|
1.A review of technologies for rapid detection of bacteria in recreational waters," Journal of Water and Health. 2.McCoy, W.F. and A.A. Rosenblatt, HACCP-Based Programs for Preventing Disease and Injury from Premise Plumbing: A Building Consensus. Pathogens, 2015. 4(3): p. 513-28. 3.Gracias, K.S. and J.L. McKillip, A review of conventional detection and enumeration methods for pathogenic bacteria in food. Can J Microbiol, 2004. 50(11): p. 883-90. 4.Abubakar, I., et al., A systematic review of the clinical, public health and cost-effectiveness of rapid diagnostic tests for the detection and identification of bacterial intestinal pathogens in faeces and food. Health Technol Assess, 2007. 11(36): p. 1-216. 5.Ahmed, A., et al., Biosensors for whole-cell bacterial detection. Clinical microbiology reviews, 2014. 27(3): p. 631-646. 6.Opota, O., et al., Blood culture-based diagnosis of bacteraemia: state of the art. Clin Microbiol Infect, 2015. 21(4): p. 313-22. 7.Wang, S., et al., Portable microfluidic chip for detection of Escherichia coli in produce and blood. Int J Nanomedicine, 2012. 7: p. 2591-600. 8.Premasiri, W.R., et al., Rapid urinary tract infection diagnostics by surface-enhanced Raman spectroscopy (SERS): identification and antibiotic susceptibilities. Anal Bioanal Chem, 2017. 409(11): p. 3043-3054. 9.Premasiri, W.R., et al., The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS. Anal Bioanal Chem, 2016. 408(17): p. 4631-47. 10.Fargasova, A., et al., Detection of Prosthetic Joint Infection Based on Magnetically Assisted Surface Enhanced Raman Spectroscopy. Anal Chem, 2017. 89(12): p. 6598-6607. 11.Dina, N.E., et al., Rapid single-cell detection and identification of pathogens by using surface-enhanced Raman spectroscopy. Analyst, 2017. 142(10): p. 1782-1789. 12.Cho, I.H., et al., Membrane filter-assisted surface enhanced Raman spectroscopy for the rapid detection of E. coli O157:H7 in ground beef. Biosens Bioelectron, 2015. 64: p. 171-6. 13.Gracie, K., et al., Simultaneous detection and quantification of three bacterial meningitis pathogens by SERS. Chem. Sci., 2014. 5(3): p. 1030-1040. 14.Boardman, A.K., et al., Rapid Detection of Bacteria from Blood with Surface-Enhanced Raman Spectroscopy. Anal Chem, 2016. 88(16): p. 8026-35. 15.Liu, C.Y., et al., Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced Raman spectroscopic biomarkers. Sci Rep, 2016. 6: p. 23375. 16.Wang, S., et al., Portable microfluidic chip for detection of Escherichia coli in produce and blood. Vol. 7. 2012. 2591-600. 17.Choi, J., et al., Direct, rapid antimicrobial susceptibility test from positive blood cultures based on microscopic imaging analysis. Sci Rep, 2017. 7(1): p. 1148. 18.Matsumoto, Y., et al., A Microfluidic Channel Method for Rapid Drug-Susceptibility Testing of Pseudomonas aeruginosa. PLOS ONE, 2016. 11(2): p. e0148797. 19.Kim, S.C., et al., Miniaturized Antimicrobial Susceptibility Test by Combining Concentration Gradient Generation and Rapid Cell Culturing. Antibiotics (Basel), 2015. 4(4): p. 455-66. 20.Mouffouk, F., et al., Development of a highly sensitive bacteria detection assay using fluorescent pH-responsive polymeric micelles. Biosens Bioelectron, 2011. 26(8): p. 3517-23. 21.Ahmed, A., et al., Biosensors for whole-cell bacterial detection. Clin Microbiol Rev, 2014. 27(3): p. 631-46. 22.Hou, H.W., et al., Direct detection and drug-resistance profiling of bacteremias using inertial microfluidics. Lab Chip, 2015. 15(10): p. 2297-307. 23.Mezger, A., et al., A general method for rapid determination of antibiotic susceptibility and species in bacterial infections. J Clin Microbiol, 2015. 53(2): p. 425-32. 24.Etayash, H., et al., Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes. Nat Commun, 2016. 7: p. 12947. 25.張凱崴, 使用微流道系統整合多孔性濾膜與表面增強拉曼散射應用於快速細菌檢測與抗生素藥敏試驗. 2019. 26.Marcy, Y., et al., Nanoliter Reactors Improve Multiple Displacement Amplification of Genomes from Single Cells. PLOS Genetics, 2007. 3(9): p. e155. 27.Boedicker, J.Q., et al., Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip, 2008. 8(8): p. 1265-72. 28.Hansen, R.H., et al., Stochastic Assembly of Bacteria in Microwell Arrays Reveals the Importance of Confinement in Community Development. PLoS One, 2016. 11(5): p. e0155080. 29.Li, P., et al., Isolated Reporter Bacteria in Supramolecular Hydrogel Microwell Arrays. Langmuir, 2017. 33(31): p. 7799-7809. 30.Zhang, L., et al., Agarose-based microwell array chip for high-throughput screening of functional microorganisms. Talanta, 2019. 191: p. 342-349. 31.Balouiri, M., M. Sadiki, and S.K. Ibnsouda, Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal, 2016. 6(2): p. 71-79. 32.van de Beek, D., et al., Community-acquired bacterial meningitis in adults. N Engl J Med, 2006. 354(1): p. 44-53. 33.王俊凱, 拉曼光譜分析. 材料分析 第二版 中國材料科學學會 第18章, 2014. 34.Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver eletrode. Chemical Physics Letters, 1974. 26(2): p. 163-166. 35.Ding, S.Y., et al., Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem Soc Rev, 2017. 46(13): p. 4042-4076. 36.Localizedsurfaceplasmonresonance:Nanostructures,bioassaysandbiosensing—Areview. 37.Tjhie, J.H., et al., Direct PCR enables detection of Mycoplasma pneumoniae in patients with respiratory tract infections. J Clin Microbiol, 1994. 32(1): p. 11-6. 38.Chiu, S.W., et al., Quantification of biomolecules responsible for biomarkers in the surface-enhanced Raman spectra of bacteria using liquid chromatography-mass spectrometry. Phys Chem Chem Phys, 2018. 20(12): p. 8032-8041. 39.王怡穎, 整合液相色層分析與表面增強型拉曼散射於單一微流道檢測平台. 2018. 40.Kim, S., et al., On-chip phenotypic investigation of combinatory antibiotic effects by generating orthogonal concentration gradients. Lab Chip, 2019. 19(6): p. 959-973.
|