跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/30 22:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林筱涵
研究生(外文):Hsiao-Han Lin
論文名稱:第六型分泌系統在 Azorhizobium 與 Agrobacterium 之功能與機制研究
論文名稱(外文):Functional and Mechanistic Studies of Type VI Secretion Systems in Azorhizobium and Agrobacterium
指導教授:劉啓德
指導教授(外文):Chi-Te Liu
口試委員:陳仁治林乃君鄭秋萍郭志鴻馬麗珊
口試委員(外文):Jen-Chih ChenNai-Chun LinChiu-Ping ChengChih-Horng KuoLay-Sun Ma
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:134
中文關鍵詞:第六型細菌分泌系統根瘤菌-豆科共生細菌間競爭受體細胞ClpP莖瘤固氮根瘤菌根癌農桿菌
外文關鍵詞:Type VI secretion systemrhizobium-legume symbiosisantibacterial activityrecipient cellsClpPAzorhizobium caulinodansAgrobacterium tumefaciens
DOI:10.6342/NTU202000295
相關次數:
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
第六型細菌分泌系統(Type VI secretion system, T6SS)是一個由13-14個核心蛋白質所組成、形狀類似噬菌體尾部、結構橫跨革蘭氏陰性細菌內外雙膜的蛋白質外泌系統,可藉由組裝成長管柱構造穿透真核生物、或原核生物等受體細胞(recipient cells)的細胞膜,將效應蛋白質注入至受體細胞中。綜合許多研究發現,T6SS的功能除了與致病力有關外,也與細菌間競爭、抗真核生物活性、金屬離子螯合、促進基因水平轉移等息息相關。雖然T6SS已知存在四分之一以上的革蘭氏陰性細菌基因體中,其中有許多是植物相關細菌(plant-associated bacteria),包括了病原菌及共生菌,然而T6SS在這些細菌中所扮演的生物功能至今仍然存在許多未知。有鑑於此,本研究使用共生莖瘤固氮根瘤菌(Azorhizobium caulinodans)與致病根癌農桿菌(Agrobacterium tumefaciens)作為材料,闡明T6SS在植物共生菌與植物病原菌上所扮演的角色、功能與機制。
A. caulinodans ORS571基因體上有一套T6SS基因簇,本研究依此建構了一系列T6SS核心蛋白基因缺失突變株,用以探討T6SS分別對於菌株在自由態與共生態上的影響。研究結果發現,雖然有無T6SS對於自由態ORS571菌株的生長、菌體形態、自由態固氮能力、細菌間競爭、在植物上的定植能力以及共生效益並無顯著影響,當缺失T6SS基因的ORS571菌株與豆科宿主長喙田菁(Sesbania rostrata)建立共生關係時,其共生競爭能力與野生株相較顯著較低。
根癌農桿菌(A. tumefaciens)是許多癌腫病的病原菌,其T6SS是一種能夠殺死種間和種內細菌的抗菌武器,故本研究使用 A. tumefaciens T6SS來研究細菌間競爭的作用模式。儘管其T6SS的分子調控與結構組織已被廣泛研究,但對於受攻擊方的受體細胞(recipient cell)因子所知甚少。因此本研究以A. tumefaciens strain C58為攻擊者,而缺乏T6SS的大腸桿菌為受體細胞,建立了一個高通量細菌競爭篩選平台,以尋找對T6SS殺滅力具有抗性的受體菌株。經由篩選得到16株對C58菌株的 T6SS殺滅力呈現低敏感表型的突變株,並確認其中四個與增強C58菌株的T6SS殺滅力有關的大腸桿菌基因(clpP, gltA, ydhS, ydaE)。進一步探討ClpP蛋白酶與T6SS生物功能關連性的試驗結果顯示,當ClpP蛋白酶與其銜接蛋白ClpA形成ClpAP複合物時,大腸桿菌對根癌農桿菌C58菌株的T6SS攻擊的敏感性便會顯著提昇。
綜合以上結果,本研究指出共生根瘤菌A. caulinodans ORS571可藉由T6SS確保其共生競爭性,進而提昇結瘤佔有率;病原菌A. tumefaciens strain C58的細菌間競爭則需要多個受體因子的參與,來達到最佳的T6SS殺滅力。這些發現不僅擴展了我們對植物相關細菌T6SS的理解,且所獲得的知識或可應用於其他具有T6SS細菌的相關研究上。
The type VI secretion system (T6SS) is a protein secretion system composed of 13-14 core proteins, which structurally resembles an inverse phage tail. The T6SS spans the inner and outer membranes of a Gram-negative bacterium and can penetrate the membranes of the eukaryotic or prokaryotic recipient cells. The biological functions of T6SS are versatile, ranging from anti-eukaryotic activity, virulence, interbacterial competition, metal ion sequestering, and facilitating horizontal gene transfer, many of which display in animal-associated bacteria. Despite the existence in more than a quarter of the sequenced Gram-negative bacteria, the biological functions of T6SS in plant-associated bacteria, including mutualistic and pathogenic bacteria, remained mostly unknown. This study used a mutualistic bacterium, Azorbizobium caulinodans, and a pathogenic bacterium, Agrobacterium tumefaciens, to elucidate the functional and mechanistic aspects of T6SS in rhizobacteria.
With the discovery of a T6SS gene cluster in A. caulinodans ORS571, a series of T6SS gene deletion mutants were generated, and their phenotypes were analyzed in free-living and symbiotic states. The results showed that whether the T6SS exists or not, there was no detectable effect on vegetative growth, morphology, free-living nitrogen-fixing ability, interbacterial competition, plant colonization, or symbiotic effectiveness. On the other hand, the strains lacking T6SS showed a reduction in the symbiotic competitiveness when co-infected with a wild-type strain on the stem of the leguminous host plant Sesbania rostrata.
