跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/22 01:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林煥宇
研究生(外文):Huan-Yu Lin
論文名稱:阿拉伯芥 AtMAPR3 參與對抗灰黴病菌感染之功能性研究
論文名稱(外文):Functional studies of Arabidopsis AtMAPR3 in the defense against B. cinerea
指導教授:楊健志
指導教授(外文):Chien-Chih Yang
口試委員:鄭秋萍鄭梅君陳佩燁常怡雍
口試委員(外文):Chiu-Ping ChengMei-Chun ChengRita P.-Y. ChenYee-yung Charng
口試日期:2020-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:94
中文關鍵詞:MAPR灰黴病菌活性氧化物質植物防禦系統水楊酸
外文關鍵詞:Membrane-associated progesterone receptorBotrytis cinereareactive oxygen speciesplant defensesalicylic acid
DOI:10.6342/NTU202002912
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
膜聯合孕酮受質蛋白 (MAPRs) 是一種廣泛存在於真核生物的血基質結合蛋白質,存在於動物、植物及真菌中。AtMAPR 是 MAPR 家族在阿拉伯芥中的同源蛋白,目前已知的功能有參與去除內質網壓力 (ER stress) 與參與木質素的生合成等等。本研究探討 AtMAPR3 在植物防禦上可能扮演的角色。根據微陣列資料庫的資料顯示,AtMAPR3 的表現量會被植物病原菌灰黴病菌、丁香假單胞菌等病原菌感染所誘導。其中在灰黴病菌感染後, AtMAPR3 表現量提升最高。為了瞭解 AtMAPR3 是否參與對抗灰色葡萄孢菌的防禦,本研究利用兩個 AtMAPR3 功能缺失的突變株 (msbp2-1 和 msbp2-2) 進行研究。 msbp2 突變株中被灰黴病菌感染後,感染面積比野生型植株大 1.2 倍。然而在感染的突變株植株中,病菌的生長情況與野生型植株無明顯相異。此結果暗示 msbp2 突變株的初期防禦機制受損,但是當植物防禦啟動後,突變株能夠限制感染真菌的生長。分析感染後不同時間產生的活性氧化物質 (ROS),發現在感染 48 小時後,msbp2 突變株中的 ROS 累積量比野生型多,這和呼吸爆發氧化酶 D (RBOHD) 的表現量增加相關。此外,突變株中水楊酸 (SA) 反應基因表現量也比較高。綜合上述,缺乏 AtMAPR3 似乎影響病原菌感染的早期感應階段。AtMAPR3 可能在辨識病原菌上或是早期防禦訊息傳導上扮演了某個角色,所以後續引發的防禦才會被延遲。
Membrane-associated progesterone receptors (MAPRs) are widely found in eukaryotes, including animals, plants, and fungi. The functions of MAPR in Arabidopsis (AtMAPR, also named as MSBPs) are diversified, ranging from participating in the release of ER stress to lignin biosynthesis. Here, the possible role of AtMAPR3 in plant defense is studied. Based on microarray databases, the expression of AtMAPR3 can be induced by the infection of phytopathogen Botrytis cinerea (B. cinerea), Pseudomonas syringae (P. syringae), etc.; among these factors, B. cinerea has been shown to generate the highest induction levels of AtMAPR3 expression. To investigate if AtMAPR3 is involved in plant defense against B. cinerea, two mutants defected in AtMAPR3, namely msbp2-1 and msbp2-2, were employed in this study. The lesion areas of msbp2 infected by B. cinerea were larger by 1.2-fold than that of WT. However, the fungal growth of B. cinerea was similar in the mutants and WT. This suggested that the defense mechanisms in the early stage of infection were impaired in msbp2 mutants. However, the mutants were able to limit the growth of the infected fungi after the activation of late plant defense mechanisms. The ROS accumulation triggered by the infection was detected at different time points post-inoculation of the pathogen. It was interesting to note that ROS accumulated more in msbp2 mutants after 48 hours of infection, as revealed by DAB staining. This enhanced accumulation of ROS in msbp2 mutants correlated with the enhanced expression of the respiratory burst oxidase homolog D (RBOHD) in msbp2 mutants.
Furthermore, the expression levels of salicylic acid (SA) responsive genes were also higher in mutants. Taken together, the lack of AtMAPR3 appears to affect the early stage responses for the pathogen infection. AtMAPR3 might likely play roles in pathogen sensing or early signaling, which could have resulted in the delayed triggering of the defense system in the msbp2 mutants.
