跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 10:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:汪家仰
研究生(外文):Chia-Yang Wang
論文名稱:氫氣調控耗竭T細胞PD-1表現之機制探討
論文名稱(外文):Restoration of Exhausted T cells by Manipulating Cellular Calcium Concentration via Molecule Hydrogen
指導教授:何佳安何佳安引用關係蕭寧馨蕭寧馨引用關係
指導教授(外文):Ja-An Annie HoNing-Sing Shaw
口試委員:徐士蘭吳立真呂瑞梅楊家銘
口試委員(外文):Shih-Lan HsuLi-Chen WuRui-Mei LuChia-Min Yang
口試日期:2020-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:78
中文關鍵詞:氫氣程序性細胞死亡因子T細胞耗竭免疫療法NFATc1轉錄因子鈣離子
外文關鍵詞:Hydrogen GasPD-1T cell ExhaustionImmunotherapyNFATc1Calcium ion
DOI:10.6342/NTU202003250
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在正常生理條件下,表現在T細胞上的細胞程式死亡配體1蛋白(Programmed cell death protein 1, PD-1) 可調控體內的免疫反應。但當T細胞處於腫瘤微環境時,因受到抗原不斷的刺激而過度表現PD-1,進而失去對抗腫瘤細胞的能力,這種現象稱為T細胞耗竭(T cell exhaustion)。在臨床上,PD-1免疫療法被用於恢復T細胞能力以對抗癌症,但其治療費用卻十分高昂。過去的臨床研究發現氫氣治療可以減少T細胞上的PD-1表現;但其中的調控機制並未解碼。因此,本研究的目標即是針對氫氣是如何減少T細胞上PD-1的機制進行探討。根據即時定量聚合酶連鎖反應、西方墨點法和流式細胞儀的分析結果顯示,當T細胞生長在富含氫氣的環境中,PD-1的表現量會明顯減少。而氫氣會通過調控細胞質內鈣離子濃度而降低調控PD-1的重要轉錄因子NFATc1活化的數量。另外,我們發現氫氣也會改變T細胞的粒腺體膜電位,且提升細胞的活性。由我們的研究結果可知氫氣是通過調控T細胞內鈣離子濃度進而減少PD-1的表現,這為氫氣在臨床上的應用提供了更有力的證據。此外藉由新發現的調控路徑,我們合理化氫氣可以恢復T細胞活性的機制,也為癌症免疫療法的發展提供新的標的。
Programmed cell death protein 1 (PD-1) is an inhibitory receptor that regulates immune balance in normal physiologic condition. However, T cells in the tumor microenvironment (TME) was found to express high level of PD-1, resulted in a loss of their ability in eliminating cancer. This phenomenon was called T-cell exhaustion. Reversing T-cell exhaustion thus became an inspiring strategy for cancer treatment. PD-1 immunotherapy has been executed for T cell restoration. However the medical cost was too high to be affordable. Previous clinical study has observed the reduced expression of PD-1 on T cells via hydrogen therapy; however, the mechanism underlying remain unclear. We herein aimed to reveal the mechanism on how hydrogen reduce the expression of PD-1 in T cells. We found that hydrogen down-regulated the expression of PD-1 by incubating T cells in hydrogen-rich environment, which was identified by real-time PCR, western blot and flow cytometry. Furthermore, our preliminary data showed that hydrogen suppressed the expression of the activated NFATc1, an important transcription factor for PD-1, via regulating the cellular Ca2+ concentration, as evidenced by decreased amount of activated NFATc1 extracted from cytosol and decreased [Ca2+] in cytosol. In addition, we confirmed that hydrogen exerted an effect on the mitochondrial membrane potential. In summary, we discovered that hydrogen-mediated PD-1 downregulation in T cell was manipulated by Ca2+-mediated pathway, and these results rationalize the application of hydrogen in clinical practice. Moreover, as hydrogen-mediated T cell restoration pathway was uncovered, new targets can be discovered and considered to be used in future development of anti-cancer immunotherapy.