A. tumefaciens is a causative agent of crown gall disease in a wide range of plants and harbors T6SS. The T6SS of A. tumefaciens strain C58 is an antibacterial weapon capable of killing both inter- and intra-species bacteria. Thus, A. tumefaciens C58 is selected to study the mode of action of T6SS during interbacterial competition. While the molecular mechanisms and structural organization of the T6SS have been extensively studied, little was known about the recipient cell factor(s) needed or subverted for an attack to be successful. Thus, a high-throughput interbacterial competition screening platform was established in search of the recipient strains that were resistant to T6SS killing. A. tumefaciens strain C58 served as a model attacker, and the Escherichia coli devoid of T6SS served as a recipient cell. From the screening, 16 mutants with less susceptibility to A. tumefaciens C58 T6SS-dependent killing were identified. Among them, four genes (clpP, gltA, ydhS, ydaE) that participate in enhancing the recipient susceptibility to A. tumefaciens T6SS killing were confirmed. Further studies demonstrated that the ClpP protease and its adapter protein ClpA forming the ClpAP complex in the E. coli recipient cell act in enhancing the recipient’s susceptibility to the A. tumefaciens T6SS attack.
In summary, this study discovered that the T6SS of legume symbiont A. caulinodans ORS571 functions to ensure the competitiveness of nodule occupancy and that multiple recipient factors are required to maximize T6SS killing efficiency of A. tumefaciens C58. The findings expand our understanding of T6SS in plant-associated bacteria, and the knowledge obtained could be applied to other T6SS harboring bacteria.
口試委員會審定書 i
謝辭 ii
中文摘要 iii
Abstract v
List of Figures ix
List of Tables xi
List of Appendix Figures xii
Chapter 1. Introduction 1
1.1 Protein secretion systems in Gram-negative bacteria 1
1.2 Bacterial secretion systems in plant-associated bacteria 6
1.3 Type VI secretion system in plant-associated bacteria 9
1.4 Azorhizobium caulinodans biology 12
1.5 Agrobacterium tumefaciens biology 15
1.6 Scientific questions addressed in this thesis 19
Chapter 2. Type VI secretion system in Azorhizobium caulinodans ORS571 24
2.1 Summary 25
2.2 Introduction 26
2.3 Materials and methods 29
2.4 Results 37
2.5 Discussion 44
Chapter 3. Screening and identification of recipient cell factors involved in type VI secretion system-mediated killing of Agrobacterium tumefaciens C58 64
3.1 Summary 65
3.2 Introduction 66
3.3 Materials and Methods 69
3.4 Results 75
3.5 Discussion 84
Chapter 4. Concluding remarks and discussion 104
Appendices 111
References 121
Abby SS, Cury J, Guglielmini J et al. Identification of protein secretion systems in bacterial genomes. Sci Rep 2016;6: 23080.
Adebayo A, Watanabe I, Ladha JK. Epiphytic occurrence of Azorhizobium caulinodans and other rhizobia on host and nonhost legumes. Appl Environ Microbiol 1989;55: 2407-9.
Akiyoshi DE, Morris RO, Hinz R et al. Cytokinin/auxin balance in crown gall tumors is regulated by specific loci in the T-DNA. Proc Natl Acad Sci USA 1983;80: 407-11.
Alcoforado Diniz J, Liu Y-C, Coulthurst SJ. Molecular weaponry: diverse effectors delivered by the type VI secretion system. Cell Microbiol 2015;17: 1742-51.
Alexopoulos JA, Guarné A, Ortega J. ClpP: A structurally dynamic protease regulated by AAA+ proteins. J Struct Biol 2012;179: 202-10.
Alteri CJ, Mobley HLT. The versatile type VI secretion system. Microbiol Spectr 2016;4.
Aoki ASK, C. MJ, Kyle J et al. Contact‐dependent growth inhibition requires the essential outer membrane protein BamA (YaeT) as the receptor and the inner membrane transport protein AcrB. Mol Microbiol 2008;70: 323-40.
Aoki SK, Diner EJ, de Roodenbeke CtK et al. A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature 2010;468: 439.
Aoki SK, Pamma R, Hernday AD et al. Contact-dependent inhibition of growth in Escherichia coli. Science 2005;309: 1245-8.
Ates LS, Houben ENG, Bitter W. Type VII secretion: a highly versatile secretion system. Microbiol Spectr 2016;4.
Baba T, Ara T, Hasegawa M et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006;2: 2006.0008.
Barret M, Egan F, O''Gara F. Distribution and diversity of bacterial secretion systems across metagenomic datasets. Environ Microbiol Rep 2013;5: 117-26.
Barry GF, Rogers SG, Fraley RT et al. Identification of a cloned cytokinin biosynthetic gene. Proc Natl Acad Sci USA 1984;81: 4776-80.
Basler M. Type VI secretion system: secretion by a contractile nanomachine. Philos Trans R Soc Lond, B, Biol Sci 2015;370.
Basler M, Ho BT, Mekalanos JJ. Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. Cell 2013;152: 884-94.
Basler M, Pilhofer M, Henderson GP et al. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 2012;483: 182-6.
Bayer-Santos E, Cenens W, Matsuyama BY et al. The opportunistic pathogen Stenotrophomonas maltophilia utilizes a type IV secretion system for interbacterial killing. PLoS Path 2019;15: e1007651-e.
Bergersen FJ, Turner GL, Bogusz D et al. Effects of O2 concentrations and various haemoglobins on respiration and nitrogenase activity of bacteroids from stem and root nodules of Sesbania rostrata and of the same bacteria from continuous cultures. J Gen Microbiol 1986;132: 3325-36.
Bernal P, Allsopp LP, Filloux A et al. The Pseudomonas putida T6SS is a plant warden against phytopathogens. ISME J 2017;11: 972–87.
Bernal P, Llamas MA, Filloux A. Type VI secretion systems in plant-associated bacteria. Environ Microbiol 2018;20: 1-15.
Bertani G. Studies on lysogenesis I.: The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 1951;62: 293-300.
Bewley MC, Graziano V, Griffin K et al. The asymmetry in the mature amino-terminus of ClpP facilitates a local symmetry match in ClpAP and ClpXP complexes. J Struct Biol 2006;153: 113-28.
Bhandari V, Wong KS, Zhou JL et al. The role of ClpP protease in bacterial pathogenesis and human diseases. ACS Chem Biol 2018;13: 1413-25.
Bingle LEH, Bailey CM, Pallen MJ. Type VI secretion: a beginner''s guide. Curr Opin Microbiol 2008;11: 3-8.
Bladergroen MR, Badelt K, Spaink HP. Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol Plant-Microbe Interact 2003;16: 53-64.
