跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 08:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:田有風
研究生(外文):David Maier
論文名稱:生醫阻抗量測系統之設計與開發
論文名稱(外文):Design and Implementation of a Bioimpedance Measurement System
指導教授:林致廷林致廷引用關係
指導教授(外文):Chih-Ting Lin
口試委員:吳文中郭柏齡
口試委員(外文):Wen-Jong WuPo-Ling Kuo
口試日期:2020-07-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生醫電子與資訊學研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:84
中文關鍵詞:生醫阻抗硬體開發機器學習肌肉狀態定點照護檢驗
外文關鍵詞:Bioelectrical ImpedanceHardware DevelopmentMachine LearningMuscle StatePoint-of-Care Testing
DOI:10.6342/NTU202002215
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生醫阻抗分析(bioelectrical impedance analysis, BIA)是一種用來判斷生物材料(biological materials)組成結構的非侵入性方法,雖然已有多組研究團隊利用生醫阻抗分析技術,但目前研究多半依賴成本甚高的商業儀器(commercial instrumentation)來完成。為了達到降低檢驗成本的目標,本研究以德州儀器(Texas Instruments, TI)專用於生醫阻抗量測的積體電路解決方案AFE4300為核心,提出全套定制硬體系統的設計與開發,方便以定點照護檢驗(Point-of-Care Testing, PoCT)的方式進行生醫阻抗的量測。本研究開發的系統提供相當於商業儀器的量測功能,但硬體總成本僅為八十美元(約新臺幣兩千三百六十元)。再來,本研究利用此系統從受試者的肱二頭肌(biceps brachii muscle)收集不同肌肉狀態的數據。此外,本研究也包括機器學習(Machine Learning, ML)應用程式的開發,以接近百分之八十的準確率辨別四種不同的肌肉狀態,若僅對於兩種肌肉狀態加以辨別,該應用程式的準確率甚至高達百分之九十以上。
Bioelectrical Impedance Analysis (BIA) is a non-invasive method for estimating the composition of biological materials. Several research groups have come to use bioimpedance measurements in their studies, mostly relying on commercial – and therefore high-cost – instrumentation. In this research, a fully custom-built low-cost device capable of performing bioimpedance measurements in a Point-of-Care Testing (PoCT) environment was designed and implemented using the AFE4300 from Texas Instruments as a specialized integrated circuit (IC) solution. The system offers comparable measurement features to commercial instrumentation, but at a hardware cost of only USD 80 (approximately NTD 2,360) in total. The system was then used to collect muscle state data from the biceps brachii muscle of subjects for different muscle states. This work also includes the development of a machine learning application that succeeded in distinguishing between four different muscle states with an accuracy of almost 80%. When only distinguishing between two different muscle states, the accuracy even raised to more than 90%.
Oral Defense Certification #
Acknowledgements i
Abstract in Chinese iii
Abstract in English v
Table of Contents vii
List of Figures xi
List of Tables xv
List of Acronyms xvii
1 Introduction 1
1.1 Bioimpedance Analysis 1
1.2 Characteristics of Biological Tissues 4
1.3 Measurement Considerations 8
1.4 Research Motivation 10
1.5 Thesis Structure 10
2 Literature Review 13
2.1 Bioimpedance Analysis in Sport Injuries 13
2.2 Rotational Bioimpedance Device 14
2.3 Discussion of Common Applications and Underlying Mechanisms 16
2.4 IC Solutions for Bioimpedance Measurements 18
3 System Development 21
3.1 Overview 21
3.2 Communication Interfaces 23
3.2.1 Serial Peripheral Interface (SPI) 23
3.2.2 Universal Serial Bus (USB) 23
3.2.3 JTAG and PDI 25
3.3 Bioimpedance IC 26
3.3.1 Impedance Measurement Modes 27
3.3.2 Calibration Network 31
3.3.3 Measurement Stage 34
3.4 Crosspoint Switch 35
3.5 Power Supply 36
3.6 Microcontroller 37
3.7 Reset and User Buttons 38
3.8 Other Components 39
3.9 PCB Layout 40
3.10 Firmware Development 40
3.11 PC Interface 41
3.12 Machine Learning Application 42
4 Results and Discussion 45
4.1 Finished Printed Circuit Board 45
4.2 Improvements to the First Printed Circuit Board 48
4.3 Interface to the PC 50
4.4 Comparison with the AKERN BIA-101 Analyzer 54
4.5 Accuracy of Magnitude and Phase Measurements for Single Resistors 55
4.6 Influence of the Crosspoint Switch 56
4.7 Phase Angle Accuracy in RC Circuits 57
4.8 Real-time Muscle Contraction Measurements 60
4.9 Real-time Four-State Measurements 63
4.10 Magnitude and Phase Measurements in Muscle 64
4.11 Classification using Machine Learning 67
5 Conclusion and Outlook 73
References 77
[1] T. K. Bera, “Bioelectrical impedance methods for noninvasive health monitoring: a review,” Journal of Medical Engineering, vol. 2014, 2014.
