跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 11:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林庭蔚
研究生(外文):Ting-Wei Lin
論文名稱:癌症相關纖維母細胞參與原發性非小細胞肺癌之塑性主調控網絡逆向工程方法
論文名稱(外文):Master Regulator Network of Plasticity Modulated by Cancer-Associated Fibroblasts in Primary Non-Small Cell Lung Cancer Stem Cells A Reverse Engineering Approach
指導教授:陳惠文陳惠文引用關係陳璿宇
指導教授(外文):Huei-Wen ChenHsua-Yu Chen
口試委員:陳健尉
口試委員(外文):Jeremy J. W. Chen
口試日期:2020-08-05
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:基因體與系統生物學學位學程
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:143
中文關鍵詞:系統生物學調控網絡分析癌症幹細胞癌症纖維母細胞癌症微環境非小細胞肺癌
外文關鍵詞:system biologyregulatory network analysiscancer stem cellscancer-associated fibroblastcancer microenvironmentnon-small cell lung cancer
DOI:10.6342/NTU202003740
相關次數:
  • 被引用被引用:0
  • 點閱點閱:53
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
肺癌是全球當前癌症盛行率最高的一種惡性腫瘤,其中約85%以上為非小細胞肺癌,癌症隨者目前研究的進展,逐漸將其視為一種系統性、複雜且動態的基因疾病,且癌症具有產生抗藥性和進一步惡化和轉移的特性。這樣的腫瘤特性稱作癌細胞可塑性和幹細胞特性。從系統生物學的觀點,癌細胞可塑性和幹細胞特性可視為其由底層分子的功能、參與的路徑、形成的調控網絡等一層一層疊加而湧現的生物表型,已知癌細胞的可塑性和幹細胞特性跟其與腫瘤微環境中的互動有關。腫瘤微環境中除了免疫細胞外,占最多數的便是支持細胞為主,又以纖維母細胞在其中佔最多數,而本研究團隊在2014年於自然通訊期刊發表了腫瘤纖維母細胞以旁分泌的方式,藉由分泌IGF-II影響肺癌幹細胞內的IGF1R訊息傳討路徑激活癌症幹細胞的Nanog表現量,藉此維持其癌症幹細胞特性。
此研究主要是使用系統生物學中的逆向工程的分析方法,結和已知的生物分子功能和調控關係,基於前次研究團隊所發表在癌症幹細胞及纖維母細胞培養實驗之基因表現資料,系統性來分析肺癌幹細胞在腫瘤相關纖維母細胞培養下,其分子調控機制的變化,其中從顯著基因分析取得顯著表現基因,進一步採取基因富集分析和路徑分析,最後建立此群顯著表現基因內可能調控網絡,並且進一步辨識其中的主調控基因,並且從中建立可能經由旁分泌方式影響癌症幹細胞調控機制的基因。
最後本研究發現有2609個顯著表現基因跟在纖維母細胞影響下的癌症幹細胞特性相關,從基因功能富集分析中,可以發現顯著表現基因中,活化基因與核酸和蛋白質代謝、細胞外基質重塑、染色體結構調控相關,抑制基因跟細胞凋亡、細胞自嗜、脂質代謝相關,活化和抑制基因接共同與能量代謝路徑調控、細胞週期相關,在路徑分析中可以發現顯著表現基因在細胞週期路徑、去氧核醣核酸修復和複製、能量代謝及免疫相關,在免疫系統相關路徑中,顯著表現的基因位在類鐸受體集聯激活路徑、抗原呈現路徑、FLT3訊息路徑、RAF/MAP激酶路徑和Dectin-1訊息傳遞路徑中,最後註解顯著表現基因中的調控關係和蛋白質-蛋白質互動關係後,重建顯著基因中可能調控網路,進一步進行主調控網絡分析,其中共有64個轉錄因子和35個轉錄輔因子為癌症幹細胞特性之主調控基因,從中發現類鐸受體集聯激活路徑佔有重要角色,從調控網路中辨識出相關的主調控基因如CREB, SIN3A, SMAD, YY1, SP1, NF-κB參與類鐸受體2,3,4,5,7,8,9,10等集聯路徑,其中進一步追溯細胞激素CD14在類鐸受體集聯激活路徑中,上游調控主調控基因FOS, SIN3A, RBFOX2, GTF2F1, BHLHE40及可能經由纖維母細胞旁泌素影響此主調控基因的角色 。
本研究的主要價值除了找尋肺癌幹細胞在腫瘤纖維母細胞下的調控關鍵外,同時建立一個系統性分析顯著基因表現的完整流程以及發展複雜網絡和數據的視覺化方法,希望本研究可以提供未來個體化系統分析病人腫瘤變異狀況和調控關係的一種可行的思路。
Lung cancer, most common diagnosed malignancies in the world, is regarded as a system-level, complex and dynamic genetic disease with treatment adaptability. Cancer cells are able to spread and develop treatment resistance. This characteristics is described as cancer plasticity and stemness, which is modulated by the cancer stem cells(CSCs) and its interaction to the components of the cancer microenvironment such as cancer-associated fibroblasts(CAFs). In our research team's previous publication on Nature Communication in 2014, we showed that CAFs can modulate cancer stem cells through paracrine via IGF-II and induce the IGFIR signaling pathway in CSCs and promote the Nanog expression in CSCs.
