|
1.Siegel, R.L., K.D. Miller, and A. Jemal, Cancer Statistics, 2017. CA Cancer J Clin, 2017. 67(1): p. 7-30. 2.https://www.wcrf.org/. Word Cancer Research Fund International 3.https://www.mohw.gov.tw/mp-1.html. 4.Tseng, C.M., et al., Incidence and mortality of pancreatic cancer on a rapid rise in Taiwan, 1999-2012. Cancer Epidemiol, 2017. 49: p. 75-84. 5.Neoptolemos, J.P., et al., Therapeutic developments in pancreatic cancer: current and future perspectives. Nat Rev Gastroenterol Hepatol, 2018. 15(6): p. 333-348. 6.Oberstein, P.E. and K.P. Olive, Pancreatic cancer: why is it so hard to treat? Therap Adv Gastroenterol, 2013. 6(4): p. 321-37. 7.Oberstein, P.E., et al., Uptake and patterns of use of gemcitabine for metastatic pancreatic cancer: a population-based study. Cancer Invest, 2013. 31(5): p. 316-22. 8.Smith, B.D., et al., Future of cancer incidence in the United States: burdens upon an aging, changing nation. J Clin Oncol, 2009. 27(17): p. 2758-65. 9.Gupta, M.K., et al., Computational Biology: Toward Early Detection of Pancreatic Cancer. Crit Rev Oncog, 2019. 24(2): p. 191-198. 10.Stathis, A. and M.J. Moore, Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol, 2010. 7(3): p. 163-72. 11.Wormann, S.M. and H. Algul, Risk factors and therapeutic targets in pancreatic cancer. Front Oncol, 2013. 3: p. 282. 12.Durkin, C. and S.G. Krishna, Advanced diagnostics for pancreatic cysts: Confocal endomicroscopy and molecular analysis. World J Gastroenterol, 2019. 25(22): p. 2734-2742. 13.Cohen, P., The origins of protein phosphorylation. Nat Cell Biol, 2002. 4(5): p. E127-30. 14.Sharma, R., S.C. Schurer, and S.M. Muskal, High quality, small molecule-activity datasets for kinase research. F1000Res, 2016. 5. 15.Fleuren, E.D., et al., The kinome ''at large'' in cancer. Nat Rev Cancer, 2016. 16(2): p. 83-98. 16.Rane, C.K. and A. Minden, P21 activated kinase signaling in cancer. Semin Cancer Biol, 2019. 54: p. 40-49. 17.He, N.H.H., p21-activated kinase family: promising new drug targets. Research and Reports in Biochemistry, 2015. 2015:5 119–128: p. 119–128 18.Molli, P.R., et al., PAK signaling in oncogenesis. Oncogene, 2009. 28(28): p. 2545-55. 19.Wang, K., et al., p21-activated kinase signalling in pancreatic cancer: New insights into tumour biology and immune modulation. World J Gastroenterol, 2018. 24(33): p. 3709-3723. 20.Kumar, R., et al., Structure, biochemistry, and biology of PAK kinases. Gene, 2017. 605: p. 20-31. 21.Rane, C.K. and A. Minden, P21 activated kinases: structure, regulation, and functions. Small GTPases, 2014. 5. 22.Radu, M., et al., PAK signalling during the development and progression of cancer. Nat Rev Cancer, 2014. 14(1): p. 13-25. 23.Bokoch, G.M., Biology of the p21-activated kinases. Annu Rev Biochem, 2003. 72: p. 743-81. 24.Dummler, B., et al., Pak protein kinases and their role in cancer. Cancer Metastasis Rev, 2009. 28(1-2): p. 51-63. 25.Zhao, Z.S. and E. Manser, PAK family kinases: Physiological roles and regulation. Cell Logist, 2012. 2(2): p. 59-68. 26.Tse, E.Y. and Y.P. Ching, The role of p21-activated kinases in hepatocellular carcinoma metastasis. J Mol Signal, 2014. 9: p. 7. 27.Balasenthil, S., et al., p21-activated kinase-1 signaling mediates cyclin D1 expression in mammary epithelial and cancer cells. J Biol Chem, 2004. 279(2): p. 1422-8. 28.Higuchi, M., et al., Scaffolding function of PAK in the PDK1-Akt pathway. Nat Cell Biol, 2008. 10(11): p. 1356-64. 29.Staser, K., et al., A Pak1-PP2A-ERM signaling axis mediates F-actin rearrangement and degranulation in mast cells. Exp Hematol, 2013. 41(1): p. 56-66 e2. 