Blindauer CA, Harrison MD, Robinson AK et al. Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Mol Microbiol 2002;45: 1421-32.
Bondage DD, Lin J-S, Ma L-S et al. VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor–effector complex. Proc Natl Acad Sci USA 2016;113: E3931-E40.
Bönemann G, Pietrosiuk A, Diemand A et al. Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J 2009;28: 315-25.
Bottai D, Gröschel MI, Brosch R. Type VII secretion systems in Gram-positive bacteria. In: Bagnoli F, Rappuoli R (eds.) Protein and sugar export and assembly in Gram-positive bacteria, DOI 10.1007/82_2015_5015. Cham: Springer International Publishing, 2017, 235-65.
Boyer F, Fichant G, Berthod J et al. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genom 2009;10: 104.
Brackmann M, Nazarov S, Wang J et al. Using force to punch holes: mechanics of contractile nanomachines. Trends Cell Biol 2017;27: 623-32.
Bromfield ESP, Jones DG. The competitive ability and symbiotic effectiveness of doubly labelled antibiotic resistant mutants of Rhizobium trifolii. Ann Appl Biol 1979;91: 211-9.
Brunet YR, Zoued A, Boyer F et al. The Type VI Secretion TssEFGK-VgrG Phage-Like Baseplate Is Recruited to the TssJLM Membrane Complex via Multiple Contacts and Serves As Assembly Platform for Tail Tube/Sheath Polymerization. PLOS Genetics 2015;11: e1005545.
Buchmann I, Marner FJ, Schröder G et al. Tumour genes in plants: T-DNA encoded cytokinin biosynthesis. EMBO J 1985;4: 853-9.
Capoen W, Oldroyd G, Goormachtig S et al. Sesbania rostrata: a case study of natural variation in legume nodulation. New Phytol 2010;186: 340-5.
Chae C, Sharma S, Hoskins JR et al. CbpA, a DnaJ homolog, is a DnaK co-chaperone, and its activity is modulated by CbpM. J Biol Chem 2004;279: 33147-53.
Chang Y-W, Rettberg LA, Ortega DR et al. In vivo structures of an intact type VI secretion system revealed by electron cryotomography. EMBO Rep 2017;18: 1090-9.
Charles TC, Nester EW. A chromosomally encoded two-component sensory transduction system is required for virulence of Agrobacterium tumefaciens. J Bacteriol 1993;175: 6614-25.
Charpentier M, Oldroyd G. How close are we to nitrogen-fixing cereals? Curr Opin Plant Biol 2010;13: 556-64.
Chatzidaki-Livanis M, Geva-Zatorsky N, Comstock LE. Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species. Proc Natl Acad Sci USA 2016;113: 3627-32.
Chen L, Chen Y, Wood DW et al. A new type IV secretion system promotes conjugal transfer in Agrobacterium tumefaciens. J Bacteriol 2002;184: 4838-45.
Chenoweth MR, Wickner S. Complex regulation of the DnaJ homolog CbpA by the global Regulators σS and Lrp, by the specific inhibitor CbpM, and by the proteolytic degradation of CbpM. J Bacteriol 2008;190: 5153-61.
Cherrak Y, Flaugnatti N, Durand E et al. Structure and activity of the type VI secretion system. Microbiol Spectr 2019;7.
Chien H-L, Huang W-Z, Tsai M-Y et al. Overexpression of the chromosome partitioning Gene parA in Azorhizobium caulinodans ORS571 alters the bacteroid morphotype in Sesbania rostrata stem nodules. Front Microbial 2019;10.
Chilton M-D, Drummond MH, Merlo DJ et al. Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 1977;11: 263-71.
Chilton MD, Saiki RK, Yadav N et al. T-DNA from Agrobacterium Ti plasmid is in the nuclear DNA fraction of crown gall tumor cells. Proc Natl Acad Sci USA 1980;77: 4060-4.
Christie PJ. The rich tapestry of bacterial protein translocation systems. Protein J 2019;38: 389-408.
Cianfanelli FR, Monlezun L, Coulthurst SJ. Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends Microbiol 2015;24: 51-62.
Cocking EC. Xylem colonization of tomato by Azorhizobium caulinodans ORS571. Acta Biol Hung 2001;52: 189-94.
Cocking EC. OBPC Symposium: Maize 2004 & beyond - intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers. In Vitro Cell Dev Biol, Plant 2005;41: 369-73.
Cocking EC, Stone PJ, Davey MR. Symbiosome-like intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers. Sci China Ser C-Life Sci 2005;48: 888-96.
Cole A, Wang Z, Coyaud E et al. Inhibition of the mitochondrial protease ClpP as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 2015;27: 864-76.
Conter A, Bouché JP, Dassain M. Identification of a new inhibitor of essential division gene ftsZ as the kil gene of defective prophage Rac. J Bacteriol 1996;178: 5100-4.
Costa TRD, Felisberto-Rodrigues C, Meir A et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Micro 2015;13: 343-59.
Coulthurst SJ. The type VI secretion system – a widespread and versatile cell targeting system. Res Microbiol 2013;164: 640-54.
Culp E, Wright GD. Bacterial proteases, untapped antimicrobial drug targets. J Antibiot 2016;70: 366.
Cummings SP, Gyaneshwar P, Vinuesa P et al. Nodulation of Sesbania species by Rhizobium (Agrobacterium) strain IRBG74 and other rhizobia. Environ Microbiol 2009;11: 2510-25.
de Bruijn FJ. The model legume Medicago truncatula, 2 Volume Set: Wiley, 2020.
de Campos SB, Lardi M, Gandolfi A et al. Mutations in two Paraburkholderia phymatum type VI secretion systems cause reduced fitness in interbacterial competition. Front Microbial 2017;8.
De Geyter J, Smets D, Karamanou S et al. Inner membrane translocases and insertases. In: Kuhn A (ed.) Bacterial Cell Walls and Membranes, DOI 10.1007/978-3-030-18768-2_11. Cham: Springer International Publishing, 2019, 337-66.
Decoin V, Barbey C, Bergeau D et al. A type VI secretion system is involved in Pseudomonas fluorescens bacterial competition. PLoS ONE 2014;9: e89411.
Deng W, Marshall NC, Rowland JL et al. Assembly, structure, function and regulation of type III secretion systems. Nat Rev Microbiol 2017;15: 323-37.