In this thesis, we used the reverse engineering approach, which is one of the methods in system biology, to decipher the complexity of the cancer plasticity and stemness related to CAFs. Beginning with our CSCs and CAFs gene expression profiles from previously established data to acquire the differential expression(DE) genes , we step by step from functional enrichment analysis of DE genes, pathway impact analysis to regulatory network reconstruction. In the end, we can identify the possible mechanism from the perturbation in CSCs to the paracrine regulation from CAFs to CSCs.
Our result showed 2609 DE genes related to cancer stemness and plasticity under CAFs nurture. There are 64 transcription factors and 35 transcription cofactors identified as master regulators in modulating cancer stemness and plasticity. One of the significant perturbed pathways, toll-like receptor cascades, stand a central role in immune system. From our regulatory network, the toll-like receptor cascades identified in our data linked to the regulation of functionality in cell cycle, metabolism, IGF activity and multiple signaling pathways such as ERK1/ERK2, FLT3, PERK and MAPK pathways. We identified master regulators including CREB, SIN3A, SMAD, YY1, SP1, NF-kappaB involved in TLR cascades. In the regulatory network, CD14 is identified as important cytokine in the network and we traced upstream to the related master regulator including FOS, SIN3A, EBFOX2, GTF2F1, BHLH40 and possible paracrine protein from CAFs to interact these master regulators.
In this thesis, we not only identify the possible master regulars in the regulation of cancer stemness under CAFs nurture but also establish a systemic method to thoroughly dissecting the complex biological system and related visualization tools.
序言 i
誌謝 ii
中文摘要 iii
Abstract v
I.Introduction 1
II.Background 2
A.Biology as a information science 2
B.From Systems biology to Precision Medicine 3
C.Growing complexity of cancer hallmarks and its niche 3
D.The debating issues on the origin of the cancer 4
E.The ecosystem of tumor microenvironment 6
F.Nurture of the cancers by cancer-associated fibroblasts 8
G.Reverse engineering for regulatory network 9
H.Dive into the regulatory network with master regulator analysis 10
III.Material and Method 11
A.Data Source 11
B.A Reverse engineering approach 13
IV.Result 24
A.DE genes set related to the plasticity of lung CSCs co-culture with lung CAFs 24
B.Relative elevated DE genes in CAFs comparing to CSCs 25
C.Functional enrichment of stemness and plasticity related DE genes 25
D.Perturbation pathways with the involvement of the DE genes 26
E.Regulatory network underling the plasticity and stemness 27
F.Master regulators related to the cancer stemness and plasticity 27
G.Transcriptional categories of the master regulators 28
H. Intersection between the regulons of the master regulators 28
J. Master regulators involved in toll-like receptor cascades 29
K. TLR cascades in the multilayer visualization 30
L. The paracrine effect of CAFs on CSCs on TLR cascades 30
M. Upstream of CD14 in the TLR cascades 31
V.Discussion 31
A.Reverse engineering to decipher the phenotype from bottom-up 31
B.Enrichment genetic functions involved cancer metabolism and extracellular organization 32
C. The perturbation of pathways involved in ECM, metabolism and immune system 34
D. Master regulator related to cancer stemness and plasticity in CAFs nurture 35
G. Toll-like receptor cascades and cancer stemness 36
J. Biological function linked to the TLRs between CSCs and CAFs 38
K. Possible paracrine interaction between CAFs and CSCs via CD14 in TLR cascades 38
M. Toward the precision oncology with system biology 39
VI.Reference 75
VII. Appendix 87
Microarray data preprocess 87
Differential expression analysis 92
GO enrichment analysis and GO term retrieve 98
Impact analysis on perturbed pathways 107
Reconstruct the regulatory network: annotation data aggregation 112
Conducting Panda algorithm for building regulatory network 122
Master regulator analysis 125
Upset visualization of regulon intersection 130
Multilayer visualization with three.js on ObservableHQ website 132
1.Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68: 394–424.
2.Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372: 793–795.
3. Kreeger PK, Lauffenburger DA. Cancer systems biology: a network modeling perspective. Carcinogenesis. 2010;31: 2–8.
4. Tian Q, Price ND, Hood L. Systems cancer medicine: towards realization of predictive, preventive, personalized and participatory (P4) medicine. J Intern Med. 2012;271: 111–121.
5. Nguyen LV, Vanner R, Dirks P, Eaves CJ. Cancer stem cells: an evolving concept. Nat Rev Cancer. 2012;12: 133–143.
6. Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5: 8.
7. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16: 582–598.
8. Chen W-J, Ho C-C, Chang Y-L, Chen H-Y, Lin C-A, Ling T-Y, et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun. 2014;5: 3472.
9. Mardis ER. The 1,000 genome, the 100,000 analysis? Genome Med. 2010;2: 84.
10. Schadt EE, Björkegren JLM. NEW: network-enabled wisdom in biology, medicine, and health care. Sci Transl Med. 2012;4: 115rv1.
11. Jameson JL, Longo DL. Precision medicine--personalized, problematic, and promising. N Engl J Med. 2015;372: 2229–2234.
12. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100: 57–70.
13. Hanahan D, Weinberg RA. Biological hallmarks of cancer. Holland‐Frei Cancer Medicine. 2016. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119000822.hfcm002
14. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144: 646–674.
15. Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18: 83.
16. Warburg O. On the origin of cancer cells. Science. 1956;123: 309–314.
17. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481: 306–313.
18. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature. 2020;578: 82–93.
19. Pon JR, Marra MA. Driver and passenger mutations in cancer. Annu Rev Pathol. 2015;10: 25–50.
20. Nussinov R, Tsai C-J, Jang H. Why Are Some Driver Mutations Rare? Trends Pharmacol Sci. 2019;40: 919–929.
21. Weinhold N, Jacobsen A, Schultz N, Sander C, Lee W. Genome-wide analysis of noncoding regulatory mutations in cancer. Nat Genet. 2014;46: 1160–1165.
22. Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501: 328–337.
23. Marjanovic ND, Weinberg RA, Chaffer CL. Cell plasticity and heterogeneity in cancer. Clin Chem. 2013;59: 168–179.
24. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19: 1423–1437.
25. Alderton GK. The tumour microenvironment drives metastasis. Nat Rev Cancer. 2016;16: 199–199.
26. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9: 239–252.
27. Beck B, Blanpain C. Unravelling cancer stem cell potential. Nat Rev Cancer. 2013;13: 727–738.
28. Afify SM, Seno M. Conversion of Stem Cells to Cancer Stem Cells: Undercurrent of Cancer Initiation. Cancers . 2019;11. doi:10.3390/cancers11030345
29. Zhang X, Zhao W, Li Y. Stemness-related markers in cancer. Cancer Translational Medicine. 2017. p. 87. doi:10.4103/ctm.ctm_69_16
30. Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci. 2018;25: 20.
31. Valent P, Bonnet D, De Maria R, Lapidot T, Copland M, Melo JV, et al. Cancer stem cell definitions and terminology: the devil is in the details. Nat Rev Cancer. 2012;12: 767–775.
32. Carney DN, Gazdar AF, Bunn PA Jr, Guccion JG. Demonstration of the stem cell nature of clonogenic tumor cells from lung cancer patients. Stem Cells. 1982;1: 149–164.
33. Carney DN, Gazdar AF, Minna JD. Positive correlation between histological tumor involvement and generation of tumor cell colonies in agarose in specimens taken directly from patients with small-cell carcinoma of the lung. Cancer Res. 1980;40: 1820–1823.
34. Wang Y, Jiang M, Du C, Yu Y, Liu Y, Li M, et al. Utilization of lung cancer cell lines for the study of lung cancer stem cells. Oncol Lett. 2018;15: 6791–6798.
35. Sung J-M, Cho H-J, Yi H, Lee C-H, Kim H-S, Kim D-K, et al. Characterization of a stem cell population in lung cancer A549 cells. Biochem Biophys Res Commun. 2008;371: 163–167.
36. Zhang HZ, Lin XG, Hua P, Wang M, Ao X, Xiong LH, et al. The study of the tumor stem cell properties of CD133+CD44+ cells in the human lung adenocarcinoma cell line A549. Cell Mol Biol . 2010;56 Suppl: OL1350–8.
37. Roudi R, Madjd Z, Ebrahimi M, Samani FS, Samadikuchaksaraei A. CD44 and CD24 cannot act as cancer stem cell markers in human lung adenocarcinoma cell line A549. Cell Mol Biol Lett. 2014;19: 23–36.
38. Liu Y-P, Yang C-J, Huang M-S, Yeh C-T, Wu ATH, Lee Y-C, et al. Cisplatin selects for multidrug-resistant CD133+ cells in lung adenocarcinoma by activating Notch signaling. Cancer Res. 2013;73: 406–416.
39. Shi Y, Fu X, Hua Y, Han Y, Lu Y, Wang J. The side population in human lung cancer cell line NCI-H460 is enriched in stem-like cancer cells. PLoS One. 2012;7: e33358.
40. Leung EL-H, Fiscus RR, Tung JW, Tin VP-C, Cheng LC, Sihoe AD-L, et al. Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS One. 2010;5: e14062.
41. Senbanjo LT, Chellaiah MA. CD44: A Multifunctional Cell Surface Adhesion Receptor Is a Regulator of Progression and Metastasis of Cancer Cells. Front Cell Dev Biol. 2017;5: 18.
42. Salnikov AV, Gladkich J, Moldenhauer G, Volm M, Mattern J, Herr I. CD133 is indicative for a resistance phenotype but does not represent a prognostic marker for survival of non-small cell lung cancer patients. Int J Cancer. 2010;126: 950–958.
43. Levina V, Marrangoni AM, DeMarco R, Gorelik E, Lokshin AE. Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS One. 2008;3: e3077.
44. Ogawa H, Koyanagi-Aoi M, Otani K, Zen Y, Maniwa Y, Aoi T. Interleukin-6 blockade attenuates lung cancer tissue construction integrated by cancer stem cells. Sci Rep. 2017;7: 12317.
45. Jung M-J, Rho J-K, Kim Y-M, Jung JE, Jin YB, Ko Y-G, et al. Upregulation of CXCR4 is functionally crucial for maintenance of stemness in drug-resistant non-small cell lung cancer cells. Oncogene. 2013;32: 209–221.
46. Singh A, Wu H, Zhang P, Happel C, Ma J, Biswal S. Expression of ABCG2 (BCRP) is regulated by Nrf2 in cancer cells that confers side population and chemoresistance phenotype. Mol Cancer Ther. 2010;9: 2365–2376.
47. Jiang F, Qiu Q, Khanna A, Todd NW, Deepak J, Xing L, et al. Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res. 2009;7: 330–338.