Table of Contents 1
Abbreviation list 5
中文摘要 7
Abstract 8
Chapter 1 Introduction 10
1.1. Plant pathogen classification and plant defense responses 10
1.2. The role of phytohormones in plant defense against B. cinerea 11
1.2.1. Jasmonates (JA) and ethylene (ET) in plant defense 11
1.2.2. Salicylic acid (SA) in plant defense 13
1.3. The role of reactive oxygen species (ROS) in plant defense 14
1.3.1. RBOHs and their role in the defense 15
1.3.2. PRXs and their role in the defense 16
1.3.3. The ROS scavenging systems and their role in the defense 17
1.3.4. The function of ROS in plant defense 18
1.4. Recent Studies on MAPR in Arabidopsis 19
1.5. Aims of the research 20
Chapter 2 Materials and Methods 22
2.1. Plant materials 22
2.1.1 Arabidopsis wild type (WT) 22
2.1.2 msbp2 mutants (from ABRC stock) 22
2.2 Chemicals 22
2.3 Instrument 22
2.4 Methods 23
2.4.1. Extraction of genomic DNA from Arabidopsis leaves 23
2.4.2. Agarose gel electrophoresis 23
2.4.3. Extraction of total RNA from Arabidopsis 24
2.4.4. DNase treatment 25
2.4.5. Reverse transcription 26
2.4.6. Identification of T-DNA insertion mutant 26
2.4.7. Quantitative PCR, qPCR 27
2.4.8. Fungal culture and disease assays 27
2.4.9. Trypan blue staining of Arabidopsis leaves 28
2.4.10. DAB staining of Arabidopsis leaves 28
Chapter 3 Results 29
3.1. The AtMAPR3/MSBP2 transcript level was induced by infection of B. cinerea 29
3.2. Isolation of atmapr3/msbp2 mutants 30
3.3. Mutation of AtMAPR3/MSBP2 enhanced susceptibility to B. cinerea without affecting fungal growth 31
3.4. Mutation of AtMAPR3/MSBP2 altered area of necrotic cell death and ROS accumulation in infected leaves 33
3.5. The expression of ROS generating enzymes was altered in msbp2 mutants 34
3.6. Autophagy machinery in msbp2 mutants seemed to be disrupted 35
3.7. SA-dependent defenses might promote necrotic cell death in msbp2 mutants 35
Chapter 4 Discussion 37
4.1. AtMAPR3/MSBP2 may be involved in pathogen-induced ROS accumulation 37
4.2. AtMAPR3/MSBP2 may be involved in the early stage of plant response to B. cinerea infection 39
4.3. AtMAPR3/MSBP2 may play a role in necrotic cell death under biotic stress based on SA signaling and ROS accumulation 41
4.4. Conclusion 42
Chapter 6 References 44
Figures and Tables 52
Fig 1. Expression analysis of AtMAPR3/MSBP2 in WT and msbp2 mutants after infection with B. cinerea. 52
Fig 2. Genotyping and AtMAPR3/MSBP2 expression analysis of the WT and msbp2 mutants. 54
Fig 3. The susceptibility to B. cinerea of the msbp2 mutants increased. 56
Fig 4. B. cinerea growth was quantified in WT and msbp2 mutants. 57
Fig 5. Trypan blue staining was used to detect cell death in WT and msbp2 mutants after different time points of infection. 58
Fig 6. Accumulation of H2O2 in the leaves of WT and msbp2 mutants infected with B. cinerea 60
Fig 7. The expression of ROS generating enzyme after infection in WT and msbp2 mutants. 62
Fig 8. The expression of the autophagy-related gene after infection in WT and msbp2 mutants. 64
Fig 9. Expression of the responsive genes for SA-dependent defense after infection in WT and msbp2 mutants. 66
Fig 10. The schematic diagram of the role of AtMAPR3/MSBP2 in plant defense 67
Table 1. Primer pairs used for the qRT-PCR analysis 68
Table 2. Primer pairs for other usages 70
Appendix 71
論文口試問答集及討論建議 88
AbuQamar, S., Moustafa, K., & Tran, L. S. (2017). Mechanisms and strategies of plant defense against Botrytis cinerea. Critical Reviews in Biotechnology, 37(2), 262-274.
Agrios, G. N. (1988). 3 - HOW PATHOGENS ATTACK PLANTS. In G. N. Agrios (Ed.), Plant Pathology (Third Edition) (pp. 63-86): Academic Press.