[2] S. B. Rutkove, “Electrical impedance myography: background, current state, and future directions,” Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, vol. 40, no. 6, pp. 936–946, 2009.
[3] D. Dean, T. Ramanathan, D. Machado, and R. Sundararajan, “Electrical impedance spectroscopy study of biological tissues,” Journal of Electrostatics, vol. 66, no. 3-4, pp. 165–177, 2008.
[4] A. Ivorra, “Bioimpedance monitoring for physicians: an overview,” Centre Nacional de Microelectr`onica Biomedical Applications Group, vol. 11, p. 17, 2003.
[5] S. Rutkove, “Electrical Impedance Myography and Its Application in Pediatric Neuromuscular Disorders,” in Pediatric Electromyography: Concepts and Clinical Applications, H. McMillan and P. Kang, Eds. Springer International Publishing, 2017, ch. 14, pp. 169–178.
[6] C. Shiffman, H. Kashuri, and R. Aaron, “Electrical impedance myography at high frequencies,” in 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography. Springer, 2007, pp. 739–742.
[7] S. Grimnes and Ø. G. Martinsen, Bioimpedance and bioelectricity basics, 3rd ed. Elsevier, 2014.
[8] C. Shiffman, R. Aaron, V. Amoss, J. Therrien, and K. Coomler, “Resistivity and phase in localized BIA,” Physics in Medicine & Biology, vol. 44, no. 10, p. 2409, 1999.
[9] J. F. Edd, L. Horowitz, and B. Rubinsky, “Temperature dependence of tissue impedivity in electrical impedance tomography of cryosurgery,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 4, pp. 695–701, 2005.
[10] A. Schiffenbauer, “Imaging: seeing muscle in new ways,” Current Opinion in Rheumatology, vol. 26, no. 6, p. 712, 2014.
[11] A. St John and C. P. Price, “Existing and emerging technologies for point-of-care testing,” The Clinical Biochemist Reviews, vol. 35, no. 3, p. 155, 2014.
[12] B. Sanchez, S. R. Iyer, J. Li, K. Kapur, S. Xu, S. B. Rutkove, and R. M. Lovering, “Non-invasive assessment of muscle injury in healthy and dystrophic animals with electrical impedance myography,” Muscle & Nerve, vol. 56, no. 6, pp. E85–E94, 2017.
[13] K. S. Cole and R. H. Cole, “Dispersion and absorption in dielectrics I. Alternating current characteristics,” The Journal of Chemical Physics, vol. 9, no. 4, pp. 341–351, 1941.
[14] E. McAdams and J. Jossinet, “Tissue impedance: a historical overview,” Physiological Measurement, vol. 16, no. 3A, p. A1, 1995.
[15] L. M. Biga, S. Dawson, A. Harwell, R. Hopkins, J. Kaufmann, M. LeMaster, P. Matern, K. Morrison-Graham, D. Quick, J. Runyeon et al., Anatomy & Physiology. Oregon State University, Accessed: 2020-03-22. [Online]. Available: https://open.oregonstate.education/aandp/
[16] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, 5th ed. New York: Garland Science, 2008.
[17] H. Lukaski, “Evolution of bioimpedance: a circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research,” European Journal of Clinical Nutrition, vol. 67, no. 1, pp. S2–S9, 2013.
[18] L. Nescolarde, J. Yanguas, H. Lukaski, X. Alomar, J. Rosell-Ferrer, and G. Rodas, “Localized bioimpedance to assess muscle injury,” Physiological Measurement, vol. 34, no. 2, p. 237, 2013.
[19] E. M. Bartels, E. R. Sørensen, and A. P. Harrison, “Multi-frequency bioimpedance in human muscle assessment,” Physiological Reports, vol. 3, no. 4, p. e12354, 2015.
[20] D. Allegri, D. Vaca, D. Ferreira, M. Rogantini, and D. Barrettino, “Real-time monitoring of the hydration level by multi-frequency bioimpedance spectroscopy,” in 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2017, pp. 1–6.
[21] B. Sanchez and S. B. Rutkove, “Electrical impedance myography and its applications in neuromuscular disorders,” Neurotherapeutics, vol. 14, no. 1, pp. 107–118, 2017.
[22] A. Mescher, Junqueira’s Basic Histology: Text and Atlas, 15th ed. McGraw-Hill Education, 2018.