48. Oskarsson T, Batlle E, Massagué J. Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell. 2014;14: 306–321.
49. Ye J, Wu D, Wu P, Chen Z, Huang J. The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment. Tumour Biol. 2014;35: 3945–3951.
50. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357: 539–545.
51. Altorki NK, Markowitz GJ, Gao D, Port JL, Saxena A, Stiles B, et al. The lung microenvironment: an important regulator of tumour growth and metastasis. Nat Rev Cancer. 2019;19: 9–31.
52. Prager BC, Xie Q, Bao S, Rich JN. Cancer Stem Cells: The Architects of the Tumor Ecosystem. Cell Stem Cell. 2019;24: 41–53.
53. Albini A, Sporn MB. The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer. 2007;7: 139–147.
54. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020. doi:10.1038/s41577-020-0306-5
55. Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018;32: 1267–1284.
56. Guerrouahen BS, Maccalli C, Cugno C, Rutella S, Akporiaye ET. Reverting Immune Suppression to Enhance Cancer Immunotherapy. Front Oncol. 2019;9: 1554.
57. Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends Immunol. 2016;37: 208–220.
58. Ridnour LA, Cheng RYS, Switzer CH, Heinecke JL, Ambs S, Glynn S, et al. Molecular pathways: toll-like receptors in the tumor microenvironment--poor prognosis or new therapeutic opportunity. Clin Cancer Res. 2013;19: 1340–1346.
59. Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh DF, Bolden JE, et al. Non-cell-autonomous tumor suppression by p53. Cell. 2013;153: 449–460.
60. Ribeiro AL, Okamoto OK. Combined effects of pericytes in the tumor microenvironment. Stem Cells Int. 2015;2015: 868475.
61. Bagley RG, Rouleau C, Morgenbesser SD, Weber W, Cook BP, Shankara S, et al. Pericytes from human non-small cell lung carcinomas: an attractive target for anti-angiogenic therapy. Microvasc Res. 2006;71: 163–174.
62. Bremnes RM, Dønnem T, Al-Saad S, Al-Shibli K, Andersen S, Sirera R, et al. The role of tumor stroma in cancer progression and prognosis: emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J Thorac Oncol. 2011;6: 209–217.
63. Garza Treviño EN, González PD, Valencia Salgado CI, Martinez Garza A. Effects of pericytes and colon cancer stem cells in the tumor microenvironment. Cancer Cell Int. 2019;19: 173.
64. Pan Q, Chanthery Y, Liang W-C, Stawicki S, Mak J, Rathore N, et al. Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell. 2007;11: 53–67.
65. Fujisaki K, Fujimoto H, Sangai T, Nagashima T, Sakakibara M, Shiina N, et al. Cancer-mediated adipose reversion promotes cancer cell migration via IL-6 and MCP-1. Breast Cancer Res Treat. 2015;150: 255–263.
66. D’Esposito V, Liguoro D, Ambrosio MR, Collina F, Cantile M, Spinelli R, et al. Adipose microenvironment promotes triple negative breast cancer cell invasiveness and dissemination by producing CCL5. Oncotarget. 2016;7: 24495–24509.
67. Dutta D, Ghosh S, Pandit K, Mukhopadhyay P, Chowdhury S. Leptin and cancer: Pathogenesis and modulation. Indian J Endocrinol Metab. 2012;16: S596–600.
68. Ostman A, Augsten M. Cancer-associated fibroblasts and tumor growth--bystanders turning into key players. Curr Opin Genet Dev. 2009;19: 67–73.
69. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420: 860–867.
70. Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases. J Pathol. 2003;200: 500–503.
71. Marsh T, Pietras K, McAllister SS. Fibroblasts as architects of cancer pathogenesis. Biochim Biophys Acta. 2013;1832: 1070–1078.
72. Liu T, Zhou L, Li D, Andl T, Zhang Y. Cancer-Associated Fibroblasts Build and Secure the Tumor Microenvironment. Front Cell Dev Biol. 2019;7: 60.
73. Li X, Xu Q, Wu Y, Li J, Tang D, Han L, et al. A CCL2/ROS autoregulation loop is critical for cancer-associated fibroblasts-enhanced tumor growth of oral squamous cell carcinoma. Carcinogenesis. 2014;35: 1362–1370.
74. Yao M, Fang W, Smart C, Hu Q, Huang S, Alvarez N, et al. CCR2 Chemokine Receptors Enhance Growth and Cell-Cycle Progression of Breast Cancer Cells through SRC and PKC Activation. Mol Cancer Res. 2019;17: 604–617.
75. Zhang H, Yue J, Jiang Z, Zhou R, Xie R, Xu Y, et al. CAF-secreted CXCL1 conferred radioresistance by regulating DNA damage response in a ROS-dependent manner in esophageal squamous cell carcinoma. Cell Death Dis. 2017;8: e2790.
76. Yan Y, Chen X, Wang X, Zhao Z, Hu W, Zeng S, et al. The effects and the mechanisms of autophagy on the cancer-associated fibroblasts in cancer. J Exp Clin Cancer es. 2019;38: 171.
77. De Jaeghere EA, Denys HG, De Wever O. Fibroblasts Fuel Immune Escape in the Tumor Microenvironment. Trends Cancer Res. 2019;5: 704–723.