誌謝 I
摘要 II
ABSTRACT III
目錄 1
圖目錄 4
表目錄 6
第一章 文獻回顧 7
1.1 緒論 7
1.2 氫氣在醫療上的應用 8
1.2.1 氣體療法 8
1.2.2 氫氣(Hydrogen gas; H2)的特性(針對治療疾病) 8
1.2.3 氫氣應用於臨床治療的方式及效果 10
1.2.4 氫氣由抗發炎到調控機制的進展 12
1.3 程序性細胞死亡因子(PROGRAMMED CELL DEATH-1, PD-1) 13
1.3.1 發現及命名 13
1.3.2 結構組成及特性(參考圖1-2與圖1-3) 13
1.3.3 PD-1和PD-1配體的作用(參考圖1-3) 14
1.4 癌症免疫療法(CANCER IMMUNOTHERAPY) 15
1.4.1 T細胞的免疫作用 15
1.4.2 癌症免疫療法歷史和原理 16
1.4.3 T細胞耗竭 (T cell exhaustion) 18
1.4.4 癌症免疫療法的不足之處 18
1.5 T細胞調控PD-1表現的轉錄因子 19
第二章 實驗假說與項目 22
2.1 實驗假說 22
2.2 實驗項目 23
2.3 實驗設計示意圖 23
第三章 實驗材料與方法 24
3.1 實驗材料 24
3.1.1 藥品 24
3.1.2 試劑 26
3.1.3 抗體 26
3.1.4 引子序列 27
3.1.5 儀器 28
3.1.6 細胞株 30
3.1.7 氣體 30
3.2 實驗方法 31
3.2.1 細胞培養(Cell culture) 31
3.2.1.1 細胞株生長條件 31
3.2.1.2 培養基及緩衝液配製 31
3.2.1.3 細胞繼代 32
3.2.1.4 細胞計數與種細胞 32
3.2.1.5 細胞冷凍與解凍 33
3.2.2 RNA 萃取 (RNA extraction) 34
3.2.3 將mRNA轉成cDNA 35
3.2.4 即時聚合酶連鎖反應 (Real-time PCR) 36
3.2.5 蛋白質萃取 (Protein extraction) 37
3.2.5.1 全蛋白萃取(Total protein extraction) 37
3.2.5.2 核蛋白萃取 37
3.2.5.3 粒腺體蛋白萃取 (全程於冰上進行) 38
3.2.5.4 蛋白質定量 39
3.2.6 粒腺體膜電位分析 40
3.2.7 西方墨點法 (Western Blot) 41
3.2.8 測量細胞質內鈣離子濃度 46
第四章 實驗結果與討論 47
4.1 氫氣不會對細胞的增殖生長造成影響 47
Part I : 氫氣的作用形式 48
Part II:氫氣對細胞存活率的影響 51
4.2 氫氣對EL4細胞中PD-1表現的影響 53
Part I : 氫氣對PD-1 mRNA表現量的影響 53
Part II : 氫氣對PD-1 protein表現量的影響 56
4.3 NFATC1是主要調控PD-1表現的轉錄因子 59
4.4 氫氣通過平衡細胞質內鈣離子濃度調控T細胞內PD-1的表現 63
Part I: 細胞質內鈣離子濃度對PD-1表現的影響 63
Part II: NFATc1蛋白質含量分析 66
4.5 氫氣可以增強粒腺體活性 68
4.6 氫氣可以增強T細胞抗腫瘤能力 71
第五章 結論與未來展望 72
第六章 參考文獻 74
1.台灣衛生福利部, 108年死因統計結果分析. 109年.
2.Riley, R. S.; June, C. H.; Langer, R.; Mitchell, M. J., Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov 2019, 18 (3), 175-196.
3.Akagi, J.; Baba, H., Hydrogen gas restores exhausted CD8+ T cells in patients with advanced colorectal cancer to improve prognosis. Oncol Rep 2019, 41 (1), 301-311.
