跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 15:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃秀剛
研究生(外文):Hsiu-Kang Huang
論文名稱:使用微流道與微流井系統整合表面增強拉曼散射應用於快速細菌檢測與抗生素藥敏試驗
論文名稱(外文):Bacteria Isolation and Rapid Antibiotic Susceptibility Test Using A Microfluidic Device Integrating Microwell and Surface-enhanced Raman Scattering Detection
指導教授:黃念祖黃念祖引用關係
指導教授(外文):Nien-Tsu Huang
口試委員:王玉麟王俊凱劉定宇韓吟宜
口試委員(外文):Yuh-Lin WangJuen-Kai WangTing-Yu LiuYin-Yi Han
口試日期:2019-07-12
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生醫電子與資訊學研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:47
中文關鍵詞:微流道微流井表面增強拉曼散射抗生素藥敏試驗
外文關鍵詞:MicrofluidicsMicrowellSERS(Surface-enhanced Raman Scattering)AST(Antibiotic Susceptibility Test)
DOI:10.6342/NTU202002372
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
細菌的鑑定與分類對我們的環境十分重要,其影響範圍包括生態鏈、農業、公共衛生與臨床診斷。從過去至現在,已有相當多種細菌檢測方式,而細菌藥敏試驗是其中一個臨床上常見的細菌檢驗,在可以用來判斷菌株的抗藥性與否、評估最適當的抗生素劑量並避免藥物的過度使用。然而,因臨床樣本的細菌數量相當低,必須經由一至兩天的血液培養並達一定的檢測濃度才可進行抗藥性的測試,並且,抗生素的篩檢上需要再額外消耗一天的時間。然而,在長時間的檢測中,容易增加嚴重的感染性疾病對患者的死亡率,為解決此問題,我們設計一個快速細菌抗藥性篩檢平台,透過微流井技術,將細菌濃度低的臨床樣本進行濃縮,同時透過微流道技術來進行微環境的控制,以達到縮短細菌培養時間的效果。此外,我們結合表面增強拉曼散射 (surface-enhanced Raman scattering, SERS) 光學檢測技術,利用其免標定、快速檢測的特性,在短時間內完成抗藥性篩檢。希望能透過此平台的設計,建構出一個快速、免標定的細菌檢測和藥敏試驗,並提供高度細菌感染的患者準確的用藥與治療。
Bacterial identification and characterization are important to our environment, ecosystem, agriculture, healthcare and clinical diagnosis. Antibiotic susceptibility test (AST) is a common bacteria detecting method for selecting proper antibiotic treatment and preventing any overuse or misuse of antibiotics. However, due to the low bacterial concentration of the clinical sample, conventional AST usually requires a prolonged bacterial culturing process, which increases the mortality of seriously infected patients. To address this problem, we propose a rapid AST platform for bacteria detection. We use surface-enhanced Raman scattering (SERS) technology to rapidly analyze the antibiotic susceptibility and combine a microwell device in our platform for initial sample concentration enrichment. In addition, our platform can also manipulate microenvironment by using a microfluidic channel. With the SERS technology integrated with microwell and microfluidic device, we hope this platform could achieve highly sensitive, label-free bacteria detection and rapid AST to enable a timely and accurate sepsis treatment.