30.Ye, D.Z., et al., p21-Activated kinase 1 (Pak1) phosphorylates BAD directly at serine 111 in vitro and indirectly through Raf-1 at serine 112. PLoS One, 2011. 6(11): p. e27637. 31.Chan, P.M. and E. Manser, PAKs in human disease. Prog Mol Biol Transl Sci, 2012. 106: p. 171-87. 32.Hoover, W.C., et al., Inhibition of p21 activated kinase (PAK) reduces airway responsiveness in vivo and in vitro in murine and human airways. PLoS One, 2012. 7(8): p. e42601. 33.Xie, Y., et al., PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol Med Rep, 2019. 19(2): p. 783-791. 34.Corti, F., et al., Targeting the PI3K/AKT/mTOR pathway in biliary tract cancers: A review of current evidences and future perspectives. Cancer Treat Rev, 2019. 72: p. 45-55. 35.Kumar, R., A.E. Gururaj, and C.J. Barnes, p21-activated kinases in cancer. Nat Rev Cancer, 2006. 6(6): p. 459-71. 36.Kumar, R. and D.Q. Li, PAKs in Human Cancer Progression: From Inception to Cancer Therapeutic to Future Oncobiology. Adv Cancer Res, 2016. 130: p. 137-209. 37.Callow, M.G., et al., Requirement for PAK4 in the anchorage-independent growth of human cancer cell lines. J Biol Chem, 2002. 277(1): p. 550-8. 38.Yang, F., et al., Androgen receptor specifically interacts with a novel p21-activated kinase, PAK6. J Biol Chem, 2001. 276(18): p. 15345-53. 39.Yeo, D., et al., The role of p21-activated kinases in pancreatic cancer. Pancreas, 2015. 44(3): p. 363-9. 40.Arias-Romero, L.E., et al., Pak1 kinase links ErbB2 to beta-catenin in transformation of breast epithelial cells. Cancer Res, 2013. 73(12): p. 3671-82. 41.Jagadeeshan, S., et al., Transcriptional regulation of fibronectin by p21-activated kinase-1 modulates pancreatic tumorigenesis. Oncogene, 2015. 34(4): p. 455-64. 42.Rudolph, J., et al., Inhibitors of p21-activated kinases (PAKs). J Med Chem, 2015. 58(1): p. 111-29. 43.Phee, H., et al., Pak2 is required for actin cytoskeleton remodeling, TCR signaling, and normal thymocyte development and maturation. Elife, 2014. 3: p. e02270. 44.Li, X., et al., Phosphorylation of caspase-7 by p21-activated protein kinase (PAK) 2 inhibits chemotherapeutic drug-induced apoptosis of breast cancer cell lines. J Biol Chem, 2011. 286(25): p. 22291-9. 45.Radu, M., et al., p21-Activated Kinase 2 Regulates Endothelial Development and Function through the Bmk1/Erk5 Pathway. Mol Cell Biol, 2015. 35(23): p. 3990-4005. 46.Crawford, J.J., et al., Structure-Guided Design of Group I Selective p21-Activated Kinase Inhibitors. J Med Chem, 2015. 58(12): p. 5121-36. 47.Gupta, A., et al., PAK2-c-Myc-PKM2 axis plays an essential role in head and neck oncogenesis via regulating Warburg effect. Cell Death Dis, 2018. 9(8): p. 825. 48.Piccand, J., et al., Pak3 promotes cell cycle exit and differentiation of beta-cells in the embryonic pancreas and is necessary to maintain glucose homeostasis in adult mice. Diabetes, 2014. 63(1): p. 203-15. 49.Combeau, G., et al., The p21-activated kinase PAK3 forms heterodimers with PAK1 in brain implementing trans-regulation of PAK3 activity. J Biol Chem, 2012. 287(36): p. 30084-96. 50.Kim, M.J., et al., Functional analysis of rare variants found in schizophrenia implicates a critical role for GIT1-PAK3 signaling in neuroplasticity. Mol Psychiatry, 2017. 22(3): p. 417-429. 51.Morrow, E.M., et al., Sequence analysis of P21-activated kinase 3 (PAK3) in chronic schizophrenia with cognitive impairment. Schizophr Res, 2008. 106(2-3): p. 265-7. 52.McPhie, D.L., et al., DNA synthesis and neuronal apoptosis caused by familial Alzheimer disease mutants of the amyloid precursor protein are mediated by the p21 activated kinase PAK3. J Neurosci, 2003. 23(17): p. 6914-27. 