Diner EJ, Beck CM, Webb JS et al. Identification of a target cell permissive factor required for contact-dependent growth inhibition (CDI). Genes Dev 2012;26: 515-25.
Dombrecht B, Vanderleyden J, Michiels J. Stable RK2-derived cloning vectors for the analysis of gene expression and gene function in Gram-negative bacteria. Mol Plant-Microbe Interact 2001;14: 426-30.
Doyle JJ. Phylogenetic perspectives on the origins of nodulation. Mol Plant-Microbe Interact 2011;24: 1289-95.
Dreyfus B, Diem HG, Freire J et al. Nitrogen fixation in tropical agriculture and forestry. Oxford: Oxford University, 1987.
Dreyfus B, Garcia JL, Gillis M. Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol 1988;38: 89-98.
Dreyfus BL, Dommergues YR. Nitrogen-fixing nodules induced by Rhizobium on the stem of the tropical legume Sesbania rostrata. FEMS Microbiol Lett 1981a;10: 313-7.
Dreyfus BL, Dommergues YR. Stem nodules on the tropical legume Sesbania rostrata. In Current perspectives in nitrogen fixation. In Current perspectives in nitrogen fixation: proceedings of the Fourth International Symposium on Nitrogen Fixation held in Canberra, Australia, 1 to 5 December 1980: Elsevier/North-Holland Biomedical Press, 1981b.
Dreyfus BL, Elmerich C, Dommergues YR. Free-living Rhizobium strain able to grow on N2 as the sole nitrogen source. Appl Environ Microbiol 1983;45: 711-3.
Duodu S, Brophy C, Connolly J et al. Competitiveness of a native Rhizobium leguminosarum biovar trifolii strain for nodule occupancy is manifested during infection. Plant Soil 2008;318: 117.
Elmerich C, Dreyfus BL, Reysset G et al. Genetic-analysis of nitrogen-fixation in a tropical fast-growing Rhizobium. EMBO J 1982;1: 499-503.
Felisberto-Rodrigues C, Durand E, Aschtgen M-S et al. Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovar. PLoS Path 2011;7: e1002386.
Fernández-López M, Goormachtig S, Gao M et al. Ethylene-mediated phenotypic plasticity in root nodule development on Sesbania rostrata. Proc Natl Acad Sci USA 1998;95: 12724-8.
Filloux A, Hachani A, Bleves S. The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology 2008;154: 1570-83.
Filloux A, Sagfors A. 3 - News and views on protein secretion systems. In: Alouf J, Ladant D, Popoff MR (eds.) The Comprehensive Sourcebook of Bacterial Protein Toxins (Fourth Edition), DOI https://doi.org/10.1016/B978-0-12-800188-2.00003-3. Boston: Academic Press, 2015, 77-108.
Franceschini A, Szklarczyk D, Frankild S et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2013;41: D808-D15.
Galán JE, Lara-Tejero M, Marlovits TC et al. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol 2014;68: 415-38.
Gallique M, Bouteiller M, Merieau A. The type VI secretion system: a dynamic system for bacterial communication? Front Microbial 2017a;8.
Gallique M, Decoin V, Barbey C et al. Contribution of the Pseudomonas fluorescens MFE01 type VI secretion system to biofilm formation. PLOS ONE 2017b;12: e0170770.
Gao R, Lynn DG. Environmental pH sensing: resolving the VirA/VirG two-component system inputs for Agrobacterium pathogenesis. J Bacteriol 2005;187: 2182-9.
García-Bayona L, Gozzi K, Laub MT. Mechanisms of resistance to the contact-dependent bacteriocin CdzC/D in Caulobacter crescentus. J Bacteriol 2019;201: e00538-18.
García-Bayona L, Guo MS, Laub MT. Contact-dependent killing by Caulobacter crescentus via cell surface-associated, glycine zipper proteins. eLife 2017;6: e24869.
Gebhardt C, Turner GL, Gibson AH et al. Nitrogen-fixing growth in continuous culture of a strain of Rhizobium sp. isolated from stem nodules on Sesbania rostrata. J Gen Microbiol 1984;130: 843-8.
Gelvin S. Traversing the cell: Agrobacterium T-DNA’s journey to the host genome. Front Plant Sci 2012;3.
Gnanamanickam SS. Plant-associated bacteria, DOI https://doi.org/10.1007/978-1-4020-4538-7: Dordrecht : Springer, 2006.
Goethals K, Gao M, Tomekpe K et al. Common nodABC genes in Nod locus 1 of Azorhizobium caulinodans: Nucleotide sequence and plant-inducible expression. Mol Gen Genet 1989;219: 289-98.
Gohlke J, Deeken R. Plant responses to Agrobacterium tumefaciens and crown gall development. Front Plant Sci 2014;5.
Gopalaswamy G, Kannaiyan S, O''Callaghan K et al. The xylem of rice (Oryza sativa) is colonized by Azorhizobium caulinodans. Proc R Soc B 2000;267: 103-7.
Gottesman S, Roche E, Zhou Y et al. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev 1998;12: 1338-47.
Graves S, Piepho H-P, Selzer L et al. multcompView: visualizations of paired comparisons. R package version 01-7, 2015.
Green ER, Mecsas J. Bacterial secretion systems: an overview. Microbiol Spectr 2016;4.
Grohmann E, Christie PJ, Waksman G et al. Type IV secretion in Gram-negative and Gram-positive bacteria. Mol Microbiol 2018;107: 455-71.
Gu S, Shevchik VE, Shaw R et al. The role of intrinsic disorder and dynamics in the assembly and function of the type II secretion system. Biochim Biophys Acta 2017;1865: 1255-66.
Haag AF, Arnold MFF, Myka KK et al. Molecular insights into bacteroid development during Rhizobium–legume symbiosis. FEMS Microbiol Rev 2013;37: 364-83.
Haapalainen M, Mosorin H, Dorati F et al. Hcp2, a secreted protein of the phytopathogen Pseudomonas syringae pv. tomato DC3000, is required for competitive fitness against bacteria and yeasts. J Bacteriol 2012;194: 4810-22.
Hachani A, Wood TE, Filloux A. Type VI secretion and anti-host effectors. Curr Opin Microbiol 2016;29: 81-93.