4.David A.Wink, Y. V., Jacques Laval, Francoise Laval, Mark W.Dewhirst and James B.Mitchell, The multifaceted roles of nitric oxide in cancer. Carcinogenesis 1998, 19, 711-721.
5.Zheng, D. W.; Li, B.; Li, C. X.; Xu, L.; Fan, J. X.; Lei, Q.; Zhang, X. Z., Photocatalyzing CO2 to CO for Enhanced Cancer Therapy. Adv Mater 2017, 29 (44).
6.Li, S.; Liu, R.; Jiang, X.; Qiu, Y.; Song, X.; Huang, G.; Fu, N.; Lin, L.; Song, J.; Chen, X.; Yang, H., Near-Infrared Light-Triggered Sulfur Dioxide Gas Therapy of Cancer. ACS Nano 2019, 13 (2), 2103-2113.
7.M Dole, F. W. a. W. F., Hyperbaric Hydrogen Therapy: A Possible Treatment for Cancer. SCIENCE 1975, 190, 152-154.
8.Gladwin, K. C. W. M. T., The hydrogen highway to reperfusion therapy. NATURE MEDICINE 2007, 3, 673-674.
9.Wu, Y.; Yuan, M.; Song, J.; Chen, X.; Yang, H., Hydrogen Gas from Inflammation Treatment to Cancer Therapy. ACS Nano 2019, 13 (8), 8505-8511.
10.Ge, L.; Yang, M.; Yang, N. N.; Yin, X. X.; Song, W. G., Molecular hydrogen: a preventive and therapeutic medical gas for various diseases. Oncotarget 2017, 8 (60), 102653-102673.
11.Zhao, P.; Jin, Z.; Chen, Q.; Yang, T.; Chen, D.; Meng, J.; Lu, X.; Gu, Z.; He, Q., Local generation of hydrogen for enhanced photothermal therapy. Nat Commun 2018, 9 (1), 4241.
12.Yang, Q.; Ji, G.; Pan, R.; Zhao, Y.; Yan, P., Protective effect of hydrogen-rich water on liver function of colorectal cancer patients treated with mFOLFOX6 chemotherapy. Mol Clin Oncol 2017, 7 (5), 891-896.
13.Ki-Mun Kang, Y.-N. K., Ihil-Bong Choi, Yeunhwa Gu, Tomohiro Kawamura, Yoshiya Toyoda, and Atsunori Nakao, Effects of drinking hydrogen-rich water on the quality of life of patients treated with radiotherapy for liver tumors. Medical Gas Research 2011, 1.
14.Terasaki, Y.; Suzuki, T.; Tonaki, K.; Terasaki, M.; Kuwahara, N.; Ohsiro, J.; Iketani, M.; Takahashi, M.; Hamanoue, M.; Kajimoto, Y.; Hattori, S.; Kawaguchi, H.; Shimizu, A.; Ohsawa, I., Molecular hydrogen attenuates gefitinib-induced exacerbation of naphthalene-evoked acute lung injury through a reduction in oxidative stress and inflammation. Lab Invest 2019, 99 (6), 793-806.
15.Xia, C.; Liu, W.; Zeng, D.; Zhu, L.; Sun, X.; Sun, X., Effect of hydrogen-rich water on oxidative stress, liver function, and viral load in patients with chronic hepatitis B. Clin Transl Sci 2013, 6 (5), 372-5.
16.Song, G.; Li, M.; Sang, H.; Zhang, L.; Li, X.; Yao, S.; Yu, Y.; Zong, C.; Xue, Y.; Qin, S., Hydrogen-rich water decreases serum LDL-cholesterol levels and improves HDL function in patients with potential metabolic syndrome. J Lipid Res 2013, 54 (7), 1884-93.