78. Monteran L, Erez N. The Dark Side of Fibroblasts: Cancer-Associated Fibroblasts as Mediators of Immunosuppression in the Tumor Microenvironment. Front Immunol. 2019;10: 1835.
79. Lefebvre C, Rieckhof G, Califano A. Reverse-engineering human regulatory networks. Wiley Interdiscip Rev Syst Biol Med. 2012;4: 311–325.
80. Csete ME, Doyle JC. Reverse engineering of biological complexity. Science. 2002;295: 1664–1669.
81. Chikofsky EJ, Cross JH. Reverse engineering and design recovery: a taxonomy. IEEE Softw. 1990;7: 13–17.
82. An Introduction to Systems Biology. Chapman and Hall/CRC; 2006.
83. Ma’ayan A. Introduction to network analysis in systems biology. Sci Signal. 2011;4: tr5.
84. Villaverde Alejandro F., Banga Julio R. Reverse engineering and identification in systems biology: strategies, perspectives and challenges. J R Soc Interface. 2014;11: 20130505.
85. The MIT Press. Learning and Inference in Computational Systems Biology. [cited 13 Aug 2020]. Available: https://mitpress.mit.edu/books/learning-and-inference-computational-systems-biology
86. Cox DR. Principles of Statistical Inference. Cambridge University Press; 2006.
87. Mousavian Z, Kavousi K, Masoudi-Nejad A. Information theory in systems biology. Part I: Gene regulatory and metabolic networks. Semin Cell Dev Biol. 2016;51: 3–13.
88. Wilkinson DJ. Bayesian methods in bioinformatics and computational systems biology. Brief Bioinform. 2007;8: 109–116.
89. Needham CJ, Bradford JR, Bulpitt AJ, Westhead DR. A primer on learning in Bayesian networks for computational biology. PLoS Comput Biol. 2007;3: e129.
90. Cao J, Qi X, Zhao H. Modeling gene regulation networks using ordinary differential equations. Methods Mol Biol. 2012;802: 185–197.
91. Alon U. Biological networks: the tinkerer as an engineer. Science. 2003;301: 1866–1867.
92. Capobianco E. Next Generation Networks: Featuring the Potential Role of Emerging Applications in Translational Oncology. J Clin Med Res. 2019;8. doi:10.3390/jcm8050664
93. Crampin EJ. SYSTEM IDENTIFICATION CHALLENGES FROM SYSTEMS BIOLOGY. IFAC Proceedings Volumes. 2006;39: 81–93.
94. Hunter P. Tackling the great challenges in biology: Beyond evolution, defining the greatest challenges in biology is a challenge itself. EMBO Rep. 2017. doi:10.15252/embr.201744718
95. Macklin P. Key challenges facing data-driven multicellular systems biology. GigaScience. 2019. doi:10.1093/gigascience/giz127
96. Almaas E, Vázquez A, Barabási A-L. SCALE-FREE NETWORKS IN BIOLOGY. Biological Networks. 2007. pp. 1–19. doi:10.1142/9789812772367_0001
97. Albert R. Scale-free networks in cell biology. Journal of Cell Science. 2005. pp. 4947–4957. doi:10.1242/jcs.02714
98. Califano A, Alvarez MJ. The recurrent architecture of tumour initiation, progression and drug sensitivity. Nat Rev Cancer. 2017;17: 116–130.
99. Fernald GH, Capriotti E, Daneshjou R, Karczewski KJ, Altman RB. Bioinformatics challenges for personalized medicine. Bioinformatics. 2011;27: 1741–1748.
100. Gohlmann H, Talloen W. Gene Expression Studies Using Affymetrix Microarrays. CRC Press; 2009.
101. Liu H, Bebu I, Li X. Microarray probes and probe sets. Front Biosci . 2010;2: 325–338.
102. Pepper SD, Saunders EK, Edwards LE, Wilson CL, Miller CJ. The utility of MAS5 expression summary and detection call algorithms. BMC Bioinformatics. 2007;8: 273.
103. Dabney AR, Storey JD. A reanalysis of a published Affymetrix GeneChip control dataset. Genome biology. 2006. p. 401.
104. Feng C, Wang H, Lu N, Chen T, He H, Lu Y, et al. Log-transformation and its implications for data analysis. Shanghai Arch Psychiatry. 2014;26: 105–109.
105. Quackenbush J. Microarray data normalization and transformation. Nat Genet. 2002;32 Suppl: 496–501.
106. Adrian Alexa JR. topGO. Bioconductor; 2017. doi:10.18129/B9.BIOC.TOPGO
107. Cho RJ, Campbell MJ. Transcription, genomes, function. Trends Genet. 2000;16: 409–415.
108. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102: 15545–15550.
109. Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6: e21800.
110. Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim J-S, et al. A novel signaling pathway impact analysis. Bioinformatics. 2009;25: 75–82.
111. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45: D353–D361.
112. Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020;48: D498–D503.
113. Sales G, Calura E, Cavalieri D, Romualdi C. graphite - a Bioconductor package to convert pathway topology to gene network. BMC Bioinformatics. 2012;13: 20.
114. Sales G, Calura E, Romualdi C. metaGraphite-a new layer of pathway annotation to get metabolite networks. Bioinformatics. 2019;35: 1258–1260.