Almagro, L., Gomez Ros, L. V., Belchi-Navarro, S., Bru, R., Ros Barcelo, A., & Pedreno, M. A. (2009). Class III peroxidases in plant defence reactions. Journal of Experimental Botany, 60(2), 377-390.
Alonso, J. M., Hirayama, T., Roman, G., Nourizadeh, S., & Ecker, J. R. (1999). EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science, 284(5423), 2148-2152.
Apel, K., & Hirt, H. (2004). REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology. , 55(1), 373-399.
Apostol, I., Heinstein, P. F., & Low, P. S. (1989). Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Plant Physiology, 90(1), 109-116.
Attaran, E., & He, S. Y. (2012). The long-sought-after salicylic acid receptors. Molecular Plant, 5(5), 971-973.
Bessire M, Chassot C, Jacquat AC, et al. (2007). A permeable cuticle in Arabidopsis leads to a strong resistance to Botrytis cinerea. EMBO J, 26(8), 2158-2168.
Bindschedler, L. V., Dewdney, J., Blee, K. A., Stone, J. M., Asai, T., Plotnikov, J., Denoux, C., Hayes, T., Gerrish, C., Davies, D. R., Ausubel, F. M., & Bolwell, G. P. (2006). Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. The Plant Journal, 47(6), 851-863.
Brodersen, P., Malinovsky, F. G., Hématy, K., Newman, M.-A., & Mundy, J. (2005). The role of salicylic acid in the induction of cell death in Arabidopsis acd11. Plant Physiology, 138(2), 1037-1045.
Brutus, A., Sicilia, F., Macone, A., Cervone, F., & De Lorenzo, G. (2010). A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci U S A, 107(20), 9452-9457.
Chini, A., Fonseca, S., Fernández, G., Adie, B., Chico, J. M., Lorenzo, O., García-Casado, G., López-Vidriero, I., Lozano, F. M., Ponce, M. R., Micol, J. L., & Solano, R. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature, 448(7154), 666-671.
Daudi, A., Cheng, Z., O’Brien, J. A., Mammarella, N., Khan, S., Ausubel, F. M., & Bolwell, G. P. (2012). The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell, 24(1), 275-287.
Daudi, A., & O'Brien, J. A. (2012). Detection of hydrogen peroxide by DAB staining in Arabidopsis leaves. Bio-Protocol, 2(18), e263.
Durrant, W. E., & Dong, X. (2004). Systemic acquired resistance. Annual Review of Phytopathology, 42, 185-209.
Faulkner, C., Petutschnig, E., Benitez-Alfonso, Y., Beck, M., Robatzek, S., Lipka, V., & Maule, A. J. (2013). LYM2-dependent chitin perception limits molecular flux via plasmodesmata. Proceedings of the National Academy of Sciences of the United States of America, 110(22), 9166-9170.
Fernández-Bautista, N., Domínguez-Núñez, J., Moreno, M. M., & Berrocal-Lobo, M. (2016). Plant tissue trypan blue staining during phytopathogen infection. Bio-Protocol, 6(24).
Fernández-Calvo P, Chini A, Fernández-Barbero G, et al. (2011). The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell, 23(2), 701-715.
Ferrari, S., Plotnikova, J. M., De Lorenzo, G., & Ausubel, F. M. (2003). Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5, or PAD4. The Plant Journal, 35(2), 193-205.
Fu, Z. Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., Mohan, R., Spoel, S. H., Tada, Y., Zheng, N., & Dong, X. (2012). NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature, 486(7402), 228-232.
Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 9(4), 436-442.
Gachon, C., & Saindrenan, P. (2004). Real-time PCR monitoring of fungal development in Arabidopsis thaliana infected by Alternaria brassicicola and Botrytis cinerea. Plant Physiology and Biochemistry, 42(5), 367-371.
Galletti, R., Denoux, C., Gambetta, S., Dewdney, J., Ausubel, F. M., De Lorenzo, G., & Ferrari, S. (2008). The AtrbohD-Mediated Oxidative Burst Elicited by Oligogalacturonides in Arabidopsis Is Dispensable for the Activation of Defense Responses Effective against Botrytis cinerea. Plant Physiology, 148(3), 1695-1706.
Gilchrist, D. G. (1998). Programmed cell death in plant disease: the purpose and promise of cellular suicide. Annual Review of Phytopathology, 36, 393-414.
Gou, M., Ran, X., Martin, D. W., & Liu, C. J. (2018). The scaffold proteins of lignin biosynthetic cytochrome P450 enzymes. Nature Plants, 4(5), 299-310.