17.Kajiyama, S.; Hasegawa, G.; Asano, M.; Hosoda, H.; Fukui, M.; Nakamura, N.; Kitawaki, J.; Imai, S.; Nakano, K.; Ohta, M.; Adachi, T.; Obayashi, H.; Yoshikawa, T., Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr Res 2008, 28 (3), 137-43.
18.Ono, H.; Nishijima, Y.; Adachi, N.; Tachibana, S.; Chitoku, S.; Mukaihara, S.; Sakamoto, M.; Kudo, Y.; Nakazawa, J.; Kaneko, K.; Nawashiro, H., Improved brain MRI indices in the acute brain stem infarct sites treated with hydroxyl radical scavengers, Edaravone and hydrogen, as compared to Edaravone alone. A non-controlled study. Med Gas Res 2011, 1 (1), 12.
19.Ostojic, S. M., Serum alkalinization and hydrogen-rich water in healthy men. Mayo Clin Proc 2012, 87 (5), 501-2.
20.Wan, W. L.; Tian, B.; Lin, Y. J.; Korupalli, C.; Lu, M. Y.; Cui, Q.; Wan, D.; Chang, Y.; Sung, H. W., Photosynthesis-inspired H2 generation using a chlorophyll-loaded liposomal nanoplatform to detect and scavenge excess ROS. Nat Commun 2020, 11 (1), 534.
21.Zhang, C.; Zheng, D. W.; Li, C. X.; Zou, M. Z.; Yu, W. Y.; Liu, M. D.; Peng, S. Y.; Zhong, Z. L.; Zhang, X. Z., Hydrogen gas improves photothermal therapy of tumor and restrains the relapse of distant dormant tumor. Biomaterials 2019, 223, 119472.
22.Bouchra Gharib, S. H., Ould M.S. Abdallahi, Hubert Lepidi, Bernard Gardette, Max De Reggi, Anti-inflammatory properties of molecular hydrogen: investigation on parasite-induced liver inflammation. Medical sciences 2001, 324, 719-724.
23.Niu, Y.; Nie, Q.; Dong, L.; Zhang, J.; Liu, S. F.; Song, W.; Wang, X.; Wu, G.; Song, D., Hydrogen Attenuates Allergic Inflammation by Reversing Energy Metabolic Pathway Switch. Sci Rep 2020, 10 (1), 1962.
24.Yasumasa Ishida, Y. A., Keiichi Shibahara and Tasuku Honjo, Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. The EMBO Journal 1992, 11, 3887 - 3895.
25.Hiroyuki Nishimura, M. N., Hiroshi Hiai,Nagahiro Minato, and Tasuku Honjo, Development of Lupus-like Autoimmune Diseases by Disruption of the PD-1 Gene Encoding an ITIM Motif-Carrying Immunoreceptor. Immunity 1999, 11, 141–151.
26.Freeman, G. J., Structures ofPD-1 with its ligands: Sideways and dancing cheek to cheek. 2008, 105, 10275-10276.
27.Liu, Y.; Yu, Y.; Yang, S.; Zeng, B.; Zhang, Z.; Jiao, G.; Zhang, Y.; Cai, L.; Yang, R., Regulation of arginase I activity and expression by both PD-1 and CTLA-4 on the myeloid-derived suppressor cells. Cancer Immunol Immunother 2009, 58 (5), 687-97.
28.Petrovas, C.; Casazza, J. P.; Brenchley, J. M.; Price, D. A.; Gostick, E.; Adams, W. C.; Precopio, M. L.; Schacker, T.; Roederer, M.; Douek, D. C.; Koup, R. A., PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. J Exp Med 2006, 203 (10), 2281-92.
29.Verdegaal, E. M.; Hoogstraten, C.; Sandel, M. H.; Kuppen, P. J.; Brink, A. A.; Claas, F. H.; Gorsira, M. C.; Graadt van Roggen, J. F.; Osanto, S., Functional CD8+ T cells infiltrate into nonsmall cell lung carcinoma. Cancer Immunol Immunother 2007, 56 (5), 587-600.
