跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/07 18:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳星佑
研究生(外文):Hsing-Yu Wu
論文名稱:PAK3在胰臟癌細胞中調控AKT-GSK3β-β-Catenin訊號傳遞之重要性
論文名稱(外文):Role of p21-Activated Kinase 3 in Regulating the Akt-GSK3β-β-Catenin Signaling Pathway in Pancreatic Cancer Cells
指導教授:吳世雄吳世雄引用關係
指導教授(外文):Shih-Hsiung Wu
口試委員:梁博煌陳佩燁花國鋒李岳倫朱伯振
口試委員(外文):Po-Huang LiangRita P.-Y. ChenKuo-Feng HuaAlan Yueh-Luen LeePo-Chen Chu
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生化科學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:英文
論文頁數:90
中文關鍵詞:p21活化激酶3Aktβ-catenin胰臟癌癌症幹細胞.
外文關鍵詞:p21-Activated kinase 3Aktβ-cateninpancreatic cancercancer stem cell.
DOI:10.6342/NTU202000273
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
p21活化激酶(PAKs)是一個受到Rho GTPases家族調控的激酶,參與了細胞骨架重排,細胞流動,細胞增生,凋亡和轉化等相關的生物功能。根據基因序列,結構同源性和活化的機制,將六個PAK分為兩大類,第一類為PAK 1-3(I組)和第二類為PAK 4-6(II組)。已經在很多不同類型的人類腫瘤中檢測到PAK的異常表達,其中包括乳癌,大腸癌,卵巢癌,膀胱癌,胰臟癌和腦癌,並且PAKs的過度表達與腫瘤的生成過程和抗藥性都有非常大的關聯。相較於其他的PAK成員,PAK3如何調節癌細胞功能中的作用機制仍然不清楚。在我們的研究中發現並證明,PAK3可以調控其中幾種胰腺癌的細胞株並且透過Akt激酶來調節和活化Akt-GSK3β-β-catenin此路徑的訊號傳遞。
特別地,當我們抑制PAK3或過度表達顯性抑制突變PAK3時會抑制Ser473-Akt和GSK3β的磷酸化,從而導致β-catenin的降解。相反地,當PAK3過表達則導致激活Akt的訊號傳遞並且造成β-catenin的表達增加。但是這些情況,在我們進行PAK1,PAK2或PAK4的沉默和/或過表達時並未觀察到相同的訊號傳遞變化,這些訊號傳遞讓我們聯想到PAK3可能是作為控制這些胰臟癌細胞惡性表型和胰臟癌幹細胞的關鍵調控因子。
因此,PAK3的減少可以有效地抑制了tumorsphere的形成,ALDH活性以及胰臟癌幹細胞表面生物標記的表達。此外,我們在AsPC-1細胞株中使用穩定的剔除並降低PAK3的表現來證明PAK3可以抑制體內腫瘤的形成和異種移植腫瘤生長的功能。最後,這些發現告訴我們PAK3可能可以作為治療胰臟癌時一個有潛力的標靶,這部分值得未來更進一步的研究。
The p21-actiated kinases (PAKs) are important effectors of the Rho GTPases and have been implicated in cytoskeletal remodeling, cell motility, cell proliferation, apoptosis, and transformation. Based on the sequence, structure homology, and activation mechanism, six PAKs are classified into two groups, PAK 1-3 (group I) and PAK 4-6 (group II). Aberrant expression of PAKs have been detected in many types of human tumors, including breast, colon, ovarian, bladder, pancreas, and brain, and the overexpression of PAKs is linked to tumor progression and drug resistance. Relative to several other p21-activated kinase (PAK) family members, the role of PAK3 in regulating cancer cell functions remains unclear. Our study obtained evidence that PAK3 regulates the Akt-GSK3β-β-catenin signaling by acting as Ser473-Akt kinase in several pancreatic cancer cell lines. Specifically, knockdown of PAK3 or overexpression of dominant-negative PAK3 inhibited the phosphorylation of Ser473-Akt and GSK3β, resulting in the proteasomal degradation of β-catenin. Conversely, overexpression of PAK3 led to activation of Akt signaling and increased β-catenin expression. These changes, however, were not noted with the silencing and/or overexpression of PAK1, PAK2, or PAK4, facts which underlie the impetus of PAK3 as a key effector in governing malignant phenotypes in these pancreatic cancer cells, including cancer stem cell (CSC) expansion. Accordingly, PAK3 depletion effectively suppresses tumorsphere formation, ALDH activity, and the expression of CSC surface markers. Moreover, we used a stable knockdown clone of AsPC-1 cells to demonstrate the in vivo efficacy of PAK3 inhibition in suppressing tumorigenesis and xenograft tumor growth. Together, these findings suggest the potential role of PAK3 as a target for pancreatic cancer therapy, something which warrants further investigations.