115. Tarca Al Kathri. SPIA: Signaling Pathway Impact Analysis (SPIA) using combined evidence of pathway over-representation and unusual signaling perturbations. 2020. Available: http://bioinformatics.oxfordjournals.org/cgi/reprint/btn577v1
116. Glass K, Huttenhower C, Quackenbush J, Yuan G-C. Passing messages between biological networks to refine predicted interactions. PLoS One. 2013;8: e64832.
117. Frey BJ, Dueck D. Clustering by passing messages between data points. Science. 2007;315: 972–976.
118. Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang X, Richmond PA, et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2020;48: D87–D92.
119. Schmeier S, Alam T, Essack M, Bajic VB. TcoF-DB v2: update of the database of human and mouse transcription co-factors and transcription factor interactions. Nucleic Acids Res. 2017;45: D145–D150.
120. Hu H, Miao Y-R, Jia L-H, Yu Q-Y, Zhang Q, Guo A-Y. AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors. Nucleic Acids Res. 2019;47: D33–D38.
121. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The Human Transcription Factors. Cell. 2018;172: 650–665.
122. Abugessaisa I, Noguchi S, Carninci P, Kasukawa T. The FANTOM5 Computation Ecosystem: Genomic Information Hub for Promoters and Active Enhancers. Methods Mol Biol. 2017;1611: 199–217.
123. van Dam S, Craig T, de Magalhães JP. GeneFriends: a human RNA-seq-based gene and transcript co-expression database. Nucleic Acids Res. 2015;43: D1124–32.
124. Yevshin I, Sharipov R, Kolmykov S, Kondrakhin Y, Kolpakov F. GTRD: a database on gene transcription regulation-2019 update. Nucleic Acids Res. 2019;47: D100–D105.
125. Chi S-M, Seo Y-K, Park Y-K, Yoon S, Park CY, Kim YS, et al. REGNET: mining context-specific human transcription networks using composite genomic information. BMC Genomics. 2014;15: 450.
126. Oki S, Ohta T, Shioi G, Hatanaka H, Ogasawara O, Okuda Y, et al. ChIP-Atlas: a data-mining suite powered by full integration of public ChIP-seq data. EMBO Rep. 2018;19. doi:10.15252/embr.201846255
127. Luck K, Kim D-K, Lambourne L, Spirohn K, Begg BE, Bian W, et al. A reference map of the human binary protein interactome. Nature. 2020;580: 402–408.
128. Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, et al. The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 2014;42: D358–63.
129. Aranda B, Blankenburg H, Kerrien S, Brinkman FSL, Ceol A, Chautard E, et al. PSICQUIC and PSISCORE: accessing and scoring molecular interactions. Nat Methods. 2011;8: 528–529.
130. Schlauch D, Paulson JN, Young A, Glass K, Quackenbush J. Estimating gene regulatory networks with pandaR. Bioinformatics. 2017;33: 2232–2234.
131. Shen Y, Yao H, Li A, Wang M. CSCdb: a cancer stem cells portal for markers, related genes and functional information. Database . 2016;2016. doi:10.1093/database/baw023
132. Zhang X, Lan Y, Xu J, Quan F, Zhao E, Deng C, et al. CellMarker: a manually curated resource of cell markers in human and mouse. Nucleic Acids Res. 2019;47: D721–D728.
133. Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: Visualization of Intersecting Sets. IEEE Trans Vis Comput Graph. 2014;20: 1983–1992.
134. Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Iny Stein T, et al. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database . 2017;2017. doi:10.1093/database/bax028
135. Nath S, Mukherjee P. MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med. 2014;20: 332–342.
136. Ham SY, Kwon T, Bak Y, Yu J-H, Hong J, Lee SK, et al. Mucin 1-mediated chemo-resistance in lung cancer cells. Oncogenesis. 2016;5: e185.
137. Li Y, Sun C, Tan Y, Li L, Zhang H, Liang Y, et al. Transcription levels and prognostic significance of the NFI family members in human cancers. PeerJ. 2020;8: e8816.
138. Schneider-Poetsch T, Yoshida M. Along the Central Dogma-Controlling Gene Expression with Small Molecules. Annu Rev Biochem. 2018;87: 391–420.
139. Zong D, Oberdoerffer P, Batista PJ, Nussenzweig A. RNA: a double-edged sword in genome maintenance. Nat Rev Genet. 2020. doi:10.1038/s41576-020-0263-7
140. Johnson DL, Johnson SAS. Cell biology. RNA metabolism and oncogenesis. Science. 2008;320: 461–462.
141. Norton JT, Huang S. The perinucleolar compartment: RNA metabolism and cancer. Cancer Treat Res. 2013;158: 139–152.
142. Liang W, Lin Z, Du C, Qiu D, Zhang Q. mRNA modification orchestrates cancer stem cell fate decisions. Mol Cancer. 2020;19: 38.
143. Sun Q, Chen X, Zhou Q, Burstein E, Yang S, Jia D. Inhibiting cancer cell hallmark features through nuclear export inhibition. Signal Transduct Target Ther. 2016;1: 16010.
144. Intlekofer AM, Finley LWS. Metabolic signatures of cancer cells and stem cells. Nat Metab. 2019;1: 177–188.
145. Peixoto J, Lima J. Metabolic traits of cancer stem cells. Dis Model Mech. 2018;11. doi:10.1242/dmm.033464
146. Yadav UP, Singh T, Kumar P, Sharma P, Kaur H, Sharma S, et al. Metabolic Adaptations in Cancer Stem Cells. Front Oncol. 2020;10: 168.