[23] R. Aaron and C. Shiffman, “Using localized impedance measurements to study muscle changes in injury and disease,” Annals of the New York Academy of Sciences, vol. 904, no. 1, pp. 171–180, 2000.
[24] S. Grimnes and Ø. G. Martinsen, “Sources of error in tetrapolar impedance measurements on biomaterials and other ionic conductors,” Journal of Physics D: Applied Physics, vol. 40, no. 1, p. 9, 2006.
[25] S. Kaufmann, Instrumentierung der Bioimpedanzmessung: Optimierung mit Fokus auf die Elektroimpedanztomographie (EIT). Springer Vieweg, 2015.
[26] L. Nescolarde, J. Yanguas, H. Lukaski, X. Alomar, J. Rosell-Ferrer, and G. Rodas, “Effects of muscle injury severity on localized bioimpedance measurements,” Physiological Measurement, vol. 36, no. 1, p. 27, 2014.
[27] O. Ogunnika, S. Rutkove, H. Ma, P. Fogerson, M. Scharfstein, R. Cooper, and J. Dawson, “A portable system for the assessment of neuromuscular diseases with electrical impedance myography,” Journal of Medical Engineering & Technology, vol. 34, no. 7-8, pp. 377–385, 2010.
[28] O. T. Ogunnika, M. Scharfstein, R. C. Cooper, H. Ma, J. L. Dawson, and S. B. Rutkove, “A handheld electrical impedance myography probe for the assessment of neuromuscular disease,” in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2008, pp. 3566–3569.
[29] B. Sanchez and S. B. Rutkove, “Present uses, future applications, and technical underpinnings of electrical impedance myography,” Current Neurology and Neuroscience Reports, vol. 17, no. 11, p. 86, 2017.
[30] L. K. Huang, L. N. Huang, Y. Gao, ˇ Z. L. Vasi´c, M. Cifrek, and M. Du, “Electrical impedance myography applied to monitoring of muscle fatigue during dynamic contractions,” IEEE Access, vol. 8, pp. 13 056–13 065, 2020.
[31] P. Humphreys and A. Lind, “The blood flow through active and inactive muscles of the forearm during sustained hand-grip contractions,” The Journal of Physiology, vol. 166, no. 1, p. 120, 1963.
[32] S. B. Rutkove, H. Zhang, D. A. Schoenfeld, E. M. Raynor, J. M. Shefner, M. E. Cudkowicz, A. B. Chin, R. Aaron, and C. A. Shiffman, “Electrical impedance myography to assess outcome in amyotrophic lateral sclerosis clinical trials,” Clinical Neurophysiology, vol. 118, no. 11, pp. 2413–2418, 2007.
[33] R. Kusche and M. Ryschka, “Combining bioimpedance and EMG measurements for reliable muscle contraction detection,” IEEE Sensors Journal, vol. 19, no. 23, pp. 11 687–11 696, 2019.
[34] B. Sanchez, A. Praveen, E. Bartolome, K. Soundarapandian, and R. Bragos, “Minimal implementation of an AFE4300-based spectrometer for electrical impedance spectroscopy measurements,” in Journal of Physics: Conference Series, vol. 434, no. 1. IOP Publishing, 2013, p. 012014.
[35] A. Al-Ali, B. Maundy, and A. Elwakil, Design and Implementation of Portable Impedance Analyzers. Springer International Publishing, 2019.
[36] Jenny List. (2016) Body Cardio Weighing Scale Teardown. Hackaday. Accessed: 2020-02-01. [Online]. Available: https://hackaday.com/2016/12/05/body-cardio-weighing-scale-teardown/
[37] F. Seoane, J. Ferreira, J. J. Sanchez, and R. Brag´os, “An analog front-end enables electrical impedance spectroscopy system on-chip for biomedical applications,” Physiological Measurement, vol. 29, no. 6, p. S267, 2008.
[38] R. Kusche, S. Kaufmann, and M. Ryschka, “Design development and comparison of two different measurement devices for time-resolved determination of phase shifts of bioimpedances,” in Proc. 3rd Student Conf. Med. Eng. Sci., 2014, pp. 115–119.
[39] J. A. Jambulingam, R. McCrory, L. West, and O. T. Inan, “Non-invasive, multi-modal sensing of skin stretch and bioimpedance for detecting infiltration during intravenous therapy,” in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2016, pp. 4755–4758.
[40] V. H. Mosquera, A. Arregui, R. Brag´os Bardia, and C. F. Rengifo, “Implementation of a low cost prototype for electrical impedance tomography based on the integrated circuit for body composition measurement AFE4300,” in Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2018): January 19-21, 2018: Funchal, Madeira, Portugal. Scitepress, 2018, pp. 121–127.