國立臺灣大學博士學位論文口試委員會審定書 i
謝誌 ii
中文摘要 iii
Abstract iv
Abbreviations vi
Contents viii
List of Figures xi
List of Tables xvi
Chapter 1. Introduction and Research Background 1
1.1 Pancreatic cancer 1
1.2 The structure and activation mechanism of PAKs 2
1.3 Biological functions of PAKs 4
1.4 PAK activation and amplification in cancer 5
1.5 PAKs regulation of cell signals in human Cancer 5
1.5.1 The Function of PAK1 in cancer 6
1.5.2 The Function of PAK2 in cancer 7
1.5.3 The Function of PAK3 in cancer 8
1.5.4 The Function of PAK4 in cancer 8
1.5.5 The Function of PAK5 in cancer 9
1.5.6 The Function of PAK6 in cancer 9
1.6 Wnt/β-catenin signaling in pancreatic cancer 10
1.7 Pancreatic cancer stem cells and PAKs’ role in stemness 11
1.8 Specific aims and experimental designs 12
Chapter 2. Materials and Methods 23
2.1 Cell culture and reagents 23
2.2 shRNA lentivirus preparation and isolation of stable cell lines 24
2.3 Co-immunoprecipitation (Co-IP) 24
2.4 Immunocytochemical analysis 24
2.5 Tumorsphere formation assays 25
2.6 Immunoblotting 25
2.7 RT -PCR analysis 25
2.8 Soft agar colony formation assays 26
2.9 Colony formation assays 26
2.10 Cell proliferation assays 26
2.11 Plasmid construction and transient transfection 26
2.12 ALDH staining 27
2.13 Migration assays 27
2.14 Animal models 27
2.15 Statistics analysis 28
Chapter 3. Results 29
3.1 Evidence that PAK3 is involved in the regulation of pancreatic cancer cell proliferation 29
3.2 Evidence that PAK3 regulates β-catenin protein stability in pancreatic cancer cells 30
3.3 PAK3 regulates β-catenin stability via Akt/GSK3β signaling 32
3.4 Evidence that PAK3 interacts with Akt and PAK3 facilitates Ser473-Akt phosphorylation 33
3.5 Role of PAK3 in regulating of CSC-like properties in pancreatic cancer cells 35
3.6 In vivo efficacy of PAK3 knockdown in suppressing tumorigenicity and xenograft tumor growth in nude mice 36
3.7 Correlation of PAK3 and Ser-473 Akt phosphorylation in the course of pancreatic tumorigenesis in transgenic KPfl/flC mice 37
3.8 Analysis of the PAK3 for Metastasis and drug resistance in Pancreatic Cancer cell lines 37
Chapter 4. Discussion 64
Chapter 5. Perspective 69
Chapter 6. References 71
Appendix 81
1.Siegel, R.L., K.D. Miller, and A. Jemal, Cancer Statistics, 2017. CA Cancer J Clin, 2017. 67(1): p. 7-30.
2.https://www.wcrf.org/. Word Cancer Research Fund International
3.https://www.mohw.gov.tw/mp-1.html.
4.Tseng, C.M., et al., Incidence and mortality of pancreatic cancer on a rapid rise in Taiwan, 1999-2012. Cancer Epidemiol, 2017. 49: p. 75-84.
5.Neoptolemos, J.P., et al., Therapeutic developments in pancreatic cancer: current and future perspectives. Nat Rev Gastroenterol Hepatol, 2018. 15(6): p. 333-348.
6.Oberstein, P.E. and K.P. Olive, Pancreatic cancer: why is it so hard to treat? Therap Adv Gastroenterol, 2013. 6(4): p. 321-37.