53.Hashimoto, S., et al., Interaction of paxillin with p21-activated Kinase (PAK). Association of paxillin alpha with the kinase-inactive and the Cdc42-activated forms of PAK3. J Biol Chem, 2001. 276(8): p. 6037-45. 54.Abo, A., et al., PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. EMBO J, 1998. 17(22): p. 6527-40. 55.Paolo, M., et al., Selumetinib in advanced non small cell lung cancer (NSCLC) harbouring KRAS mutation: endless clinical challenge to KRAS-mutant NSCLC. Rev Recent Clin Trials, 2013. 8(2): p. 93-100. 56.Thillai, K., et al., Deciphering the link between PI3K and PAK: An opportunity to target key pathways in pancreatic cancer? Oncotarget, 2017. 8(8): p. 14173-14191. 57.King, H., et al., PAK4 interacts with p85 alpha: implications for pancreatic cancer cell migration. Sci Rep, 2017. 7: p. 42575. 58.Dart, A.E. and C.M. Wells, P21-activated kinase 4--not just one of the PAK. Eur J Cell Biol, 2013. 92(4-5): p. 129-38. 59.Razzouk, S., M. Lieberherr, and G. Cournot, Rac-GTPase, osteoclast cytoskeleton and bone resorption. Eur J Cell Biol, 1999. 78(4): p. 249-55. 60.Dan, C., et al., Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. J Biol Chem, 2001. 276(34): p. 32115-21. 61.Ye, D.Z. and J. Field, PAK signaling in cancer. Cell Logist, 2012. 2(2): p. 105-116. 62.Li, C., et al., High-level expression of P21-Cdc/Rac-activated kinase 7 is closely related to metastatic potential and poor prognosis of colon carcinoma. Oncotarget, 2016. 7(29): p. 46042-46055. 63.He, S., et al., Over expression of p21-activated kinase 7 associates with lymph node metastasis in esophageal squamous cell cancers. Cancer Biomark, 2016. 16(2): p. 203-9. 64.Gu, J., et al., A role for p21-activated kinase 7 in the development of gastric cancer. FEBS J, 2013. 280(1): p. 46-55. 65.Aburatani, T., et al., High expression of P21-activated kinase 5 protein is associated with poor survival in gastric cancer. Oncol Lett, 2017. 14(1): p. 404-410. 66.Zhu, G., et al., PAK5-mediated E47 phosphorylation promotes epithelial-mesenchymal transition and metastasis of colon cancer. Oncogene, 2016. 35(15): p. 1943-54. 67.Cotteret, S., et al., p21-Activated kinase 5 (Pak5) localizes to mitochondria and inhibits apoptosis by phosphorylating BAD. Mol Cell Biol, 2003. 23(16): p. 5526-39. 68.Li, D., et al., PAK5 Induces EMT and Promotes Cell Migration and Invasion by Activating the PI3K/AKT Pathway in Ovarian Cancer. Anal Cell Pathol (Amst), 2018. 2018: p. 8073124. 69.Morse, E.M., et al., PAK6 targets to cell-cell adhesions through its N-terminus in a Cdc42-dependent manner to drive epithelial colony escape. J Cell Sci, 2016. 129(2): p. 380-93. 70.Shao, Y.G., K. Ning, and F. Li, Group II p21-activated kinases as therapeutic targets in gastrointestinal cancer. World J Gastroenterol, 2016. 22(3): p. 1224-35. 71.Tian, X., et al., MicroRNA-429 inhibits the migration and invasion of colon cancer cells by targeting PAK6/cofilin signaling. Oncol Rep, 2015. 34(2): p. 707-14. 72.Chen, H., et al., Expression and prognostic significance of p21-activated kinase 6 in hepatocellular carcinoma. J Surg Res, 2014. 189(1): p. 81-8. 73.Schrantz, N., et al., Mechanism of p21-activated kinase 6-mediated inhibition of androgen receptor signaling. J Biol Chem, 2004. 279(3): p. 1922-31. 74.Liu, T., et al., p21-Activated kinase 6 (PAK6) inhibits prostate cancer growth via phosphorylation of androgen receptor and tumorigenic E3 ligase murine double minute-2 (Mdm2). J Biol Chem, 2013. 288(5): p. 3359-69. 75.Fram, S., et al., A PAK6-IQGAP1 complex promotes disassembly of cell-cell adhesions. Cell Mol Life Sci, 2014. 71(14): p. 2759-73. 