30.Youngblood, B.; Oestreich, K. J.; Ha, S. J.; Duraiswamy, J.; Akondy, R. S.; West, E. E.; Wei, Z.; Lu, P.; Austin, J. W.; Riley, J. L.; Boss, J. M.; Ahmed, R., Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8(+) T cells. Immunity 2011, 35 (3), 400-12.
31.Chen, D. B. F. a. L., The New B7s: Playing a Pivotal Role in Tumor Immunity. J Immunother 2007, 30, 251-260.
32.Chemnitz, J. M.; Parry, R. V.; Nichols, K. E.; June, C. H.; Riley, J. L., SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol 2004, 173 (2), 945-54.
33.Johannes M. van Noort , A. v. S., Jacqueline Boon , Wim J.A. Boersma , Chris H. Polman and Cornelis J. Lucas, Minor myelin proteins can be major targets for peripheral blood T cells from both multiple sclerosis patients and healthy subjects. Journal of Neuroimmunology 1993, 46, 67-72.
34.Londei, T. L. L. W. L. a. M., T cell Clones to Epitopes of Glutamic Acid Decarboxylase 65 Raised from Normal Subjects and Patients with Insulin-dependent Diabetes. Journal of Autoimmunity 1996, 9, 385–389.
35.Sharpe, A. H., Mechanisms of costimulation. 2009.
36.Wei, S. C.; Duffy, C. R.; Allison, J. P., Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov 2018, 8 (9), 1069-1086.
37.Pardoll, D. M., The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012, 12 (4), 252-64.
38.AUWERX, K. S. J., Protect the killer: CTLs need defenses against the tumor. NATURE MEDICINE 2002, 8, 793-800.
39.Coffelt, S. B.; de Visser, K. E., Immune-mediated mechanisms influencing the efficacy of anticancer therapies. Trends Immunol 2015, 36 (4), 198-216.
40.Wherry, E. J., T cell exhaustion. Nat Immunol 2011, 12 (6), 492-9.
41.Scharping, N. E.; Menk, A. V.; Moreci, R. S.; Whetstone, R. D.; Dadey, R. E.; Watkins, S. C.; Ferris, R. L.; Delgoffe, G. M., The Tumor Microenvironment Represses T Cell Mitochondrial Biogenesis to Drive Intratumoral T Cell Metabolic Insufficiency and Dysfunction. Immunity 2016, 45 (2), 374-88.
42.Chinai, J. M.; Janakiram, M.; Chen, F.; Chen, W.; Kaplan, M.; Zang, X., New immunotherapies targeting the PD-1 pathway. Trends Pharmacol Sci 2015, 36 (9), 587-95.
43.Audrey L. Kinter, E. J. G., Jonathan P. McNally, Irini Sereti, Gregg A. Roby, Marie A. O’Shea, and Anthony S. Fauci, The Common γ -Chain Cytokines IL-2, IL-7, IL-15, and IL-21 Induce the Expression of Programmed Death-1 and Its Ligands. The Journal of Immunology 2008, 181, 6738–6746.
44.Susanne J. Szabo, S. T. K., Gina L. Costa, Xiankui Zhang, C. Garrison Fathman, and Laurie H. Glimcher, A Novel Transcription Factor, T-bet, Directs Th1 Lineage Commitment. Cell 2000, 100, 655-669.
45.Kao, C.; Oestreich, K. J.; Paley, M. A.; Crawford, A.; Angelosanto, J. M.; Ali, M. A.; Intlekofer, A. M.; Boss, J. M.; Reiner, S. L.; Weinmann, A. S.; Wherry, E. J., Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nat Immunol 2011, 12 (7), 663-71.
46.Miriam Shapiro-Shelef, a. K. C., Kuo-I Lin, Louise J. McHeyzer-Williams, Jerry Liao, Michael G. McHeyzer-Williams, Blimp-1 Is Required for the Formation of Immunoglobulin Secreting Plasma Cells and Pre-Plasma Memory B Cells. Immunity 2003, 19, 607–620.