7.Oberstein, P.E., et al., Uptake and patterns of use of gemcitabine for metastatic pancreatic cancer: a population-based study. Cancer Invest, 2013. 31(5): p. 316-22.
8.Smith, B.D., et al., Future of cancer incidence in the United States: burdens upon an aging, changing nation. J Clin Oncol, 2009. 27(17): p. 2758-65.
9.Gupta, M.K., et al., Computational Biology: Toward Early Detection of Pancreatic Cancer. Crit Rev Oncog, 2019. 24(2): p. 191-198.
10.Stathis, A. and M.J. Moore, Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol, 2010. 7(3): p. 163-72.
11.Wormann, S.M. and H. Algul, Risk factors and therapeutic targets in pancreatic cancer. Front Oncol, 2013. 3: p. 282.
12.Durkin, C. and S.G. Krishna, Advanced diagnostics for pancreatic cysts: Confocal endomicroscopy and molecular analysis. World J Gastroenterol, 2019. 25(22): p. 2734-2742.
13.Cohen, P., The origins of protein phosphorylation. Nat Cell Biol, 2002. 4(5): p. E127-30.
14.Sharma, R., S.C. Schurer, and S.M. Muskal, High quality, small molecule-activity datasets for kinase research. F1000Res, 2016. 5.
15.Fleuren, E.D., et al., The kinome ''at large'' in cancer. Nat Rev Cancer, 2016. 16(2): p. 83-98.
16.Rane, C.K. and A. Minden, P21 activated kinase signaling in cancer. Semin Cancer Biol, 2019. 54: p. 40-49.
17.He, N.H.H., p21-activated kinase family: promising new drug targets. Research and Reports in Biochemistry, 2015. 2015:5 119–128: p. 119–128
18.Molli, P.R., et al., PAK signaling in oncogenesis. Oncogene, 2009. 28(28): p. 2545-55.
19.Wang, K., et al., p21-activated kinase signalling in pancreatic cancer: New insights into tumour biology and immune modulation. World J Gastroenterol, 2018. 24(33): p. 3709-3723.
20.Kumar, R., et al., Structure, biochemistry, and biology of PAK kinases. Gene, 2017. 605: p. 20-31.
21.Rane, C.K. and A. Minden, P21 activated kinases: structure, regulation, and functions. Small GTPases, 2014. 5.
22.Radu, M., et al., PAK signalling during the development and progression of cancer. Nat Rev Cancer, 2014. 14(1): p. 13-25.
23.Bokoch, G.M., Biology of the p21-activated kinases. Annu Rev Biochem, 2003. 72: p. 743-81.
24.Dummler, B., et al., Pak protein kinases and their role in cancer. Cancer Metastasis Rev, 2009. 28(1-2): p. 51-63.
25.Zhao, Z.S. and E. Manser, PAK family kinases: Physiological roles and regulation. Cell Logist, 2012. 2(2): p. 59-68.
26.Tse, E.Y. and Y.P. Ching, The role of p21-activated kinases in hepatocellular carcinoma metastasis. J Mol Signal, 2014. 9: p. 7.
27.Balasenthil, S., et al., p21-activated kinase-1 signaling mediates cyclin D1 expression in mammary epithelial and cancer cells. J Biol Chem, 2004. 279(2): p. 1422-8.
28.Higuchi, M., et al., Scaffolding function of PAK in the PDK1-Akt pathway. Nat Cell Biol, 2008. 10(11): p. 1356-64.
29.Staser, K., et al., A Pak1-PP2A-ERM signaling axis mediates F-actin rearrangement and degranulation in mast cells. Exp Hematol, 2013. 41(1): p. 56-66 e2.
30.Ye, D.Z., et al., p21-Activated kinase 1 (Pak1) phosphorylates BAD directly at serine 111 in vitro and indirectly through Raf-1 at serine 112. PLoS One, 2011. 6(11): p. e27637.
31.Chan, P.M. and E. Manser, PAKs in human disease. Prog Mol Biol Transl Sci, 2012. 106: p. 171-87.
32.Hoover, W.C., et al., Inhibition of p21 activated kinase (PAK) reduces airway responsiveness in vivo and in vitro in murine and human airways. PLoS One, 2012. 7(8): p. e42601.
33.Xie, Y., et al., PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol Med Rep, 2019. 19(2): p. 783-791.