Govrin, E. M., & Levine, A. (2000). The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Current Biology, 10(13), 751-757.
Grant, J. J., Yun, B.-W., & Loake, G. J. (2000). Oxidative burst and cognate redox signalling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity. The Plant Journal, 24(5), 569-582.
Guo, K., Wang, W., Fan, W., Wang, Z., Zhu, M., Tang, X., Wu, W., Yang, X., Shao, X., Sun, Y., Zhang, W., & Li, X. (2018). Arabidopsis GAAP1 and GAAP3 modulate the unfolded protein response and the onset of cell death in response to ER stress. Frontiers in Plant Science, 9, 348.
Hollien, J., & Weissman, J. S. (2006). Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science, 313(5783), 104-107.
Huang, H., Ullah, F., Zhou, D.-X., Yi, M., & Zhao, Y. (2019). Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science, 10(800).
Ju, C., & Chang, C. (2015). Mechanistic Insights in Ethylene Perception and Signal Transduction. Plant Physiology, 169(1), 85-95.
Ju, C., Yoon, G. M., Shemansky, J. M., Lin, D. Y., Ying, Z. I., Chang, J., Garrett, W. M., Kessenbrock, M., Groth, G., Tucker, M. L., Cooper, B., Kieber, J. J., & Chang, C. (2012). CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 109(47), 19486-19491.
Kadota, Y., Shirasu, K., & Zipfel, C. (2015). Regulation of the NADPH Oxidase RBOHD During Plant Immunity. Plant and Cell Physiology, 56(8), 1472-1480.
Katsir, L., Schilmiller, A. L., Staswick, P. E., He, S. Y., & Howe, G. A. (2008). COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 7100-7105.
Kawai-Yamada, M., Ohori, Y., & Uchimiya, H. (2004). Dissection of Arabidopsis Bax inhibitor-1 suppressing Bax-, hydrogen peroxide-, and salicylic acid-induced cell death. Plant Cell, 16(1), 21-32.
Kao, A.-L. (2010). Molecular Characterization of AtMAPRs in Arabidopsis. In Department of Biochemical Science and Technology (National Taiwan University).
Kuo, J.-L. (2015). AtMAPR3 plays a possible role in high temperature conditions and its expression is associated with the ascorbate-glutathione cycle. In Department of Biochemical Science and Technology (National Taiwan University).
Kuo, S.-Y. (2012). Study of the expression of AtMAPR3 is induced by δ-amino levulinic acid and stress in Arabidopsis. In Department of Biochemical Science and Technology (National Taiwan University).
Lamb, C., & Dixon, R. A. (1997). THE OXIDATIVE BURST IN PLANT DISEASE RESISTANCE. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 251-275.
Leary, A. Y., Sanguankiattichai, N., Duggan, C., Tumtas, Y., Pandey, P., Segretin, M. E., Salguero Linares, J., Savage, Z. D., Yow, R. J., & Bozkurt, T. O. (2017). Modulation of plant autophagy during pathogen attack. Journal of Experimental Botany, 69(6), 1325-1333.
Leon-Reyes, A., Du, Y., Koornneef, A., Proietti, S., Körbes, A. P., Memelink, J., Pieterse, C. M., & Ritsema, T. (2010). Ethylene signaling renders the jasmonate response of arabidopsis insensitive to future suppression by salicylic acid. Molecular Plant-Microbe Interactions, 23(2), 187-197.
Lin, C.-C. (2013). Studies on the mechanism of ALA-induced AtMAPR3 expression. In Department of Biochemical Science and Technology (National Taiwan University).
Liu, H. B., Wang, X. D., Zhang, Y. Y., Dong, J. J., Ma, C., & Chen, W. L. (2015). NADPH oxidase RBOHD contributes to autophagy and hypersensitive cell death during the plant defense response in Arabidopsis thaliana. Biologia Plantarum, 59(3), 570-580.
Ma, C.-H. (2016). AtMAPR3, a heme protein from Arabidopsis, might play a role in plant defense via the ROS signaling pathway. In Department of Biochemical Science and Technology (National Taiwan University).
McDowell, J. M., & Dangl, J. L. (2000). Signal transduction in the plant immune response. Trends in Biochemical Sciences, 25(2), 79-82.
Mifsud, W., & Bateman, A. (2002). Membrane-bound progesterone receptors contain a cytochrome b5-like ligand-binding domain. Genome Biology, 3(12), RESEARCH0068.
Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., Narusaka, Y., Kawakami, N., Kaku, H., & Shibuya, N. (2007). CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 19613-19618.
Mizushima, N., Yoshimori, T., & Levine, B. (2010). Methods in mammalian autophagy research. Cell, 140(3), 313-326.
Mou, Z., Fan, W., & Dong, X. (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell, 113(7), 935-944.
Mou, Z., Fan, W., & Dong, X. (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell, 113(7), 935-944.
Nagano, M., Ihara-Ohori, Y., Imai, H., Inada, N., Fujimoto, M., Tsutsumi, N., Uchimiya, H., & Kawai-Yamada, M. (2009). Functional association of cell death suppressor, Arabidopsis Bax inhibitor-1, with fatty acid 2-hydroxylation through cytochrome b₅. The Plant Journal, 58(1), 122-134.
Nagano, M., Takahara, K., Fujimoto, M., Tsutsumi, N., Uchimiya, H., & Kawai-Yamada, M. (2012). Arabidopsis sphingolipid fatty acid 2-hydroxylases (AtFAH1 and AtFAH2) are functionally differentiated in fatty acid 2-hydroxylation and stress responses. Plant Physiology, 159(3), 1138–1148.
Ndamukong, I., Abdallat, A. A., Thurow, C., Fode, B., Zander, M., Weigel, R., & Gatz, C. (2007). SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. The Plant Journal, 50(1), 128-139.
O'Malley, R. C., Barragan, C. C., & Ecker, J. R. (2015). A user's guide to the Arabidopsis T-DNA insertion mutant collections. Methods in molecular biology, 1284, 323-342.
Parisy, V., Poinssot, B., Owsianowski, L., Buchala, A., Glazebrook, J., & Mauch, F. (2007). Identification of PAD2 as a γ-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. The Plant Journal, 49(1), 159-172.
Penninckx, I. A. M. A., Thomma, B. P. H. J., Buchala, A., Métraux, J.-P., & Broekaert, W. F. (1998). Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. The Plant Cell, 10(12), 2103-2113.
Pieterse, C. M. J., Leon-Reyes, A., Van der Ent, S., & Van Wees, S. C. M. (2009). Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 5(5), 308-316.
Pogány, M., von Rad, U., Grün, S., Dongó, A., Pintye, A., Simoneau, P., Bahnweg, G., Kiss, L., Barna, B., & Durner, J. (2009). Dual roles of reactive oxygen species and NADPH oxidase RBOHD in an Arabidopsis-Alternaria Pathosystem. Plant Physiology, 151(3), 1459-1475.
Qi, J., Wang, J., Gong, Z., & Zhou, J.-M. (2017). Apoplastic ROS signaling in plant immunity. Current Opinion in Plant Biology, 38, 92-100.
Qiao, H., Shen, Z., Huang, S.-s. C., Schmitz, R. J., Urich, M. A., Briggs, S. P., & Ecker, J. R. (2012). Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science, 338(6105), 390-393.
Raggi, S., Ferrarini, A., Delledonne, M., Dunand, C., Ranocha, P., De Lorenzo, G., Cervone, F., & Ferrari, S. (2015). The arabidopsis class III peroxidase AtPRX71 negatively regulates growth under physiological conditions and in response to cell wall damage. Plant Physiology, 169(4), 2513-2525.
Ramírez, V., Agorio, A., Coego, A., García-Andrade, J., Hernández, M. J., Balaguer, B., Ouwerkerk, P. B., Zarra, I., & Vera, P. (2011). MYB46 modulates disease susceptibility to Botrytis cinerea in Arabidopsis. Plant Physiology, 155(4), 1920-1935.
Shakeel, S. N., Wang, X., Binder, B. M., & Schaller, G. E. (2013). Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AoB PLANTS, 5, plt010.
Spoel, S. H., Koornneef, A., Claessens, S. M., Korzelius, J. P., Van Pelt, J. A., Mueller, M. J., Buchala, A. J., Métraux, J. P., Brown, R., Kazan, K., Van Loon, L. C., Dong, X., & Pieterse, C. M. (2003). NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. The Plant Cell, 15(3), 760–770.
Staswick, P. E., & Tiryaki, I. (2004). The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. The Plant Cell, 16(8), 2117-2127.
Survila, M., Davidsson, P. R., Pennanen, V., Kariola, T., Broberg, M., Sipari, N., Heino, P., & Palva, E. T. (2016). Peroxidase-generated apoplastic ROS impair cuticle integrity and contribute to DAMP-elicited defenses. Frontiers in Plant Science, 7, 1945.