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
Chapter 1 Introduction 1
1.1 Research Background 1
1.1.1 Bacteria detection and AST 1
1.1.2 SERS and rapid AST 2
1.1.3 Challenges of SERS-based rapid AST 4
1.2 Literature Review 5
1.2.1 Comparison of rapid AST method 5
1.2.2 Microfluidic-based concentrating method 8
1.3 Microwell for bacteria investigation 10
1.4 Research Motivation 11
1.5 Thesis structure 12
Chapter 2 Experimental Design 13
2.1 SERS detection on two-dimensional SERS substrate 13
2.1.1 Raman scattering 13
2.1.2 Surface-enhanced Raman scattering 14
2.1.3 Two-dimensional SERS-active substrate 15
2.2 Microwell-based concentration 16
2.2.1 Centrifugation for microwell-based bacteria trapping 16
2.2.2 Microwell rehydration and isolation 18
2.3 Microwell and microfluidic device design 18
2.3.1 Microwell size and geometry 18
2.3.2 Microfluidic device design 20
Chapter 3 Materials and Methods 21
3.1 Materials 21
3.2 Bacteria preparation 21
3.3 Device fabrication 21
3.3.1 Microwell and microfluidic channel fabrication 21
3.3.2 Two-dimensional SERS-active substrate fabrication 24
3.4 Microwell-SERS detecting procedures 25
3.5 SERS measurement and spectral processing 26
3.6 Conventional-SERS detecting procedures 27
Chapter 4 Results and Discussion 28
4.1 Results of microwell and microfluidic device 28
4.1.1 Centrifugation time optimization 28
4.1.2 Bacteria trapping of different sample concentration 30
4.1.3 Rehydration efficiency 33
4.2 Microwell cross-contamination tests 34
4.3 SERS detection of different bacteria concentration 35
4.4 Microwell SERS-AST detection 37
Chapter 5 Conclusion 40
Chapter 6 Future Work 41
Reference 44
1.A review of technologies for rapid detection of bacteria in recreational waters," Journal of Water and Health.
2.McCoy, W.F. and A.A. Rosenblatt, HACCP-Based Programs for Preventing Disease and Injury from Premise Plumbing: A Building Consensus. Pathogens, 2015. 4(3): p. 513-28.
3.Gracias, K.S. and J.L. McKillip, A review of conventional detection and enumeration methods for pathogenic bacteria in food. Can J Microbiol, 2004. 50(11): p. 883-90.
4.Abubakar, I., et al., A systematic review of the clinical, public health and cost-effectiveness of rapid diagnostic tests for the detection and identification of bacterial intestinal pathogens in faeces and food. Health Technol Assess, 2007. 11(36): p. 1-216.
5.Ahmed, A., et al., Biosensors for whole-cell bacterial detection. Clinical microbiology reviews, 2014. 27(3): p. 631-646.
6.Opota, O., et al., Blood culture-based diagnosis of bacteraemia: state of the art. Clin Microbiol Infect, 2015. 21(4): p. 313-22.
7.Wang, S., et al., Portable microfluidic chip for detection of Escherichia coli in produce and blood. Int J Nanomedicine, 2012. 7: p. 2591-600.
8.Premasiri, W.R., et al., Rapid urinary tract infection diagnostics by surface-enhanced Raman spectroscopy (SERS): identification and antibiotic susceptibilities. Anal Bioanal Chem, 2017. 409(11): p. 3043-3054.
9.Premasiri, W.R., et al., The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS. Anal Bioanal Chem, 2016. 408(17): p. 4631-47.
10.Fargasova, A., et al., Detection of Prosthetic Joint Infection Based on Magnetically Assisted Surface Enhanced Raman Spectroscopy. Anal Chem, 2017. 89(12): p. 6598-6607.
11.Dina, N.E., et al., Rapid single-cell detection and identification of pathogens by using surface-enhanced Raman spectroscopy. Analyst, 2017. 142(10): p. 1782-1789.
12.Cho, I.H., et al., Membrane filter-assisted surface enhanced Raman spectroscopy for the rapid detection of E. coli O157:H7 in ground beef. Biosens Bioelectron, 2015. 64: p. 171-6.
13.Gracie, K., et al., Simultaneous detection and quantification of three bacterial meningitis pathogens by SERS. Chem. Sci., 2014. 5(3): p. 1030-1040.
14.Boardman, A.K., et al., Rapid Detection of Bacteria from Blood with Surface-Enhanced Raman Spectroscopy. Anal Chem, 2016. 88(16): p. 8026-35.
15.Liu, C.Y., et al., Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced Raman spectroscopic biomarkers. Sci Rep, 2016. 6: p. 23375.