34.Corti, F., et al., Targeting the PI3K/AKT/mTOR pathway in biliary tract cancers: A review of current evidences and future perspectives. Cancer Treat Rev, 2019. 72: p. 45-55.
35.Kumar, R., A.E. Gururaj, and C.J. Barnes, p21-activated kinases in cancer. Nat Rev Cancer, 2006. 6(6): p. 459-71.
36.Kumar, R. and D.Q. Li, PAKs in Human Cancer Progression: From Inception to Cancer Therapeutic to Future Oncobiology. Adv Cancer Res, 2016. 130: p. 137-209.
37.Callow, M.G., et al., Requirement for PAK4 in the anchorage-independent growth of human cancer cell lines. J Biol Chem, 2002. 277(1): p. 550-8.
38.Yang, F., et al., Androgen receptor specifically interacts with a novel p21-activated kinase, PAK6. J Biol Chem, 2001. 276(18): p. 15345-53.
39.Yeo, D., et al., The role of p21-activated kinases in pancreatic cancer. Pancreas, 2015. 44(3): p. 363-9.
40.Arias-Romero, L.E., et al., Pak1 kinase links ErbB2 to beta-catenin in transformation of breast epithelial cells. Cancer Res, 2013. 73(12): p. 3671-82.
41.Jagadeeshan, S., et al., Transcriptional regulation of fibronectin by p21-activated kinase-1 modulates pancreatic tumorigenesis. Oncogene, 2015. 34(4): p. 455-64.
42.Rudolph, J., et al., Inhibitors of p21-activated kinases (PAKs). J Med Chem, 2015. 58(1): p. 111-29.
43.Phee, H., et al., Pak2 is required for actin cytoskeleton remodeling, TCR signaling, and normal thymocyte development and maturation. Elife, 2014. 3: p. e02270.
44.Li, X., et al., Phosphorylation of caspase-7 by p21-activated protein kinase (PAK) 2 inhibits chemotherapeutic drug-induced apoptosis of breast cancer cell lines. J Biol Chem, 2011. 286(25): p. 22291-9.
45.Radu, M., et al., p21-Activated Kinase 2 Regulates Endothelial Development and Function through the Bmk1/Erk5 Pathway. Mol Cell Biol, 2015. 35(23): p. 3990-4005.
46.Crawford, J.J., et al., Structure-Guided Design of Group I Selective p21-Activated Kinase Inhibitors. J Med Chem, 2015. 58(12): p. 5121-36.
47.Gupta, A., et al., PAK2-c-Myc-PKM2 axis plays an essential role in head and neck oncogenesis via regulating Warburg effect. Cell Death Dis, 2018. 9(8): p. 825.
48.Piccand, J., et al., Pak3 promotes cell cycle exit and differentiation of beta-cells in the embryonic pancreas and is necessary to maintain glucose homeostasis in adult mice. Diabetes, 2014. 63(1): p. 203-15.
49.Combeau, G., et al., The p21-activated kinase PAK3 forms heterodimers with PAK1 in brain implementing trans-regulation of PAK3 activity. J Biol Chem, 2012. 287(36): p. 30084-96.
50.Kim, M.J., et al., Functional analysis of rare variants found in schizophrenia implicates a critical role for GIT1-PAK3 signaling in neuroplasticity. Mol Psychiatry, 2017. 22(3): p. 417-429.
51.Morrow, E.M., et al., Sequence analysis of P21-activated kinase 3 (PAK3) in chronic schizophrenia with cognitive impairment. Schizophr Res, 2008. 106(2-3): p. 265-7.
52.McPhie, D.L., et al., DNA synthesis and neuronal apoptosis caused by familial Alzheimer disease mutants of the amyloid precursor protein are mediated by the p21 activated kinase PAK3. J Neurosci, 2003. 23(17): p. 6914-27.
53.Hashimoto, S., et al., Interaction of paxillin with p21-activated Kinase (PAK). Association of paxillin alpha with the kinase-inactive and the Cdc42-activated forms of PAK3. J Biol Chem, 2001. 276(8): p. 6037-45.
54.Abo, A., et al., PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. EMBO J, 1998. 17(22): p. 6527-40.