Harrell FE, Jr,, Dupont C, others m. Hmisc: Harrell miscellaneous, 2018.
Heckman KL, Pease LR. Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protocols 2007;2: 924-32.
Hood RD, Peterson SB, Mougous JD. From striking out to striking gold: discovering that type VI secretion targets bacteria. Cell Host & Microbe 2017;21: 286-9.
Hood RD, Singh P, Hsu F et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell host & microbe 2010;7: 25-37.
Hooykaas PJJ, van Brussel AAN, den Dulk-Ras H et al. Sym plasmid of Rhizobium trifolii expressed in different rhizobial species and Agrobacterium tumefaciens. Nature 1981;291: 351-3.
Hubber A, Vergunst AC, Sullivan JT et al. Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol Microbiol 2004;54: 561-74.
Hwang H-H, Yu M, Lai E-M. Agrobacterium-mediated plant transformation: biology and applications. The Arabidopsis Book 2017;2017.
Inzé D, Follin A, Van Lijsebettens M et al. Genetic analysis of the individual T-DNA genes of Agrobacterium tumefaciens; further evidence that two genes are involved in indole-3-acetic acid synthesis. Mol Gen Genet 1984;194: 265-74.
Jensen E, Peoples M, Boddey R et al. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agron Sustain Dev 2012;32: 329-64.
Ji ZJ, Yan H, Cui QG et al. Competition between rhizobia under different environmental conditions affects the nodulation of a legume. Syst Appl Microbiol 2017;40: 114-9.
Johnson PM, Beck CM, Morse RP et al. Unraveling the essential role of CysK in CDI toxin activation. Proc Natl Acad Sci USA 2016;113: 9792-7.
Jones AM, Garza-Sánchez F, So J et al. Activation of contact-dependent antibacterial tRNase toxins by translation elongation factors. Proc Natl Acad Sci USA 2017;114: E1951-E7.
Kado CI. Plant bacteriology. St. Paul, Minn.: American Phytopathological Society, 2010.
Kado CI. Historical account on gaining insights on the mechanism of crown gall tumorigenesis induced by Agrobacterium tumefaciens. Front Microbial 2014;5: 340.
Kado CI, Heskett MG. Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology 1970;60: 969-76.
Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 2000;28: 27-30.
Kanonenberg K, Spitz O, Erenburg IN et al. Type I secretion system—it takes three and a substrate. FEMS Microbiol Lett 2018;365.
Kassambara A. ggpubr: ’ggplot2'' Based Publication Ready Plots, 2018.
Kelley LA, Mezulis S, Yates CM et al. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protocols 2015;10: 845-58.
Kereszt A, Mergaert P, Kondorosi E. Bacteroid development in legume nodules: evolution of mutual benefit or of sacrificial victims? Mol Plant-Microbe Interact 2011;24: 1300-9.
Keseler IM, Mackie A, Santos-Zavaleta A et al. The EcoCyc database: reflecting new knowledge about Escherichia coli K-12. Nucleic Acids Res 2016;45: D543-D50.
Kitts CL, Ludwig RA. Azorhizobium caulinodans respires with at least four terminal oxidases. J Bacteriol 1994;176: 886-95.
Lai E-M, Kado CI. Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacterium tumefaciens. J Bacteriol 1998;180: 2711-7.
Lai E-M, Kado CI. The T-pilus of Agrobacterium tumefaciens. Trends Microbiol 2000;8: 361-9.
Lasica AM, Ksiazek M, Madej M et al. The type IX secretion system (T9SS): highlights and recent insights into its structure and function. Front Cell Infect Microbiol 2017;7.
Lee KB, De Backer P, Aono T et al. The genome of the versatile nitrogen fixer Azorhizobium caulinodans ORS571. BMC Genom 2008;9: 271.
Leiman PG, Basler M, Ramagopal UA et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci USA 2009;106: 4154-9.
LeRoux M, De Leon JA, Kuwada NJ et al. Quantitative single-cell characterization of bacterial interactions reveals type VI secretion is a double-edged sword. Proc Natl Acad Sci USA 2012;109: 19804-9.
Lesic B, Starkey M, He J et al. Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology 2009;155: 2845-55.
Li C, Tao YP, Simon LD. Expression of different-size transcripts from the clpP-clpX operon of Escherichia coli during carbon deprivation. J Bacteriol 2000;182: 6630-7.
Li YG, Hu B, Christie PJ. Biological and structural diversity of type IV secretion systems. Microbiol Spectr 2019;7.
Liang X, Kamal F, Pei T-T et al. An onboard checking mechanism ensures effector delivery of the type VI secretion system in Vibrio cholerae. Proc Natl Acad Sci USA 2019;116: 23292-8.
Lien Y-W, Lai E-M. Type VI secretion effectors: methodologies and biology. Front Cell Infect Microbiol 2017;7.
Lin B-C, Kado CI. Studies on Agrobacterium tumefaciens. VII. Avirulence induced by temperature and ethidium bromide. Can J Microbiol 1977;23: 1554-61.
Lin J, Zhang W, Cheng J et al. A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat Commun 2017;8: 14888.
Lin J-S, Ma L-S, Lai E-M. Systematic dissection of the Agrobacterium type VI secretion system reveals machinery and secreted components for subcomplex formation. PLoS ONE 2013;8: e67647.
Lin J-S, Pissaridou P, Wu H-H et al. TagF-mediated repression of bacterial type VI secretion systems involves a direct interaction with the cytoplasmic protein Fha. J Biol Chem 2018, DOI 10.1074/jbc.RA117.001618.
Lin J-S, Wu H-H, Hsu P-H et al. Fha interaction with phosphothreonine of TssL cctivates type VI secretion in Agrobacterium tumefaciens. PLoS Pathog 2014;10: e1003991.
Liu C-T, Lee K-B, Wang Y-S et al. Involvement of the Azorhizobial chromosome partition gene (parA) in the onset of bacteroid differentiation during Sesbania rostrata stem nodule development. Appl Environ Microbiol 2011;77: 4371-82.
Liu W, Yang J, Sun Y et al. Azorhizobium caulinodans transmembrane chemoreceptor TlpA1 involved in host colonization and nodulation on roots and stems. Front Microbial 2017;8.