76.Chen, J., et al., PAK6 increase chemoresistance and is a prognostic marker for stage II and III colon cancer patients undergoing 5-FU based chemotherapy. Oncotarget, 2015. 6(1): p. 355-67. 77.Cai, S., et al., Downregulation of microRNA-23a suppresses prostate cancer metastasis by targeting the PAK6-LIMK1 signaling pathway. Oncotarget, 2015. 6(6): p. 3904-17. 78.Nakamoto, M., et al., Prognostic significance of WNT signaling in pancreatic ductal adenocarcinoma. Virchows Arch, 2014. 465(4): p. 401-8. 79.Polakis, P., The many ways of Wnt in cancer. Curr Opin Genet Dev, 2007. 17(1): p. 45-51. 80.Zhu, G., et al., A Rac1/PAK1 cascade controls beta-catenin activation in colon cancer cells. Oncogene, 2012. 31(8): p. 1001-12. 81.Sarkar, S., et al., Coupling G2/M arrest to the Wnt/beta-catenin pathway restrains pancreatic adenocarcinoma. Endocr Relat Cancer, 2014. 21(1): p. 113-25. 82.MacDonald, B.T., K. Tamai, and X. He, Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell, 2009. 17(1): p. 9-26. 83.Qiao, Q., et al., Reduced membranous and ectopic cytoplasmic expression of beta -catenin correlate with cyclin D1 overexpression and poor prognosis in pancreatic cancer. Int J Cancer, 2001. 95(3): p. 194-7. 84.Hagen, T., et al., Signalling activity of beta-catenin targeted to different subcellular compartments. Biochem J, 2004. 379(Pt 2): p. 471-7. 85.Manegold, P., et al., Differentiation Therapy Targeting the beta-Catenin/CBP Interaction in Pancreatic Cancer. Cancers (Basel), 2018. 10(4). 86.Al-Aynati, M.M., et al., Epithelial-cadherin and beta-catenin expression changes in pancreatic intraepithelial neoplasia. Clin Cancer Res, 2004. 10(4): p. 1235-40. 87.Fang, D., et al., Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem, 2007. 282(15): p. 11221-9. 88.Lee, M.Y., R.R. Giraddi, and W.L. Tam, Cancer Stem Cells: Concepts, Challenges, and Opportunities for Cancer Therapy. Methods Mol Biol, 2019. 2005: p. 43-66. 89.O''Connor, M.L., et al., Cancer stem cells: A contentious hypothesis now moving forward. Cancer Lett, 2014. 344(2): p. 180-7. 90.Venkatesh, V., et al., Targeting Notch signalling pathway of cancer stem cells. Stem Cell Investig, 2018. 5: p. 5. 91.Bao, S., et al., Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006. 444(7120): p. 756-60. 92.Zhang, S., et al., Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res, 2008. 68(11): p. 4311-20. 93.Yi, J.M., et al., Abnormal DNA methylation of CD133 in colorectal and glioblastoma tumors. Cancer Res, 2008. 68(19): p. 8094-103. 94.Li, C., C.J. Lee, and D.M. Simeone, Identification of human pancreatic cancer stem cells. Methods Mol Biol, 2009. 568: p. 161-73. 95.Hermann, P.C., et al., Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 2007. 1(3): p. 313-23. 96.Barbato, L., et al., Cancer Stem Cells and Targeting Strategies. Cells, 2019. 8(8). 97.Turdo, A., et al., Meeting the Challenge of Targeting Cancer Stem Cells. Front Cell Dev Biol, 2019. 7: p. 16. 98.Tanase, C.P., et al., Cancer stem cells: involvement in pancreatic cancer pathogenesis and perspectives on cancer therapeutics. World J Gastroenterol, 2014. 20(31): p. 10790-801. 99.Lai, S.W., et al., The therapeutic targeting of the FGFR1/Src/NF-kappaB signaling axis inhibits pancreatic ductal adenocarcinoma stemness and oncogenicity. Clin Exp Metastasis, 2018. 35(7): p. 663-677. 100.Castellanos, J.A., N.B. Merchant, and N.S. Nagathihalli, Emerging targets in pancreatic cancer: epithelial-mesenchymal transition and cancer stem cells. Onco Targets Ther, 2013. 6: p. 1261-7. 101.Shamloo, B. and S. Usluer, p21 in Cancer Research. Cancers (Basel), 2019. 11(8). 