55.Paolo, M., et al., Selumetinib in advanced non small cell lung cancer (NSCLC) harbouring KRAS mutation: endless clinical challenge to KRAS-mutant NSCLC. Rev Recent Clin Trials, 2013. 8(2): p. 93-100.
56.Thillai, K., et al., Deciphering the link between PI3K and PAK: An opportunity to target key pathways in pancreatic cancer? Oncotarget, 2017. 8(8): p. 14173-14191.
57.King, H., et al., PAK4 interacts with p85 alpha: implications for pancreatic cancer cell migration. Sci Rep, 2017. 7: p. 42575.
58.Dart, A.E. and C.M. Wells, P21-activated kinase 4--not just one of the PAK. Eur J Cell Biol, 2013. 92(4-5): p. 129-38.
59.Razzouk, S., M. Lieberherr, and G. Cournot, Rac-GTPase, osteoclast cytoskeleton and bone resorption. Eur J Cell Biol, 1999. 78(4): p. 249-55.
60.Dan, C., et al., Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. J Biol Chem, 2001. 276(34): p. 32115-21.
61.Ye, D.Z. and J. Field, PAK signaling in cancer. Cell Logist, 2012. 2(2): p. 105-116.
62.Li, C., et al., High-level expression of P21-Cdc/Rac-activated kinase 7 is closely related to metastatic potential and poor prognosis of colon carcinoma. Oncotarget, 2016. 7(29): p. 46042-46055.
63.He, S., et al., Over expression of p21-activated kinase 7 associates with lymph node metastasis in esophageal squamous cell cancers. Cancer Biomark, 2016. 16(2): p. 203-9.
64.Gu, J., et al., A role for p21-activated kinase 7 in the development of gastric cancer. FEBS J, 2013. 280(1): p. 46-55.
65.Aburatani, T., et al., High expression of P21-activated kinase 5 protein is associated with poor survival in gastric cancer. Oncol Lett, 2017. 14(1): p. 404-410.
66.Zhu, G., et al., PAK5-mediated E47 phosphorylation promotes epithelial-mesenchymal transition and metastasis of colon cancer. Oncogene, 2016. 35(15): p. 1943-54.
67.Cotteret, S., et al., p21-Activated kinase 5 (Pak5) localizes to mitochondria and inhibits apoptosis by phosphorylating BAD. Mol Cell Biol, 2003. 23(16): p. 5526-39.
68.Li, D., et al., PAK5 Induces EMT and Promotes Cell Migration and Invasion by Activating the PI3K/AKT Pathway in Ovarian Cancer. Anal Cell Pathol (Amst), 2018. 2018: p. 8073124.
69.Morse, E.M., et al., PAK6 targets to cell-cell adhesions through its N-terminus in a Cdc42-dependent manner to drive epithelial colony escape. J Cell Sci, 2016. 129(2): p. 380-93.
70.Shao, Y.G., K. Ning, and F. Li, Group II p21-activated kinases as therapeutic targets in gastrointestinal cancer. World J Gastroenterol, 2016. 22(3): p. 1224-35.
71.Tian, X., et al., MicroRNA-429 inhibits the migration and invasion of colon cancer cells by targeting PAK6/cofilin signaling. Oncol Rep, 2015. 34(2): p. 707-14.
72.Chen, H., et al., Expression and prognostic significance of p21-activated kinase 6 in hepatocellular carcinoma. J Surg Res, 2014. 189(1): p. 81-8.
73.Schrantz, N., et al., Mechanism of p21-activated kinase 6-mediated inhibition of androgen receptor signaling. J Biol Chem, 2004. 279(3): p. 1922-31.
74.Liu, T., et al., p21-Activated kinase 6 (PAK6) inhibits prostate cancer growth via phosphorylation of androgen receptor and tumorigenic E3 ligase murine double minute-2 (Mdm2). J Biol Chem, 2013. 288(5): p. 3359-69.
75.Fram, S., et al., A PAK6-IQGAP1 complex promotes disassembly of cell-cell adhesions. Cell Mol Life Sci, 2014. 71(14): p. 2759-73.
76.Chen, J., et al., PAK6 increase chemoresistance and is a prognostic marker for stage II and III colon cancer patients undergoing 5-FU based chemotherapy. Oncotarget, 2015. 6(1): p. 355-67.