147. Thapa M, Dallmann G. Role of coenzymes in cancer metabolism. Semin Cell Dev Biol. 2020;98: 44–53.
148. Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014;39: 347–354.
149. Zhao Y, Butler EB, Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 2013;4: e532.
150. Henke E, Nandigama R, Ergün S. Extracellular Matrix in the Tumor Microenvironment and Its Impact on Cancer Therapy. Front Mol Biosci. 2019;6: 160.
151. Mohan V, Das A, Sagi I. Emerging roles of ECM remodeling processes in cancer. Semin Cancer Biol. 2020;62: 192–200.
152. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196: 395–406.
153. Nallanthighal S, Heiserman JP, Cheon D-J. The Role of the Extracellular Matrix in Cancer Stemness. Front Cell Dev Biol. 2019;7: 86.
154. Cooper J, Giancotti FG. Integrin Signaling in Cancer: Mechanotransduction, Stemness, Epithelial Plasticity, and Therapeutic Resistance. Cancer Cell. 2019;35: 347–367.
155. Hamidi H, Pietilä M, Ivaska J. The complexity of integrins in cancer and new scopes for therapeutic targeting. Br J Cancer. 2016;115: 1017–1023.
156. Bellomo C, Caja L, Moustakas A. Transforming growth factor β as regulator of cancer stemness and metastasis. Br J Cancer. 2016;115: 761–769.
157. Huynh LK, Hipolito CJ, Ten Dijke P. A Perspective on the Development of TGF-β Inhibitors for Cancer Treatment. Biomolecules. 2019;9. doi:10.3390/biom9110743
158. Haque S, Morris JC. Transforming growth factor-β: A therapeutic target for cancer. Hum Vaccin Immunother. 2017;13: 1741–1750.
159. Sever R, Brugge JS. Signal transduction in cancer. Cold Spring Harb Perspect Med. 2015;5. doi:10.1101/cshperspect.a006098
160. Huang B, Zhao J, Unkeless JC, Feng ZH, Xiong H. TLR signaling by tumor and immune cells: a double-edged sword. Oncogene. 2008;27: 218–224.
161. Gu J, Liu Y, Xie B, Ye P, Huang J, Lu Z. Roles of toll-like receptors: From inflammation to lung cancer progression. Biomed Rep. 2018;8: 126–132.
162. Zhou H, Chen J-H, Hu J, Luo Y-Z, Li F, Xiao L, et al. High expression of Toll-like receptor 5 correlates with better prognosis in non-small-cell lung cancer: an anti-tumor effect of TLR5 signaling in non-small cell lung cancer. J Cancer Res Clin Oncol. 2014;140: 633–643.
163. Beier CP, Kristensen BW. TLR4 in glioblastoma-when cancer stem cells ignore “danger signals.” Stem cell investigation. 2017. p. 66.
164. Urban-Wojciuk Z, Khan MM, Oyler BL, Fåhraeus R, Marek-Trzonkowska N, Nita-Lazar A, et al. The Role of TLRs in Anti-cancer Immunity and Tumor Rejection. Front Immunol. 2019;10: 2388.
165. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21: 335–376.
166. Wallet SM, Puri V, Gibson FC. Linkage of Infection to Adverse Systemic Complications: Periodontal Disease, Toll-Like Receptors, and Other Pattern Recognition Systems. Vaccines (Basel). 2018;6. doi:10.3390/vaccines6020021
167. West AP, Koblansky AA, Ghosh S. Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol. 2006;22: 409–437.
168. Yeh D-W, Huang L-R, Chen Y-W, Huang C-YF, Chuang T-H. Interplay between Inflammation and Stemness in Cancer Cells: The Role of Toll-Like Receptor Signaling. J Immunol Res. 2016;2016: 4368101.
169. Srivastava MK, Andersson Å, Zhu L, Harris-White M, Lee JM, Dubinett S, et al. Myeloid suppressor cells and immune modulation in lung cancer. Immunotherapy. 2012;4: 291–304.
170. Samara KD, Antoniou KM, Karagiannis K, Margaritopoulos G, Lasithiotaki I, Koutala E, et al. Expression profiles of Toll-like receptors in non-small cell lung cancer and idiopathic pulmonary fibrosis. Int J Oncol. 2012;40: 1397–1404.
171. Wang K, Wang J, Wei F, Zhao N, Yang F, Ren X. Expression of TLR4 in Non-Small Cell Lung Cancer Is Associated with PD-L1 and Poor Prognosis in Patients Receiving Pulmonectomy. Front Immunol. 2017;8: 456.
172. He W, Liu Q, Wang L, Chen W, Li N, Cao X. TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol Immunol. 2007;44: 2850–2859.
173. Huang L, Xu H, Peng G. TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy. Cell Mol Immunol. 2018;15: 428–437.
174. Wang C-H, Wang P-J, Hsieh Y-C, Lo S, Lee Y-C, Chen Y-C, et al. Resistin facilitates breast cancer progression via TLR4-mediated induction of mesenchymal phenotypes and stemness properties. Oncogene. 2018;37: 589–600.
175. Alvarado AG, Thiagarajan PS, Mulkearns-Hubert EE, Silver DJ, Hale JS, Alban TJ, et al. Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self-Renewal through Reduced TLR4 Expression. Cell Stem Cell. 2017;20: 450–461.e4.
