chicago Press.
Kane, D., Guan, P., & Banks, M. S. (2014). The limits of human stereopsis in space and time. Journal of Neuroscience, 34, 1397-1408. doi:10.1523/JNEUROSCI.1652-13.2014
Kato, D., Baba, M., Sasaki, K. S., & Ohzawa, I. (2016). Effects of generalized pooling on binocular disparity selectivity of neurons in the early visual cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20150266. doi:10.1098/rstb.2015.0266
Kleiner, M., Brainard, D., & Pelli, D. (2007). What''s new in Psychtoolbox-3? Perception, 36, 14.
Kontsevich, L. L., & Tyler, C. W. (1994). Analysis of stereothresholds for stimuli below 2.5 c/deg. Vision Research, 34, 2317-2329.
Kontsevich, L. L., & Tyler, C. W. (1999). Bayesian adaptive estimation of psychometric slope and threshold. Vision Research, 39, 2729-2737.
Legge, G. E. (1984). Binocular contrast summation--II. Quadratic summation. Vision Research, 24, 385-394.
Legge, G. E., & Gu, Y. C. (1989). Stereopsis and contrast. Vision Research, 29, 989-1004.
Lit, A., Finn, J. P., & Vicars, W. M. (1972). Effect of target-background luminance contrast on binocular depth discrimination at photopic levels of illumination. Vision Research, 12, 1241-1251.
Marr, D. (1982). Vision : A computational investigation into the human representation and processing of visual information. San Francisco, CA: W.H. Freeman.
Marr, D., & Poggio, T. (1976). Cooperative computation of stereo disparity. Science, 194, 283-287.
Meese, T. S., Georgeson, M. A., & Baker, D. H. (2006). Binocular contrast vision at and above threshold. Journal of Vision, 6, 1224-1243. doi:10.1167/6.11.7
Nienborg, H., Bridge, H., Parker, A. J., & Cumming, B. G. (2004). Receptive field size in V1 neurons limits acuity for perceiving disparity modulation. Journal of Neuroscience, 24, 2065-2076. doi:10.1523/JNEUROSCI.3887-03.2004
Ogle, K. N., & Weil, M. P. (1958). Stereoscopic vision and the duration of the stimulus. A.M.A. Archives of Ophthalmology, 59(1), 4-17.
Ohzawa, I. (1998). Mechanisms of stereoscopic vision: The disparity energy model. Current Opinion in Neurobiology, 8, 509-515.
Ohzawa, I., DeAngelis, G. C., & Freeman, R. D. (1990). Stereoscopic depth discrimination in the visual cortex: Neurons ideally suited as disparity detectors. Science, 249, 1037-1041.
Ohzawa, I., & Freeman, R. D. (1986). The binocular organization of complex cells in the cat''s visual cortex. Journal of Neurophysiology, 56, 243-259. doi:10.1152/jn.1986.56.1.243
Ohzawa, I., & Freeman, R. D. (1986). The binocular organization of simple cells in the cat''s visual cortex. Journal of Neurophysiology, 56, 221-242. doi:10.1152/jn.1986.56.1.221
Ohzawa, I., Sclar, G., & Freeman, R. D. (1985). Contrast gain control in the cat''s visual system. Journal of Neurophysiology, 54, 651-667. doi:10.1152/jn.1985.54.3.651
Orban, G. A., Van Essen, D., & Vanduffel, W. (2004). Comparative mapping of higher visual areas in monkeys and humans. Trends in Cognitive Sciences, 8, 315-324. doi:10.1016/j.tics.2004.05.009
Parker, A. J., & Yang, Y. (1989). Spatial properties of disparity pooling in human stereo vision. Vision Research, 29, 1525-1538.
Poggio, G. F., Motter, B. C., Squatrito, S., & Trotter, Y. (1985). Responses of neurons in visual cortex (V1 and V2) of the alert macaque to dynamic random-dot stereograms. Vision Research, 25, 397-406.
Poggio, G. F., & Poggio, T. (1984). The analysis of stereopsis. Annual Review of Neuroscience, 7, 379-412. doi:10.1146/annurev.ne.07.030184.002115
Pollard, S. B., Mayhew, J. E., & Frisby, J. P. (1985). PMF: A stereo correspondence algorithm using a disparity gradient limit. Perception, 14, 449-470. doi:10.1068/p140449
Press, W. A., Brewer, A. A., Dougherty, R. F., Wade, A. R., & Wandell, B. A. (2001). Visual areas and spatial summation in human visual cortex. Vision Research, 41, 1321-1332.
Prince, S. J., Cumming, B. G., & Parker, A. J. (2002). Range and mechanism of encoding of horizontal disparity in macaque V1. Journal of Neurophysiology, 87, 209-221. doi:10.1152/jn.00466.2000
Qian, N. (1997). Binocular disparity and the perception of depth. Neuron, 18, 359-368.
Qian, N., & Zhu, Y. (1997). Physiological computation of binocular disparity. Vision Research, 37, 1811-1827.
Read, J. C., Parker, A. J., & Cumming, B. G. (2002). A simple model accounts for the response of disparity-tuned V1 neurons to anticorrelated images. Visual Neuroscience, 19, 735-753.
Richards, W. (1971). Anomalous stereoscopic depth perception. Journal of the Optical Society of America, 61, 410-414.