77.Cai, S., et al., Downregulation of microRNA-23a suppresses prostate cancer metastasis by targeting the PAK6-LIMK1 signaling pathway. Oncotarget, 2015. 6(6): p. 3904-17.
78.Nakamoto, M., et al., Prognostic significance of WNT signaling in pancreatic ductal adenocarcinoma. Virchows Arch, 2014. 465(4): p. 401-8.
79.Polakis, P., The many ways of Wnt in cancer. Curr Opin Genet Dev, 2007. 17(1): p. 45-51.
80.Zhu, G., et al., A Rac1/PAK1 cascade controls beta-catenin activation in colon cancer cells. Oncogene, 2012. 31(8): p. 1001-12.
81.Sarkar, S., et al., Coupling G2/M arrest to the Wnt/beta-catenin pathway restrains pancreatic adenocarcinoma. Endocr Relat Cancer, 2014. 21(1): p. 113-25.
82.MacDonald, B.T., K. Tamai, and X. He, Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell, 2009. 17(1): p. 9-26.
83.Qiao, Q., et al., Reduced membranous and ectopic cytoplasmic expression of beta -catenin correlate with cyclin D1 overexpression and poor prognosis in pancreatic cancer. Int J Cancer, 2001. 95(3): p. 194-7.
84.Hagen, T., et al., Signalling activity of beta-catenin targeted to different subcellular compartments. Biochem J, 2004. 379(Pt 2): p. 471-7.
85.Manegold, P., et al., Differentiation Therapy Targeting the beta-Catenin/CBP Interaction in Pancreatic Cancer. Cancers (Basel), 2018. 10(4).
86.Al-Aynati, M.M., et al., Epithelial-cadherin and beta-catenin expression changes in pancreatic intraepithelial neoplasia. Clin Cancer Res, 2004. 10(4): p. 1235-40.
87.Fang, D., et al., Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem, 2007. 282(15): p. 11221-9.
88.Lee, M.Y., R.R. Giraddi, and W.L. Tam, Cancer Stem Cells: Concepts, Challenges, and Opportunities for Cancer Therapy. Methods Mol Biol, 2019. 2005: p. 43-66.
89.O''Connor, M.L., et al., Cancer stem cells: A contentious hypothesis now moving forward. Cancer Lett, 2014. 344(2): p. 180-7.
90.Venkatesh, V., et al., Targeting Notch signalling pathway of cancer stem cells. Stem Cell Investig, 2018. 5: p. 5.
91.Bao, S., et al., Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006. 444(7120): p. 756-60.
92.Zhang, S., et al., Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res, 2008. 68(11): p. 4311-20.
93.Yi, J.M., et al., Abnormal DNA methylation of CD133 in colorectal and glioblastoma tumors. Cancer Res, 2008. 68(19): p. 8094-103.
94.Li, C., C.J. Lee, and D.M. Simeone, Identification of human pancreatic cancer stem cells. Methods Mol Biol, 2009. 568: p. 161-73.
95.Hermann, P.C., et al., Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 2007. 1(3): p. 313-23.
96.Barbato, L., et al., Cancer Stem Cells and Targeting Strategies. Cells, 2019. 8(8).
97.Turdo, A., et al., Meeting the Challenge of Targeting Cancer Stem Cells. Front Cell Dev Biol, 2019. 7: p. 16.
98.Tanase, C.P., et al., Cancer stem cells: involvement in pancreatic cancer pathogenesis and perspectives on cancer therapeutics. World J Gastroenterol, 2014. 20(31): p. 10790-801.
99.Lai, S.W., et al., The therapeutic targeting of the FGFR1/Src/NF-kappaB signaling axis inhibits pancreatic ductal adenocarcinoma stemness and oncogenicity. Clin Exp Metastasis, 2018. 35(7): p. 663-677.
100.Castellanos, J.A., N.B. Merchant, and N.S. Nagathihalli, Emerging targets in pancreatic cancer: epithelial-mesenchymal transition and cancer stem cells. Onco Targets Ther, 2013. 6: p. 1261-7.
101.Shamloo, B. and S. Usluer, p21 in Cancer Research. Cancers (Basel), 2019. 11(8).
102.Li, W., et al., Curcumin inhibits superoxide dismutase-induced epithelial-to-mesenchymal transition via the PI3K/Akt/NF-kappaB pathway in pancreatic cancer cells. Int J Oncol, 2018.