176. Zhou S, Du R, Wang Z, Shen W, Gao R, Jiang S, et al. TLR4 increases the stemness and is highly expressed in relapsed human hepatocellular carcinoma. Cancer Med. 2019;8: 2325–2337.
177. Chen X, Cheng F, Liu Y, Zhang L, Song L, Cai X, et al. Toll-like receptor 2 and Toll-like receptor 4 exhibit distinct regulation of cancer cell stemness mediated by cell death-induced high-mobility group box 1. EBioMedicine. 2019;40: 135–150.
178. Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5: 461.
179. Kawai T, Akira S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med. 2007;13: 460–469.
180. Zhu F, Zhu Q, Ye D, Zhang Q, Yang Y, Guo X, et al. Sin3a-Tet1 interaction activates gene transcription and is required for embryonic stem cell pluripotency. Nucleic Acids Res. 2018;46: 6026–6040.
181. Kim H-J, Park J-H, Shin J-M, Yang H-W, Lee H-M, Park I-H. TGF-β1-induced HSP47 regulates extracellular matrix accumulation via Smad2/3 signaling pathways in nasal fibroblasts. Sci Rep. 2019;9: 15563.
182. Watts C, West MA, Zaru R. TLR signalling regulated antigen presentation in dendritic cells. Curr Opin Immunol. 2010;22: 124–130.
183. Jia D, Yang W, Li L, Liu H, Tan Y, Ooi S, et al. β-Catenin and NF-κB co-activation triggered by TLR3 stimulation facilitates stem cell-like phenotypes in breast cancer. Cell Death Differ. 2015;22: 298–310.
184. Zanoni I, Granucci F. Role of CD14 in host protection against infections and in metabolism regulation. Front Cell Infect Microbiol. 2013;3: 32.
185. Baumann CL, Aspalter IM, Sharif O, Pichlmair A, Blüml S, Grebien F, et al. CD14 is a coreceptor of Toll-like receptors 7 and 9. J Exp Med. 2010;207: 2689–2701.
186. Wen AY, Sakamoto KM, Miller LS. The role of the transcription factor CREB in immune function. J Immunol. 2010;185: 6413–6419.
187. Gonzales PA, Pisitkun T, Hoffert JD, Tchapyjnikov D, Star RA, Kleta R, et al. Large-scale proteomics and phosphoproteomics of urinary exosomes. J Am Soc Nephrol. 2009;20: 363–379.
188. He S, Deng Y, Liao Y, Li X, Liu J, Yao S. CREB5 promotes tumor cell invasion and correlates with poor prognosis in epithelial ovarian cancer. Oncol Lett. 2017;14: 8156–8161.
189. Wang T, Liu NS, Seet L-F, Hong W. The emerging role of VHS domain-containing Tom1, Tom1L1 and Tom1L2 in membrane trafficking. Traffic. 2010;11: 1119–1128.
190. Chevalier C, Collin G, Descamps S, Touaitahuata H, Simon V, Reymond N, et al. TOM1L1 drives membrane delivery of MT1-MMP to promote ERBB2-induced breast cancer cell invasion. Nat Commun. 2016;7: 10765.
191. Ghosh D, Lippert D, Krokhin O, Cortens JP, Wilkins JA. Defining the membrane proteome of NK cells. J Mass Spectrom. 2010;45: 1–25.
192. Lim W, Kim H-E, Kim Y, Na R, Li X, Jeon S, et al. Association between cancer stem cell-like properties and epithelial-to-mesenchymal transition in primary and secondary cancer cells. Int J Oncol. 2016;49: 991–1000.
193. Choi JE, Bae JS, Kang MJ, Chung MJ, Jang KY, Park HS, et al. Expression of epithelial-mesenchymal transition and cancer stem cell markers in colorectal adenocarcinoma: Clinicopathological significance. Oncol Rep. 2017;38: 1695–1705.
194. Kidd ME, Shumaker DK, Ridge KM. The role of vimentin intermediate filaments in the progression of lung cancer. Am J Respir Cell Mol Biol. 2014;50: 1–6.
195. Flaherty KT, Gray R, Chen A, Li S, Patton D, Hamilton SR, et al. THE MOLECULAR ANALYSIS FOR THERAPY CHOICE (NCI-MATCH) TRIAL: LESSONS for GENOMIC TRIAL DESIGN. J Natl Cancer Inst. 2020. doi:10.1093/jnci/djz245
196. Shrager J, Tenenbaum JM. Rapid learning for precision oncology. Nat Rev Clin Oncol. 2014;11: 109–118.
197. Kurnit KC, Ileana Dumbrava EE, Litzenburger B, Khotskaya YB, Johnson AM, Yap TA, et al. Precision Oncology Decision Support: Current Approaches and Strategies for the Future. Clinical Cancer Research. 2018. pp. 2719–2731. doi:10.1158/1078-0432.ccr-17-2494
198. van de Haar J, Hoes L, Voest E. Advancing molecular tumour boards: highly needed to maximise the impact of precision medicine. ESMO Open. 2019;4: e000516.
199. Pishvaian MJ, Blais EM, Joseph Bender R, Rao S, Boca SM, Chung V, et al. A virtual molecular tumor board to improve efficiency and scalability of delivering precision oncology to physicians and their patients. JAMIA Open. 2019. pp. 505–515. doi:10.1093/jamiaopen/ooz045
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