|
[1] https : //semiconductor.kaust.edu.sa/Pages/Page − 2017 − 02 − 2610 − 44 − 57 − AM.aspx. [2] F. Fornetti, Characterisation and Performance Optimisation of GaN HEMTs and Amplifiers for Radar Applications. PhD thesis, University of Bristol, 2010. [3] N. Goyal and T. A. Fjeldly, “Effects of strain relaxation on bare surface barrier height and two-dimensional electron gas in AlxGa1-xN/GaN heterostructures,” Journal of Applied Physics, vol. 113, no. 1, p. 014505, 2013. [4] H. Hasegawa, T. Inagaki, S. Ootomo, and T. Hashizume, “Mech- anisms of current collapse and gate leakage currents in Al- GaN/GaN heterostructure field effect transistors,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 21, no. 4, pp. 1844–1855, 2003. [5] G. Zhu, H. Wang, Y. Wang, X. Feng, and A. Song, “Performance enhancement of AlGaN/AlN/GaN high electron mobility transistors by thermally evaporated SiO passivation,” Applied Physics Letters, vol. 109, no. 11, p. 113503, 2016. [6] D. K. shi Shibata, R. Kajitani, M. Ogawa, K. Tanaka, S. Tamura, T. Hatsuda, M. Ishida, and T. Ueda, “1.7 kV/1.0 mΩcm2 normally-off vertical GaN transistor on GaN substrate with re- grown p-GaN/AlGaN/GaN semipolar gate structure,” 2016 IEEE International Electron Devices Meeting (IEDM), pp. 10.1.1– 10.1.4, 2016. [7] M. Dammann, M. Baeumler, P. Bru ̈ckner, W. Bronner, S. Maroldt, H. Konstanzer, M. Wespel, R. Quay, M. Mikulla, A. Graff, et al., “Degradation of 0.25 μm GaN HEMTs under high temperature stress test,” Microelectronics Reliability, vol. 55, no. 9-10, pp. 1667–1671, 2015. [8] S. Arulkumaran, T. Egawa, H. Ishikawa, and T. Jimbo, “High- temperature effects of AlGaN/GaN high-electron-mobility transistors on sapphire and semi-insulating SiC substrates,” Applied physics letters, vol. 80, no. 12, pp. 2186–2188, 2002. [9] E. Ture, GaN-Based Tri-Gate High Electron Mobility Transistors. BoD–Books on Demand, 2018. [10] T. Hashizume, K. Nishiguchi, S. Kaneki, J. Kuzmik, and Z. Yatabe, “State of the art on gate insulation and surface passivation for GaN-based power HEMTs,” Materials science in semi- conductor processing, vol. 78, pp. 85–95, 2018. [11] S. Takashima, Z. Li, and T. P. Chow, “Sidewall dominated characteristics on fin-gate AlGaN/GaN MOS-channel-HEMTs,” IEEE Transactions on Electron Devices, vol. 60, no. 10, pp. 3025–3031, 2013. [12] P.-C. Chou, T.-E. Hsieh, S. Cheng, J. A. del Alamo, and E. Y. Chang, “Comprehensive dynamic on-resistance assessments in GaN-on-Si MIS-HEMTs for power switching applications,” Semi- conductor Science and Technology, vol. 33, no. 5, p. 055012, 2018. [13] S. M. C. . sales, “Gallium Nitride ( GaN ) Microwave Transistor Technology For Radar Applications,” 2008. [14] R. Balmer, D. Soley, D. Wallis, A. Pidduck, L. Koker, and M. Uren, “Gallium nitride growth on silicon for microwave heterojunction field effect transistors,” 09 2019. [15] Z. Liu, “High Frequency Small-Signal Modelling of GaN High Electron Mobility Transistors for RF applications,” Master’s thesis, University of Victoria, 2016. [16] T. Palacios, A. Chakraborty, S. Heikman, S. Keller, S. DenBaars, and U. Mishra, “AlGaN/GaN high electron mobility transistors with InGaN back-barriers,” IEEE Electron Device Letters, vol. 27, no. 1, pp. 13–15, 2005. [17] D. S. Lee, X. Gao, S. Guo, and T. Palacios, “InAlN/GaN HEMTs with AlGaN back barriers,” IEEE Electron Device Letters, vol. 32, no. 5, pp. 617–619, 2011. [18] L.-C. Chang, J.-H. Lin, C.-J. Dai, M. Yang, Y.-H. Jiang, Y.-R. Wu, and C.