Richards, W., & Kaye, M. G. (1974). Local versus global stereopsis: Two mechanisms? Vision Research, 14, 1345-1347.
Rohaly, A. M., & Wilson, H. R. (1994). Disparity averaging across spatial scales. Vision Research, 34, 1315-1325.
Rohaly, A. M., & Wilson, H. R. (1999). The effects of contrast on perceived depth and depth discrimination. Vision Research, 39, 9-18.
Sanger, T. D. (1988). Stereo disparity computation using Gabor filters. Biological Cybernetics, 59, 405-418.
Schor, C., & Heckmann, T. (1989). Interocular differences in contrast and spatial frequency: Effects on stereopsis and fusion. Vision Research, 29, 837-847.
Schor, C. M., & Howarth, P. A. (1986). Suprathreshold stereo-depth matches as a function of contrast and spatial frequency. Perception, 15, 249-258. doi:10.1068/p150249
Schor, C. M., & Wood, I. (1983). Disparity range for local stereopsis as a function of luminance spatial frequency. Vision Research, 23, 1649-1654.
Shioiri, S., Hatori, T., Yaguchi, H., & Kubo, S. (1994). Spatial frequency channels for stereoscopic depth. Optical Review, 1, 311-313.
Siderov, J., & Harwerth, R. S. (1995). Stereopsis, spatial frequency and retinal eccentricity. Vision Research, 35, 2329-2337.
Simons, K. (1984). Effects on stereopsis of monocular versus binocular degradation of image contrast. Investigative Ophthalmology and Visual Science, 25, 987-989.
Smallman, H. S., & MacLeod, D. I. (1994). Size-disparity correlation in stereopsis at contrast threshold. Journal of the Optical Society of America A, 11, 2169-2183.
Smith, E. L., 3rd, Chino, Y., Ni, J., & Cheng, H. (1997). Binocular combination of contrast signals by striate cortical neurons in the monkey. Journal of Neurophysiology, 78, 366-382. doi:10.1152/jn.1997.78.1.366
Stehling, M. K., Turner, R., & Mansfield, P. (1991). Echo-planar imaging: Magnetic resonance imaging in a fraction of a second. Science, 254, 43-50.
Sunaert, S., Van Hecke, P., Marchal, G., & Orban, G. A. (1999). Motion-responsive regions of the human brain. Experimental Brain Research, 127, 355-370.
Tanabe, S., & Cumming, B. G. (2008). Mechanisms underlying the transformation of disparity signals from V1 to V2 in the macaque. Journal of Neuroscience, 28, 11304-11314. doi:10.1523/JNEUROSCI.3477-08.2008
Teo, P. C., Sapiro, G., & Wandell, B. A. (1997). Creating connected representations of cortical gray matter for functional MRI visualization. IEEE Transactions on Medical Imaging, 16, 852-863. doi:10.1109/42.650881
Tootell, R. B., Hadjikhani, N. K., Vanduffel, W., Liu, A. K., Mendola, J. D., Sereno, M. I., & Dale, A. M. (1998). Functional analysis of primary visual cortex (V1) in humans. Proceedings of the National Academy of Sciences of the United States of America, 95, 811-817.
Tootell, R. B., Reppas, J. B., Kwong, K. K., Malach, R., Born, R. T., Brady, T. J., . . . Belliveau, J. W. (1995). Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. Journal of Neuroscience, 15, 3215-3230.
Truchard, A. M., Ohzawa, I., & Freeman, R. D. (2000). Contrast gain control in the visual cortex: Monocular versus binocular mechanisms. Journal of Neuroscience, 20, 3017-3032.
Tyler, C. W. (1973). Stereoscopic vision: Cortical limitations and a disparity scaling effect. Science, 181, 276-278.
Tyler, C. W. (1974). Depth perception in disparity gratings. Nature, 251, 140-142.
Tyler, C. W., Likova, L. T., Kontsevich, L. L., & Wade, A. R. (2006). The specificity of cortical region KO to depth structure. NeuroImage, 30, 228-238. doi:10.1016/j.neuroimage.2005.09.067
Van Oostende, S., Sunaert, S., Van Hecke, P., Marchal, G., & Orban, G. A. (1997). The kinetic occipital (KO) region in man: An fMRI study. Cerebral Cortex, 7, 690-701. doi:10.1093/cercor/7.7.690
Walker, L., Klein, S., & Carney, T. (1999). Modeling the Modelfest data: Decoupling probability summation. Paper presented at the Optical Society ofAmerica Annual Meeting, Santa Clara, CA.
Wandell, B. A., Chial, S., & Backus, B. T. (2000). Visualization and measurement of the cortical surface. Journal of Cognitive Neuroscience, 12, 739-752.
Watson, A. B., & Ahumada, A. J., Jr. (2005). A standard model for foveal detection of spatial contrast. Journal of Vision, 5, 717-740. doi:10.1167/5.9.6
Yang, Y., & Blake, R. (1991). Spatial frequency tuning of human stereopsis. Vision research, 31, 1177-1189.
Ziegler, L. R., Hess, R. F., & Kingdom, F. A. (2000). Global factors that determine the maximum disparity for seeing cyclopean surface shape. Vision Research, 40, 493-502.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top