Lodwig EM, Hosie AHF, Bourdes A et al. Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. Nature 2003;422: 722-6.
Long SR. Rhizobium-legume nodulation: Life together in the underground. Cell 1989;56: 203-14.
Lossi NS, Manoli E, Förster A et al. The HsiB1C1 (TssB-TssC) complex of the Pseudomonas aeruginosa type VI secretion system forms a bacteriophage tail sheathlike structure. J Biol Chem 2013;288: 7536-48.
Ma L-S, Hachani A, Lin J-S et al. Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell Host & Microbe 2014;16: 94-104.
Ma L-S, Lin J-S, Lai E-M. An Icmf family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker A motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. J Bacteriol 2009;191: 4316-29.
Ma L-S, Narberhaus F, Lai E-M. IcmF family protein TssM exhibits ATPase activity and energizes type VI secretion. J Biol Chem 2012;287: 15610-21.
MacIntyre DL, Miyata ST, Kitaoka M et al. The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci USA 2010;107: 19520-4.
Maffei B, Francetic O, Subtil A. Tracking proteins secreted by bacteria: what''s in the toolbox? Front Cell Infect Microbiol 2017;7: 221-.
Mahmoud SA, Chien P. Regulated proteolysis in bacteria. Annu Rev Biochem 2018;87: 677-96.
Mansfield J, Genin S, Magori S et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 2012;13: 614-29.
Marchler-Bauer A, Bo Y, Han L et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 2017;45: D200-D3.
Mariano G, Monlezun L, Coulthurst SJ. Dual role for DsbA in attacking and targeted bacterial cells during type VI secretion system-mediated competition. Cell Rep 2018;22: 774-85.
Masuda H, Awano N, Inouye M. ydfD encodes a novel lytic protein in Escherichia coli. FEMS Microbiol Lett 2016;363: fnw039.
Mattinen L, Nissinen R, Riipi T et al. Host-extract induced changes in the secretome of the plant pathogenic bacterium Pectobacterium atrosepticum. Proteomics 2007;7: 3527-37.
Maurizi MR. ATP-promoted interaction between Clp A and Clp P in activation of Clp protease from Escherichia coli. Biochem Soc Trans 1991;19: 719-23.
Maurizi MR, Clark WP, Kim SH et al. Clp P represents a unique family of serine proteases. J Biol Chem 1990;265: 12546-52.
McBride MJ. Bacteroidetes gliding motility and the type IX secretion system. Microbiol Spectr 2019;7.
McCarthy RR, Yu M, Eilers K et al. Cyclic di-GMP inactivates T6SS and T4SS activity in Agrobacterium tumefaciens. Mol Microbiol 2019;0.
Meuskens I, Saragliadis A, Leo JC et al. Type V secretion systems: an overview of passenger domain functions. Front Microbial 2019;10.
Michalska K, Gucinski GC, Garza-Sánchez F et al. Structure of a novel antibacterial toxin that exploits elongation factor Tu to cleave specific transfer RNAs. Nucleic Acids Res 2017;45: 10306-20.
Miller JM, Lin J, Li T et al. E. coli ClpA catalyzed polypeptide translocation Is allosterically controlled by the protease ClpP. J Mol Biol 2013;425: 2795-812.
Miyata ST, Bachmann V, Pukatzki S. Type VI secretion system regulation as a consequence of evolutionary pressure. J Med Microbiol 2013;62: 663-76.
Moreno JC, Tiller N, Diez M et al. Generation and characterization of a collection of knock-down lines for the chloroplast Clp protease complex in tobacco. J Exp Bot 2017;68: 2199-218.
Mougous JD, Cuff ME, Raunser S et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 2006;312: 1526-30.
Mulley G, White JP, Karunakaran R et al. Mutation of GOGAT prevents pea bacteroid formation and N2 fixation by globally downregulating transport of organic nitrogen sources. Mol Microbiol 2011;80: 149-67.
Murdoch SL, Trunk K, English G et al. The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J Bacteriol 2011;193: 6057-69.
Nelson MS, Chun CL, Sadowsky MJ. Type IV effector proteins involved in the Medicago-Sinorhizobium symbiosis. Mol Plant-Microbe Interact 2017;30: 28-34.
Nelson MS, Sadowsky MJ. Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes. Front Plant Sci 2015;6.
Newman JR, Fuqua C. Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 1999;227: 197-203.
Nishimura K, van Wijk KJ. Organization, function and substrates of the essential Clp protease system in plastids. Biochim Biophys Acta 2015;1847: 915-30.
Novichkov PS, Kazakov AE, Ravcheev DA et al. RegPrecise 3.0 – A resource for genome-scale exploration of transcriptional regulation in bacteria. BMC Genom 2013;14: 745.
Okazaki S, Kaneko T, Sato S et al. Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. Proc Natl Acad Sci USA 2013;110: 17131-6.
Okazaki S, Zehner S, Hempel J et al. Genetic organization and functional analysis of the type III secretion system of Bradyrhizobium elkanii. FEMS Microbiol Lett 2009;295: 88-95.
Olivares AO, Baker TA, Sauer RT. Mechanistic insights into bacterial AAA+ proteases and protein-remodelling machines. Nat Rev Microbiol 2015;14: 33.
Orfanoudaki G, Economou A. Proteome-wide subcellular topologies of E. coli polypeptides database (STEPdb). Mol Cell Proteomics 2014;13: 3674-87.
Ownley BH, Trigiano RN. Plant Pathology Concepts and Laboratory Exercises: 3rd Edition. Boca Raton: CRC Press, 2016.
Pajuelo E, Stougaard J. Lotus japonicus’s a model system. In: Márquez AJ (ed.) Lotus japonicus Handbook, DOI 10.1007/1-4020-3735-x_1. Dordrecht: Springer Netherlands, 2005, 3-24.
Panagiotis F. Sarris, Emmanouil A. Trantas, Nicholas Skandalis et al. Phytobacterial type VI secretion system - gene distribution, phylogeny, structure and biological functions. In: Cumagun DCJ (ed.) Plant Pathol, DOI 10.5772/33235: InTech, 2012, 53-84.
Pazour GJ, Das A. Characterization of the VirG binding site of Agrobacterium tumefaciens. Nucleic Acids Res 1990;18: 6909-13.