16.Wang, S., et al., Portable microfluidic chip for detection of Escherichia coli in produce and blood. Vol. 7. 2012. 2591-600.
17.Choi, J., et al., Direct, rapid antimicrobial susceptibility test from positive blood cultures based on microscopic imaging analysis. Sci Rep, 2017. 7(1): p. 1148.
18.Matsumoto, Y., et al., A Microfluidic Channel Method for Rapid Drug-Susceptibility Testing of Pseudomonas aeruginosa. PLOS ONE, 2016. 11(2): p. e0148797.
19.Kim, S.C., et al., Miniaturized Antimicrobial Susceptibility Test by Combining Concentration Gradient Generation and Rapid Cell Culturing. Antibiotics (Basel), 2015. 4(4): p. 455-66.
20.Mouffouk, F., et al., Development of a highly sensitive bacteria detection assay using fluorescent pH-responsive polymeric micelles. Biosens Bioelectron, 2011. 26(8): p. 3517-23.
21.Ahmed, A., et al., Biosensors for whole-cell bacterial detection. Clin Microbiol Rev, 2014. 27(3): p. 631-46.
22.Hou, H.W., et al., Direct detection and drug-resistance profiling of bacteremias using inertial microfluidics. Lab Chip, 2015. 15(10): p. 2297-307.
23.Mezger, A., et al., A general method for rapid determination of antibiotic susceptibility and species in bacterial infections. J Clin Microbiol, 2015. 53(2): p. 425-32.
24.Etayash, H., et al., Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes. Nat Commun, 2016. 7: p. 12947.
25.張凱崴, 使用微流道系統整合多孔性濾膜與表面增強拉曼散射應用於快速細菌檢測與抗生素藥敏試驗. 2019.
26.Marcy, Y., et al., Nanoliter Reactors Improve Multiple Displacement Amplification of Genomes from Single Cells. PLOS Genetics, 2007. 3(9): p. e155.
27.Boedicker, J.Q., et al., Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip, 2008. 8(8): p. 1265-72.
28.Hansen, R.H., et al., Stochastic Assembly of Bacteria in Microwell Arrays Reveals the Importance of Confinement in Community Development. PLoS One, 2016. 11(5): p. e0155080.
29.Li, P., et al., Isolated Reporter Bacteria in Supramolecular Hydrogel Microwell Arrays. Langmuir, 2017. 33(31): p. 7799-7809.
30.Zhang, L., et al., Agarose-based microwell array chip for high-throughput screening of functional microorganisms. Talanta, 2019. 191: p. 342-349.
31.Balouiri, M., M. Sadiki, and S.K. Ibnsouda, Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal, 2016. 6(2): p. 71-79.
32.van de Beek, D., et al., Community-acquired bacterial meningitis in adults. N Engl J Med, 2006. 354(1): p. 44-53.
33.王俊凱, 拉曼光譜分析. 材料分析 第二版 中國材料科學學會 第18章, 2014.
34.Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver eletrode. Chemical Physics Letters, 1974. 26(2): p. 163-166.
35.Ding, S.Y., et al., Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem Soc Rev, 2017. 46(13): p. 4042-4076.
36.Localizedsurfaceplasmonresonance:Nanostructures,bioassaysandbiosensing—Areview.
37.Tjhie, J.H., et al., Direct PCR enables detection of Mycoplasma pneumoniae in patients with respiratory tract infections. J Clin Microbiol, 1994. 32(1): p. 11-6.
38.Chiu, S.W., et al., Quantification of biomolecules responsible for biomarkers in the surface-enhanced Raman spectra of bacteria using liquid chromatography-mass spectrometry. Phys Chem Chem Phys, 2018. 20(12): p. 8032-8041.
39.王怡穎, 整合液相色層分析與表面增強型拉曼散射於單一微流道檢測平台. 2018.
40.Kim, S., et al., On-chip phenotypic investigation of combinatory antibiotic effects by generating orthogonal concentration gradients. Lab Chip, 2019. 19(6): p. 959-973.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