Suza, W. P., & Staswick, P. E. (2008). The role of JAR1 in Jasmonoyl-L: -isoleucine production during Arabidopsis wound response. Planta, 227(6), 1221-1232.
Suzuki, N., Miller, G., Morales, J., Shulaev, V., Torres, M. A., & Mittler, R. (2011). Respiratory burst oxidases: the engines of ROS signaling. Current Opinion in Plant Biology, 14(6), 691-699.
Szabo, L. J., & Bushnell, W. R. (2001). Hidden robbers: The role of fungal haustoria in parasitism of plants. Proceedings of the National Academy of Sciences, 98, 7654-7655.
Tenberge, K. B., Beckedorf, M., Hoppe, B., Schouten, A., Solf, M., & von den Driesch, M. (2002). In Situ Localization of AOS in Host-Pathogen Interactions. Microscopy and Microanalysis, 8(S02), 250-251.
Thaler, J. S., Owen, B., & Higgins, V. J. (2004). The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant Physiology, 135(1), 530-538.
Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S. Y., Howe, G. A., & Browse, J. (2007). JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature, 448(7154), 661-665.
Thomma, B. P. H. J., Eggermont, K., Tierens, K. F. M.-J., & Broekaert, W. F. (1999). Requirement of functional Ethylene-Insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiology, 121(4), 1093-1101.
Thordal-Christensen, H., Zhang, Z., Wei, Y., & Collinge, D. B. (1997). Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction. The Plant Journal, 11(6), 1187-1194.
Torres, M. A., Dangl, J. L., & Jones, J. D. G. (2002). Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci U S A, 99(1), 517-522.
Torres, M. A., Jones, J. D. G., & Dangl, J. L. (2005). Pathogen-induced, NADPH oxidase–derived reactive oxygen intermediates suppress the spread of cell death in Arabidopsis thaliana. Nature Genetics, 37(10), 1130-1134.
Torres, M. A., Jones, J. D. G., & Dangl, J. L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiology, 141(2), 373-378.
Van Breusegem, F., & Dat, J. F. (2006). Reactive oxygen species in plant cell death. Plant Physiology, 141(2), 384-390.
van Kan, J. A. L. (2006). Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends in Plant Science, 11(5), 247-253.
Veronese, P., Nakagami, H., Bluhm, B., Abuqamar, S., Chen, X., Salmeron, J., Dietrich, R. A., Hirt, H., & Mengiste, T. (2006). The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. The Plant cell, 18(1), 257–273. Watanabe, N., & Lam, E. (2006). Arabidopsis Bax inhibitor-1 functions as an attenuator of biotic and abiotic types of cell death. The Plant Journal, 45(6), 884-894.
Welinder, K. G., Justesen, A. F., Kjærsgård, I. V. H., Jensen, R. B., Rasmussen, S. K., Jespersen, H. M., & Duroux, L. (2002). Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana. European Journal of Biochemistry, 269(24), 6063–6081.
Xie, D.-X., Feys, B. F., James, S., Nieto-Rostro, M., & Turner, J. G. (1998). COI1: An Arabidopsis gene required for jasmonate-regulated defense and fertility. Science, 280(5366), 1091-1094.
Zachary Nimchuk, Thomas Eulgem, Ben F. Holt III, & Dangl, J. L. (2003). Recognition and response in the plant immune system. Annual Review of Genetics, 37(1), 579-609.
Zhang, J., Shao, F., Li, Y., Cui, H., Chen, L., Li, H., Zou, Y., Long, C., Lan, L., Chai, J., Chen, S., Tang, X., & Zhou, J. M. (2007). A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host & Microbe, 1(3), 175-185.
Zhu, M., Tang, X., Wang, Z., Xu, W., Zhou, Y., Wang, W., Li, X., Li, R., Guo, K., Sun, Y., Zhang, W., Xu, L., & Li, X. (2019). Arabidopsis GAAPs interacting with MAPR3 modulate the IRE1-dependent pathway upon endoplasmic reticulum stress. Journal of Experimental Botany, 70(21), 6113-6125.
Zhu, Z., An, F., Feng, Y., Li, P., Xue, L., A, M., Jiang, Z., Kim, J. M., To, T. K., Li, W., Zhang, X., Yu, Q., Dong, Z., Chen, W. Q., Seki, M., Zhou, J. M., & Guo, H. (2011). Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 108(30), 12539-12544.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