Poole P, Allaway D. Carbon and nitrogen metabolism in Rhizobium. Adv Microb Physiol volume 43: Academic Press, 2000, 117-63.
Popp C, Ott T. Regulation of signal transduction and bacterial infection during root nodule symbiosis. Curr Opin Plant Biol 2011;14: 458-67.
Prell J, Bourdès A, Kumar S et al. Role of Symbiotic Auxotrophy in the Rhizobium-Legume Symbioses. PLoS ONE 2010;5: e13933.
Preston GM, Studholme DJ, Caldelari I. Profiling the secretomes of plant pathogenic Proteobacteria. FEMS Microbiol Rev 2005;29: 331-60.
Pukatzki S, Ma AT, Sturtevant D et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 2006;103: 1528-33.
Quentin D, Ahmad S, Shanthamoorthy P et al. Mechanism of loading and translocation of type VI secretion system effector Tse6. Nat Microbiol 2018;3: 1142-52.
R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2018.
Rapisarda C, Cherrak Y, Kooger R et al. In situ and high-resolution cryo-EM structure of a bacterial type VI secretion system membrane complex. EMBO J 2019;38: e100886.
Rayle DL, Cleland RE. The Acid Growth Theory of auxin-induced cell elongation is alive and well. Plant Physiology 1992;99: 1271-4.
Records AR, Gross DC. Sensor kinases RetS and LadS regulate Pseudomonas syringae type VI secretion and virulence factors. J Bacteriol 2010;192: 3584-96.
Reed KC, Mann DA. Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res 1985;13: 7207-21.
Rinaudo G, Dreyfus B, Dommergues Y. Sesbania rostrata green manure and the nitrogen content of rice crop and soil. Soil Biol Biochem 1983;15: 111-3.
Robb CS, Assmus M, Nano FE et al. Structure of the T6SS lipoprotein TssJ1 from Pseudomonas aeruginosa. Acta Crystallogr Sect F: Struct Biol Cryst Commun 2013;69: 607-10.
Roest HP, Mulders IHM, Spaink HP et al. A Rhizobium leguminosarum biovar trifolii locus not localized on the Sym plasmid hinders effective nodulation on plants of the pea cross-inoculation group. Mol Plant-Microbe Interact 1997;10: 938-41.
Ronson CW, Lyttleton P, Robertson JG. C4-dicarboxylate transport mutants of Rhizobium trifolii form ineffective nodules on Trifolium repens. Proc Natl Acad Sci USA 1981;78: 4284-8.
RStudio Team. RStudio: Integrated Development for R. Boston, MA RStudio, Inc., 2015.
Russell AB, Peterson SB, Mougous JD. Type VI secretion system effectors: poisons with a purpose. Nat Rev Micro 2014;12: 137-48.
Ryu C-M. Against friend and foe: Type 6 effectors in plant-associated bacteria. J Microbiol 2015;53: 201-8.
Ryu M-H, Zhang J, Toth T et al. Control of nitrogen fixation in bacteria that associate with cereals. Nat Microbiol 2019, DOI 10.1038/s41564-019-0631-2.
Salinero-Lanzarote A, Pacheco-Moreno A, Domingo-Serrano L et al. The type VI secretion system of Rhizobium etli Mim1 has a positive effect in symbiosis. FEMS Microbiol Ecol 2019;95.
Sana TG, Flaugnatti N, Lugo KA et al. Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci USA 2016;113: E5044-E51.
Schäfer A, Tauch A, Jäger W et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 1994;145: 69-73.
Schell MA, Ulrich RL, Ribot WJ et al. Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol 2007;64: 1466-85.
Schindelin J, Arganda-Carreras I, Frise E et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012;9: 676-82.
Schneider JP, Nazarov S, Adaixo R et al. Diverse roles of TssA-like proteins in the assembly of bacterial type VI secretion systems. EMBO J 2019;38: e100825.
Schröder G, Waffenschmidt S, Weiler EW et al. The T-region of Ti plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur J Biochem 1984;138: 387-91.
Scott JD, Ludwig RA. Azorhizobium caulinodans electron-transferring flavoprotein N electrochemically couples pyruvate dehydrogenase complex activity to N2 fixation. Microbiology 2004;150: 117-26.
Sgro GG, Oka GU, Souza DP et al. Bacteria-killing type IV secretion systems. Front Microbial 2019;10.
Shalom G, Shaw JG, Thomas MS. In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology 2007;153: 2689-99.
Shneider MM, Buth SA, Ho BT et al. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 2013;500: 350-3.
Shyntum DY, Theron J, Venter SN et al. Pantoea ananatis utilizes a type VI secretion system for pathogenesis and bacterial competition. Mol Plant-Microbe Interact 2015;28: 420-31.
Si M, Zhao C, Burkinshaw B et al. Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis. Proc Natl Acad Sci USA 2017;114: E2233-E42.
Silverman Julie M, Agnello Danielle M, Zheng H et al. Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. Mol Cell 2013;51: 584-93.
Silverman JM, Brunet YR, Cascales E et al. Structure and regulation of the type VI secretion system. Annu Rev Microbiol 2012;66: 453-72.
Simon R, Priefer U, Puhler A. A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in Gram negative bacteria. Nat Biotech 1983;1: 784-91.
Smith EF, Townsend CO. A plant-tumor of bacterial origin. Science 1907;25: 671-3.
Souza DP, Oka GU, Alvarez-Martinez CE et al. Bacterial killing via a type IV secretion system. Nat Commun 2015;6: 6453.
Sriramoju MK, Chen Y, Lee Y-TC et al. Topologically knotted deubiquitinases exhibit unprecedented mechanostability to withstand the proteolysis by an AAA+ protease. Sci Rep 2018;8: 7076.
Stachel SE, Messens E, Van Montagu M et al. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 1985;318: 624-9.
Stone PJ, O''Callaghan KJ, Davey MR et al. Azorhizobium caulinodans ORS571 colonizes the xylem of Arabidopsis thaliana. Mol Plant-Microbe Interact 2001;14: 93-7.
Studier FW, Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 1986;189: 113-30.