102.Li, W., et al., Curcumin inhibits superoxide dismutase-induced epithelial-to-mesenchymal transition via the PI3K/Akt/NF-kappaB pathway in pancreatic cancer cells. Int J Oncol, 2018. 103.Chen, W., et al., Downregulation of lncRNA OGFRP1 inhibits hepatocellular carcinoma progression by AKT/mTOR and Wnt/beta-catenin signaling pathways. Cancer Manag Res, 2018. 10: p. 1817-1826. 104.Lee, S.H., et al., Wnt/beta-catenin signalling maintains self-renewal and tumourigenicity of head and neck squamous cell carcinoma stem-like cells by activating Oct4. J Pathol, 2014. 234(1): p. 99-107. 105.Wu, D.W., et al., PAK1 Is a Novel Therapeutic Target in Tyrosine Kinase Inhibitor-Resistant Lung Adenocarcinoma Activated by the PI3K/AKT Signaling Regardless of EGFR Mutation. Clin Cancer Res, 2016. 22(21): p. 5370-5382. 106.Huynh, N., et al., p-21-Activated kinase 1 mediates gastrin-stimulated proliferation in the colorectal mucosa via multiple signaling pathways. Am J Physiol Gastrointest Liver Physiol, 2013. 304(6): p. G561-7. 107.He, L.F., et al., Activated-PAK4 predicts worse prognosis in breast cancer and promotes tumorigenesis through activation of PI3K/AKT signaling. Oncotarget, 2017. 8(11): p. 17573-17585. 108.Takebe, N., et al., Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol, 2011. 8(2): p. 97-106. 109.Wang, H., et al., Hsp90ab1 stabilizes LRP5 to promote epithelial-mesenchymal transition via activating of AKT and Wnt/beta-catenin signaling pathways in gastric cancer progression. Oncogene, 2019. 38(9): p. 1489-1507. 110.Tyagi, N., et al., p-21 activated kinase 4 promotes proliferation and survival of pancreatic cancer cells through AKT- and ERK-dependent activation of NF-kappaB pathway. Oncotarget, 2014. 5(18): p. 8778-89. 111.Kopantzev, E.P., et al., Activation of IGF/IGF-IR signaling pathway fails to induce epithelial-mesenchymal transition in pancreatic cancer cells. Pancreatology, 2019. 19(2): p. 390-396. 112.Fang, D. and H. Kitamura, Cancer stem cells and epithelial-mesenchymal transition in urothelial carcinoma: Possible pathways and potential therapeutic approaches. Int J Urol, 2018. 25(1): p. 7-17. 113.Rivas, S., et al., Role of Akt Isoforms Controlling Cancer Stem Cell Survival, Phenotype and Self-Renewal. Biomedicines, 2018. 6(1). 114.Barzegar Behrooz, A., A. Syahir, and S. Ahmad, CD133: beyond a cancer stem cell biomarker. J Drug Target, 2019. 27(3): p. 257-269. 115.Singh, S., et al., ALDH1B1 Is Crucial for Colon Tumorigenesis by Modulating Wnt/beta-Catenin, Notch and PI3K/Akt Signaling Pathways. PLoS One, 2015. 10(5): p. e0121648. 116.Islam, F., et al., Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment. Exp Cell Res, 2015. 335(1): p. 135-47. 117.Wang, X., et al., Macrophages induce AKT/beta-catenin-dependent Lgr5(+) stem cell activation and hair follicle regeneration through TNF. Nat Commun, 2017. 8: p. 14091. 118.Yakisich, J.S., et al., Formation of Tumorspheres with Increased Stemness without External Mitogens in a Lung Cancer Model. Stem Cells Int, 2016. 2016: p. 5603135. 119.Bardeesy, N., et al., Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci U S A, 2006. 103(15): p. 5947-52. 120.Schutte, U., et al., Recent developments of transgenic and xenograft mouse models of pancreatic cancer for translational research. Expert Opin Drug Discov, 2011. 6(1): p. 33-48. 121.Ahn, K., et al., Synergistic Anti-Cancer Effects of AKT and SRC Inhibition in Human Pancreatic Cancer Cells. Yonsei Med J, 2018. 59(6): p. 727-735. 122.Zhang, H., et al., LAMB3 mediates apoptotic, proliferative, invasive, and metastatic behaviors in pancreatic cancer by regulating the PI3K/Akt signaling pathway. Cell Death Dis, 2019. 