103.Chen, W., et al., Downregulation of lncRNA OGFRP1 inhibits hepatocellular carcinoma progression by AKT/mTOR and Wnt/beta-catenin signaling pathways. Cancer Manag Res, 2018. 10: p. 1817-1826.
104.Lee, S.H., et al., Wnt/beta-catenin signalling maintains self-renewal and tumourigenicity of head and neck squamous cell carcinoma stem-like cells by activating Oct4. J Pathol, 2014. 234(1): p. 99-107.
105.Wu, D.W., et al., PAK1 Is a Novel Therapeutic Target in Tyrosine Kinase Inhibitor-Resistant Lung Adenocarcinoma Activated by the PI3K/AKT Signaling Regardless of EGFR Mutation. Clin Cancer Res, 2016. 22(21): p. 5370-5382.
106.Huynh, N., et al., p-21-Activated kinase 1 mediates gastrin-stimulated proliferation in the colorectal mucosa via multiple signaling pathways. Am J Physiol Gastrointest Liver Physiol, 2013. 304(6): p. G561-7.
107.He, L.F., et al., Activated-PAK4 predicts worse prognosis in breast cancer and promotes tumorigenesis through activation of PI3K/AKT signaling. Oncotarget, 2017. 8(11): p. 17573-17585.
108.Takebe, N., et al., Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol, 2011. 8(2): p. 97-106.
109.Wang, H., et al., Hsp90ab1 stabilizes LRP5 to promote epithelial-mesenchymal transition via activating of AKT and Wnt/beta-catenin signaling pathways in gastric cancer progression. Oncogene, 2019. 38(9): p. 1489-1507.
110.Tyagi, N., et al., p-21 activated kinase 4 promotes proliferation and survival of pancreatic cancer cells through AKT- and ERK-dependent activation of NF-kappaB pathway. Oncotarget, 2014. 5(18): p. 8778-89.
111.Kopantzev, E.P., et al., Activation of IGF/IGF-IR signaling pathway fails to induce epithelial-mesenchymal transition in pancreatic cancer cells. Pancreatology, 2019. 19(2): p. 390-396.
112.Fang, D. and H. Kitamura, Cancer stem cells and epithelial-mesenchymal transition in urothelial carcinoma: Possible pathways and potential therapeutic approaches. Int J Urol, 2018. 25(1): p. 7-17.
113.Rivas, S., et al., Role of Akt Isoforms Controlling Cancer Stem Cell Survival, Phenotype and Self-Renewal. Biomedicines, 2018. 6(1).
114.Barzegar Behrooz, A., A. Syahir, and S. Ahmad, CD133: beyond a cancer stem cell biomarker. J Drug Target, 2019. 27(3): p. 257-269.
115.Singh, S., et al., ALDH1B1 Is Crucial for Colon Tumorigenesis by Modulating Wnt/beta-Catenin, Notch and PI3K/Akt Signaling Pathways. PLoS One, 2015. 10(5): p. e0121648.
116.Islam, F., et al., Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment. Exp Cell Res, 2015. 335(1): p. 135-47.
117.Wang, X., et al., Macrophages induce AKT/beta-catenin-dependent Lgr5(+) stem cell activation and hair follicle regeneration through TNF. Nat Commun, 2017. 8: p. 14091.
118.Yakisich, J.S., et al., Formation of Tumorspheres with Increased Stemness without External Mitogens in a Lung Cancer Model. Stem Cells Int, 2016. 2016: p. 5603135.
119.Bardeesy, N., et al., Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci U S A, 2006. 103(15): p. 5947-52.
120.Schutte, U., et al., Recent developments of transgenic and xenograft mouse models of pancreatic cancer for translational research. Expert Opin Drug Discov, 2011. 6(1): p. 33-48.
121.Ahn, K., et al., Synergistic Anti-Cancer Effects of AKT and SRC Inhibition in Human Pancreatic Cancer Cells. Yonsei Med J, 2018. 59(6): p. 727-735.
122.Zhang, H., et al., LAMB3 mediates apoptotic, proliferative, invasive, and metastatic behaviors in pancreatic cancer by regulating the PI3K/Akt signaling pathway. Cell Death Dis, 2019. 10(3): p. 230.