Suzuki S, Aono T, Lee K-B et al. Rhizobial factors required for stem nodule maturation and maintenance in Sesbania rostrata-Azorhizobium caulinodans ORS571 symbiosis. Appl Environ Microbiol 2007;73: 6650-9.
Szklarczyk D, Gable AL, Lyon D et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2018;47: D607-D13.
Tamura K, Stecher G, Peterson D et al. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 2013;30: 2725-9.
Teulet A, Busset N, Fardoux J et al. The rhizobial type III effector ErnA confers the ability to form nodules in legumes. Proc Natl Acad Sci USA 2019;116: 21758-68.
Tseng T-T, Tyler B, Setubal J. Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol 2009;9: S2.
Tsien HC, Dreyfus BL, Schmidt EL. Initial stages in the morphogenesis of nitrogen-fixing stem nodules of Sesbania rostrata. J Bacteriol 1983;156: 888-97.
Tsukada S, Aono T, Akiba N et al. Comparative genome-wide transcriptional profiling of Azorhizobium caulinodans ORS571 grown under free-living and symbiotic conditions. Appl Environ Microbiol 2009;75: 5037-46.
Ueguchi C, Kakeda M, Yamada H et al. An analogue of the DnaJ molecular chaperone in Escherichia coli. Proc Natl Acad Sci USA 1994;91: 1054-8.
Unterweger D, Kostiuk B, Ötjengerdes R et al. Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae. EMBO J 2015;34: 2198-210.
Unterweger D, Kostiuk B, Pukatzki S. Adaptor proteins of type VI secretion system effectors. Trends Microbiol 2017;25: 8-10.
Unterweger D, Miyata ST, Bachmann V et al. The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition. Nat Commun 2014;5.
Venkateshwaran M. Exploring the feasibility of transferring nitrogen fixation to cereal crops. In: Lugtenberg B (ed.) Principles of Plant-Microbe Interactions: Microbes for Sustainable Agriculture, DOI 10.1007/978-3-319-08575-3_42. Cham: Springer International Publishing, 2015, 403-10.
Vergunst AC, Schrammeijer B, den Dulk-Ras A et al. VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 2000;290: 979-82.
Vergunst AC, van Lier MCM, den Dulk-Ras A et al. Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci USA 2005;102: 832-7.
Vladimirov IA, Matveeva TV, Lutova LA. Opine biosynthesis and catabolism genes of Agrobacterium tumefaciens and Agrobacterium rhizogenes. Russ J Genet 2015;51: 121-9.
von Bodman SB, McCutchan JE, Farrand SK. Characterization of conjugal transfer functions of Agrobacterium tumefaciens Ti plasmid pTiC58. J Bacteriol 1989;171: 5281-9.
Wang J, Brodmann M, Basler M. Assembly and subcellular localization of bacterial type VI secretion systems. Annu Rev Microbiol 2019;73: 621-38.
Wang J, Hartling JA, Flanagan JM. The structure of ClpP at 2.3 Å resolution suggests a model for ATP-dependent proteolysis. Cell 1997;91: 447-56.
Weber-Ban EU, Reid BG, Miranker AD et al. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 1999;401: 90-3.
Wenren LM, Sullivan NL, Cardarelli L et al. Two independent pathways for self-recognition in Proteus mirabilis are linked by type VI-dependent export. mBio 2013;4.
Whitney JC, Chou S, Russell AB et al. Identification, structure, and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair. J Biol Chem 2013;288: 26616-24.
Whitney John C, Quentin D, Sawai S et al. An interbacterial NAD(P)+ glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell 2015;163: 607-19.
Wickham H. The split-apply-combine strategy for data analysis. J Stat Softw 2011;40: 29.
Wickham H. ggplot2: elegant graphics for data analysis: Springer-Verlag New York, 2016.
Wielbo J, Kuske J, Marek-Kozaczuk M et al. The competition between Rhizobium leguminosarum bv. viciae strains progresses until late stages of symbiosis. Plant Soil 2010;337: 125-35.
Willett JLE, Gucinski GC, Fatherree JP et al. Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways. Proc Natl Acad Sci USA 2015;112: 11341-6.
Willmitzer L, De Beuckeleer M, Lemmers M et al. DNA from Ti plasmid present in nucleus and absent from plastids of crown gall plant cells. Nature 1980;287: 359-61.
Winans SC. Two-way chemical signaling in Agrobacterium-plant interactions. Microbiol Rev 1992;56: 12-31.
Wood DW, Setubal JC, Kaul R et al. The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 2001;294: 2317-23.
Wu C-F, Lien Y-W, Bondage D et al. Effector loading onto the VgrG carrier activates type VI secretion system assembly. EMBO Rep 2019a;n/a: e47961.
Wu C-F, Lin J-S, Shaw G-C et al. Acid-induced type VI secretion system is regulated by ExoR-ChvG/ChvI signaling cascade in Agrobacterium tumefaciens. PLoS Pathog 2012;8: e1002938.
Wu C-F, Santos MNM, Cho S-T et al. Plant pathogenic Agrobacterium tumefaciens strains have diverse type VI effector-immunity pairs and vary in in planta competitiveness. Mol Plant-Microbe Interact 2019b;32: 961-71.
Wu H-Y, Chung P-C, Shih H-W et al. Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. J Bacteriol 2008;190: 2841-50.
Young JPW, Crossman LC, Johnston AW et al. The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 2006;7: 1-20.
Zamioudis C, Pieterse CMJ. Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 2012;25: 139-50.
Zhang L, Xu J, Xu J et al. TssB is essential for virulence and required for Type VI secretion system in Ralstonia solanacearum. Microb Pathog 2014;74: 1-7.
Zhang XY, Brunet YR, Logger L et al. Dissection of the TssB-TssC interface during type VI secretion sheath complex formation. PLOS ONE 2013;8: e81074.
Zheng J, Leung KY. Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol 2007;66: 1192-206.
Zoued A, Brunet YR, Durand E et al. Architecture and assembly of the type VI secretion system. Biochim Biophys Acta 2014;1843: 1664-73.
Zoued A, Durand E, Brunet YR et al. Priming and polymerization of a bacterial contractile tail structure. Nature 2016;531: 59-63.
Zoued A, Durand E, Santin YG et al. TssA: The cap protein of the Type VI secretion system tail. Bioessays 2017;39: 1600262.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top