10(3): p. 230. 123.Ichimaru, Y., et al., Indirubin 3''-Oxime Inhibits Migration, Invasion, and Metastasis InVivo in Mice Bearing Spontaneously Occurring Pancreatic Cancer via Blocking the RAF/ERK, AKT, and SAPK/JNK Pathways. Transl Oncol, 2019. 12(12): p. 1574-1582. 124.Conroy, T. and E. Mitry, [Chemotherapy of metastatic pancreatic adenocarcinoma: challenges and encouraging results]. Bull Cancer, 2011. 98(12): p. 1439-46. 125.Conroy, T., et al., FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med, 2011. 364(19): p. 1817-25. 126.Zhou, Y., et al., mTORC2 phosphorylation of Akt1: a possible mechanism for hydrogen sulfide-induced cardioprotection. PLoS One, 2014. 9(6): p. e99665. 127.Zhang, Q., et al., Yin Yang 1 promotes mTORC2-mediated AKT phosphorylation. J Mol Cell Biol, 2016. 8(3): p. 232-43. 128.Lee, S.L., et al., Functional Role of mTORC2 versus Integrin-Linked Kinase in Mediating Ser473-Akt Phosphorylation in PTEN-Negative Prostate and Breast Cancer Cell Lines. PLoS One, 2013. 8(6): p. e67149. 129.Chen, W., et al., Inhibition of RhoA and mTORC2/Rictor by Fingolimod (FTY720) induces p21-activated kinase 1, PAK-1 and amplifies podosomes in mouse peritoneal macrophages. Immunobiology, 2018. 223(11): p. 634-647. 130.Whale, A.D., et al., PAK4 kinase activity and somatic mutation promote carcinoma cell motility and influence inhibitor sensitivity. Oncogene, 2013. 32(16): p. 2114-20. 131.Dagliyan, O., et al., Engineering Pak1 Allosteric Switches. ACS Synth Biol, 2017. 6(7): p. 1257-1262. 132.Lei, M., M.A. Robinson, and S.C. Harrison, The active conformation of the PAK1 kinase domain. Structure, 2005. 13(5): p. 769-78. 133.Manser, E., et al., A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature, 1994. 367(6458): p. 40-6. 134.Ohtsubo, K., et al., Expression of Akt kinase-interacting protein 1, a scaffold protein of the PI3K/PDK1/Akt pathway, in pancreatic cancer. Pancreas, 2014. 43(7): p. 1093-100. 135.Tyagi, N., et al., p-21 activated kinase 4 (PAK4) maintains stem cell-like phenotypes in pancreatic cancer cells through activation of STAT3 signaling. Cancer Lett, 2016. 370(2): p. 260-7. 136.Akula, S.M., et al., RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1 and TP53 pathways and regulatory miRs as therapeutic targets in hepatocellular carcinoma. Expert Opin Ther Targets, 2019: p. 1-15. 137.Mao, Z., et al., Fucosterol exerts antiproliferative effects on human lung cancer cells by inducing apoptosis, cell cycle arrest and targeting of Raf/MEK/ERK signalling pathway. Phytomedicine, 2019. 61: p. 152809. 138.Wu, S.Z., et al., Dihydrosanguinarine suppresses pancreatic cancer cells via regulation of mut-p53/WT-p53 and the Ras/Raf/Mek/Erk pathway. Phytomedicine, 2019. 59: p. 152895. 139.Ramos-Alvarez, I. and R.T. Jensen, P21-activated kinase 4 in pancreatic acinar cells is activated by numerous gastrointestinal hormones/neurotransmitters and growth factors by novel signaling, and its activation stimulates secretory/growth cascades. Am J Physiol Gastrointest Liver Physiol, 2018. 315(2): p. G302-G317. 140.Lyons, J., et al., Integrated in vivo multiomics analysis identifies p21-activated kinase signaling as a driver of colitis. Sci Signal, 2018. 11(519). 141.Song, P.L., et al., Strategy and validation of a structure-based method for the discovery of selective inhibitors of PAK isoforms and the evaluation of their anti-cancer activity. Bioorg Chem, 2019. 91: p. 103168. 142.Siekmann, I.K., et al., Combined inhibition of receptor tyrosine and p21-activated kinases as a therapeutic strategy in childhood ALL. Blood Adv, 2018. 2(19): p. 2554-2567.
|