123.Ichimaru, Y., et al., Indirubin 3''-Oxime Inhibits Migration, Invasion, and Metastasis InVivo in Mice Bearing Spontaneously Occurring Pancreatic Cancer via Blocking the RAF/ERK, AKT, and SAPK/JNK Pathways. Transl Oncol, 2019. 12(12): p. 1574-1582.
124.Conroy, T. and E. Mitry, [Chemotherapy of metastatic pancreatic adenocarcinoma: challenges and encouraging results]. Bull Cancer, 2011. 98(12): p. 1439-46.
125.Conroy, T., et al., FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med, 2011. 364(19): p. 1817-25.
126.Zhou, Y., et al., mTORC2 phosphorylation of Akt1: a possible mechanism for hydrogen sulfide-induced cardioprotection. PLoS One, 2014. 9(6): p. e99665.
127.Zhang, Q., et al., Yin Yang 1 promotes mTORC2-mediated AKT phosphorylation. J Mol Cell Biol, 2016. 8(3): p. 232-43.
128.Lee, S.L., et al., Functional Role of mTORC2 versus Integrin-Linked Kinase in Mediating Ser473-Akt Phosphorylation in PTEN-Negative Prostate and Breast Cancer Cell Lines. PLoS One, 2013. 8(6): p. e67149.
129.Chen, W., et al., Inhibition of RhoA and mTORC2/Rictor by Fingolimod (FTY720) induces p21-activated kinase 1, PAK-1 and amplifies podosomes in mouse peritoneal macrophages. Immunobiology, 2018. 223(11): p. 634-647.
130.Whale, A.D., et al., PAK4 kinase activity and somatic mutation promote carcinoma cell motility and influence inhibitor sensitivity. Oncogene, 2013. 32(16): p. 2114-20.
131.Dagliyan, O., et al., Engineering Pak1 Allosteric Switches. ACS Synth Biol, 2017. 6(7): p. 1257-1262.
132.Lei, M., M.A. Robinson, and S.C. Harrison, The active conformation of the PAK1 kinase domain. Structure, 2005. 13(5): p. 769-78.
133.Manser, E., et al., A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature, 1994. 367(6458): p. 40-6.
134.Ohtsubo, K., et al., Expression of Akt kinase-interacting protein 1, a scaffold protein of the PI3K/PDK1/Akt pathway, in pancreatic cancer. Pancreas, 2014. 43(7): p. 1093-100.
135.Tyagi, N., et al., p-21 activated kinase 4 (PAK4) maintains stem cell-like phenotypes in pancreatic cancer cells through activation of STAT3 signaling. Cancer Lett, 2016. 370(2): p. 260-7.
136.Akula, S.M., et al., RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1 and TP53 pathways and regulatory miRs as therapeutic targets in hepatocellular carcinoma. Expert Opin Ther Targets, 2019: p. 1-15.
137.Mao, Z., et al., Fucosterol exerts antiproliferative effects on human lung cancer cells by inducing apoptosis, cell cycle arrest and targeting of Raf/MEK/ERK signalling pathway. Phytomedicine, 2019. 61: p. 152809.
138.Wu, S.Z., et al., Dihydrosanguinarine suppresses pancreatic cancer cells via regulation of mut-p53/WT-p53 and the Ras/Raf/Mek/Erk pathway. Phytomedicine, 2019. 59: p. 152895.
139.Ramos-Alvarez, I. and R.T. Jensen, P21-activated kinase 4 in pancreatic acinar cells is activated by numerous gastrointestinal hormones/neurotransmitters and growth factors by novel signaling, and its activation stimulates secretory/growth cascades. Am J Physiol Gastrointest Liver Physiol, 2018. 315(2): p. G302-G317.
140.Lyons, J., et al., Integrated in vivo multiomics analysis identifies p21-activated kinase signaling as a driver of colitis. Sci Signal, 2018. 11(519).
141.Song, P.L., et al., Strategy and validation of a structure-based method for the discovery of selective inhibitors of PAK isoforms and the evaluation of their anti-cancer activity. Bioorg Chem, 2019. 91: p. 103168.
142.Siekmann, I.K., et al., Combined inhibition of receptor tyrosine and p21-activated kinases as a therapeutic strategy in childhood ALL. Blood Adv, 2018. 2(19): p. 2554-2567.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top