47.Lu, P.; Youngblood, B. A.; Austin, J. W.; Mohammed, A. U.; Butler, R.; Ahmed, R.; Boss, J. M., Blimp-1 represses CD8 T cell expression of PD-1 using a feed-forward transcriptional circuit during acute viral infection. J Exp Med 2014, 211 (3), 515-27.
48.Karin, E. S. a. M., AP-1 as a regulator of cell life and death. NATURE CELL BIOLOGY 2002, 4, 131-136.
49.Atsaves, V.; Leventaki, V.; Rassidakis, G. Z.; Claret, F. X., AP-1 Transcription Factors as Regulators of Immune Responses in Cancer. Cancers (Basel) 2019, 11 (7).
50.Klein-Hessling, S.; Muhammad, K.; Klein, M.; Pusch, T.; Rudolf, R.; Floter, J.; Qureischi, M.; Beilhack, A.; Vaeth, M.; Kummerow, C.; Backes, C.; Schoppmeyer, R.; Hahn, U.; Hoth, M.; Bopp, T.; Berberich-Siebelt, F.; Patra, A.; Avots, A.; Muller, N.; Schulze, A.; Serfling, E., NFATc1 controls the cytotoxicity of CD8(+) T cells. Nat Commun 2017, 8 (1), 511.
51.Simon, S.; Labarriere, N., PD-1 expression on tumor-specific T cells: Friend or foe for immunotherapy? Oncoimmunology 2017, 7 (1), e1364828.
52.Kenneth J. Oestreich, H. Y., Rafi Ahmed, and Jeremy M. Boss, NFATc1 Regulates PD-1 Expression upon T Cell Activation. The Journal of Immunology 2008, 181, 4832-4839.
53.Jun Nakae, T. K.; Yukari Kitamura, W. H. B. I., Karen C. Arden, and Domenico Accili, The Forkhead Transcription Factor Foxo1 Regulates Adipocyte Differentiation. Developmental Cell 2003, 4, 119-129.
54.Staron, M. M.; Gray, S. M.; Marshall, H. D.; Parish, I. A.; Chen, J. H.; Perry, C. J.; Cui, G.; Li, M. O.; Kaech, S. M., The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8(+) T cells during chronic infection. Immunity 2014, 41 (5), 802-14.
55.Bally, A. P.; Austin, J. W.; Boss, J. M., Genetic and Epigenetic Regulation of PD-1 Expression. J Immunol 2016, 196 (6), 2431-7.
56.Diaz, R.; Nguewa, P. A.; Diaz-Gonzalez, J. A.; Hamel, E.; Gonzalez-Moreno, O.; Catena, R.; Serrano, D.; Redrado, M.; Sherris, D.; Calvo, A., The novel Akt inhibitor Palomid 529 (P529) enhances the effect of radiotherapy in prostate cancer. Br J Cancer 2009, 100 (6), 932-40.
57.Gassner, F. J.; Weiss, L.; Geisberger, R.; Hofbauer, J. P.; Egle, A.; Hartmann, T. N.; Greil, R.; Tinhofer, I., Fludarabine modulates composition and function of the T cell pool in patients with chronic lymphocytic leukaemia. Cancer Immunol Immunother 2011, 60 (1), 75-85.
58.THOMAS BRABLETZ, I. P., ELKE SCHORR, FRIEDERIKE SIEBELT, THOMAS WIRTH, AND EDGAR SERFLINGl, Transforming Growth Factor , and Cyclosporin A Inhibit the Inducible Activity of the Interleukin-2 Gene in T Cells through a Noncanonical Octamer-Binding Site. MOLECULAR AND CELLULAR BIOLOGY 1993, 13, 1155-1162.
59.Schroder, K.; Hertzog, P. J.; Ravasi, T.; Hume, D. A., Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 2004, 75 (2), 163-89.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top