[41] A. C. Everitt, P. K. Manwaring, and R. J. Halter, “A real-time 4-bit imaging electrical impedance sensing biopsy needle for prostate cancer detection,” in Medical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional Imaging, vol. 10578. International Society for Optics and Photonics, 2018, p. 105781A.
[42] J. V. Jethe, T. Ananthakrishnan, and G. Jindal, “Development of a miniature and ASIC based impedance cardiograph,” Journal of Medical Engineering & Technology, vol. 44, no. 1, pp. 20–25, 2020.
[43] AVR1017: XMEGA - USB Hardware Design Recommendations, Atmel, 2011.
[44] U. Tietze, C. Schenk, and E. Gamm, Halbleiter-Schaltungstechnik, 15th ed. Springer Vieweg, 2016.
[45] AN146: USB Hardware Design Guidelines for FTDI ICs, Future Technology Devices International, 2013, Ver. 1.1.
[46] PRTR5V0U2X: Ultra low capacitance double rail-to-rail ESD protection diode, Nexperia, 2008, Rev. 2.
[47] FT232R USB UART IC Datasheet, Future Technology Devices International, 2019, Ver. 2.15.
[48] ATxmega256A3BU: 8/16-bit Atmel XMEGA A3BUMicrocontroller, Atmel, 2014, Rev. 8362G.
[49] AFE4300: Low-Cost, Integrated Analog Front-End for Weight-Scale and Body Composition Measurement, Texas Instruments, 2017.
[50] AFE4300 Development Guide, Texas Instruments, 2012, Rev. A.
[51] S. Dahlmanns, A. Wenzel, S. Leonhardt, and D. Teichmann, “Hardware setup for tetrapolar bioimpedance spectroscopy in bandages,” in International Conference on Electrical Bioimpedance. Springer, 2019, pp. 18–24.
[52] A.Wolke. (2015) What’s Your IQ – About Quadrature Signals... Tektronix. Accessed: 2020-06-18. [Online]. Available: https://www.tek.com/blog/
[53] MT8816 ISO-CMOS 8 x 16 Analog Switch Array, Zarlink Semiconductor, 2011.
[54] NVT2008; NVT2010: Bidirectional voltage-level translator for open-drain and pushpull applications, NXP, 2014, Rev. 3.
[55] NCP1117, NCV1117: 1.0A Low-Dropout Positive Fixed and Adjustable Voltage Regulators, On Semiconductor, 2018, Rev. 29.
[56] LT3462/LT3462A: Inverting 1.2MHz/2.7MHz DC/DC Converters with Integrated Schottky, Analog Devices, 2018.
[57] Renesas Electronics Corporation. (2020) Linear vs. Switching Regulators. Accessed: 2020-07-22. [Online]. Available: https://www.renesas.com/cn/en/products/power-management/linear-vs-switching-regulators.html
[58] AVR1935: XMEGA-A3BU Xplained Getting Started Guide, Atmel, 2011.
[59] M. Maxfield. (2020) Ultimate Guide to Switch Debounce (Part 3). EEJournal. Accessed: 2020-04-11. [Online]. Available: https://www.eejournal.com/article/ultimate-guide-to-switch-debounce-part-3/
[60] AVR042: AVR Hardware Design Considerations, Atmel, 2016.
[61] AVR4029: Atmel Software Framework User Guide, Atmel, 2013.
[62] J. Axelson, USB Complete: The Developer’s Guide, 5th ed. Lakeview Research, 2015.
[63] F. Chollet, Deep Learning with Python. Manning Publications, 2017.
[64] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, vol. 61, pp. 85–117, 2015.
[65] ChaN. (2020) FatFs - Generic FAT Filesystem Module. Accessed: 2020-05-05. [Online]. Available: http://elm-chan.org/fsw/ff/00index_e.html
[66] BIA 101 Anniversary Sport Edition: Operating Instructions Manual, AKERN, 2015, Rev. 6 05/2015.
[67] Realmet Institute. (2017) BIA 101 Anniversary Sport FULL – Anthropometric Measuring Tools. Accessed: 2020-07-17. [Online]. Available: https://realmetinstitute.com/product/bia-101-anniversary-sport-full/?lang=en
[68] Texas Instruments E2E Support Forums. (2018) AFE4300EVM-PDK: Phase is opposite sign of expected result. Accessed: 2020-06-18. [Online]. Available: https://e2e.ti.com/support/sensors/f/1023/t/662824/
[69] Texas Instruments E2E Support Forums. (2019) AFE4300: Wrong sign for phase in IQ mode. Accessed: 2020-06-18. [Online]. Available: https: //e2e.ti.com/support/data-converters/f/73/t/780267/
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top