-H. Wu, “Systematic investigation of the threshold voltage modulation of AlGaN/GaN Schottky-gate Fin-HEMTs,” Journal of Applied Physics, vol. 125, no. 9, p. 094502, 2019. [19] C.-Y. Chen and Y.-R. Wu, “Studying the short channel effect in the scaling of the AlGaN/GaN nanowire transistors,” Journal of Applied Physics, vol. 113, no. 21, p. 214501, 2013. [20] R. Chu, Y. Zhou, J. Liu, D. Wang, K. J. Chen, and K. M. Lau, “AlGaN-GaN double-channel HEMTs,” IEEE Transactions on electron devices, vol. 52, no. 4, pp. 438–446, 2005. [21] A. Botchkarev, H. Tang, A. Salvador, O ̈. Aktas, W. Kim, H. Morko ̧c, et al., “AlGaN/GaN double heterostructure channel modulation doped field effect transistors (MODFETs),” Electronics Letters, vol. 33, no. 9, pp. 814–815, 1997. [22] R. Gaska, M. Shur, T. Fjeldly, and A. Bykhovski, “Two-channel AlGaN/GaN heterostructure field effect transistor for high power applications,” Journal of applied physics, vol. 85, no. 5, pp. 3009– 3011, 1999. [23] N. H. Sheng, C. P. Lee, R. T. Chen, D. L. Miller, and S. J. Lee, “Multiple-channel GaAs/AlGaAs high electron mobility transistors,” IEEE Electron Device Letters, vol. 6, pp. 307–310, June 1985. [24] K. J. Chen, O. Hberlen, A. Lidow, C. l. Tsai, T. Ueda, Y. Ue- moto, and Y. Wu, “GaN-on-Si Power Technology: Devices and Applications,” IEEE Transactions on Electron Devices, vol. 64, pp. 779–795, March 2017. [25] E. A. Jones, F. F. Wang, and D. Costinett, “Review of Com- mercial GaN Power Devices and GaN-Based Converter Design Challenges,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, pp. 707–719, Sep. 2016. [26] S. L. Selvaraj, A. Watanabe, A. Wakejima, and T. Egawa, “1.4- kV Breakdown Voltage for AlGaN/GaN High-Electron-Mobility Transistors on Silicon Substrate,” IEEE Electron Device Letters, vol. 33, pp. 1375–1377, Oct 2012. [27] U. K. Mishra, L. Shen, T. E. Kazior, and Y. Wu, “GaN-Based RF Power Devices and Amplifiers,” Proceedings of the IEEE, vol. 96, pp. 287–305, Feb 2008. [28] J. M. Tirado, J. L. Sanchez-Rojas, and J. I. Izpura, “Trapping effects in the transient response of AlGaN/GaN HEMT devices,” IEEE Transactions on Electron Devices, vol. 54, no. 3, pp. 410– 417, 2007. [29] G. Meneghesso, G. Verzellesi, R. Pierobon, F. Rampazzo, A. Chini, U. K. Mishra, C. Canali, and E. Zanoni, “Surface- related drain current dispersion effects in AlGaN-GaN HEMTs,” IEEE Transactions on Electron Devices, vol. 51, no. 10, pp. 1554– 1561, 2004. [30] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, “The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,” IEEE Transactions on Electron Devices, vol. 48, no. 3, pp. 560–566, 2001. [31] M. Sun, Y. Zhang, X. Gao, and T. Palacios, “High-performance GaN vertical fin power transistors on bulk GaN substrates,” IEEE Electron Device Letters, vol. 38, no. 4, pp. 509–512, 2017. [32] R. Joshi, “Temperature-dependent electron mobility in GaN: Effects of space charge and interface roughness scattering,” Applied physics letters, vol. 64, no. 2, pp. 223–225, 1994. [33] O. Aktas, Z. Fan, A. Botchkarev, S. Mohammad, M. Roth, T. Jenkins, L. Kehias, and H. Morkoc, “Microwave performance of AlGaN/GaN inverted MODFET’s,” IEEE Electron Device Let- ters, vol. 18, no. 6, pp. 293–295, 1997. [34] M. Asif Khan, J. Kuznia, D. Olson, W. Schaff, J. Burm, and M. Shur, “Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor,” Applied Physics Letters, vol. 65, no. 9, pp. 1121–1123, 1994. [35] W. Lu, J. Yang, M. A. Khan, and I. Adesida, “AlGaN/GaN HEMTs on SiC with over 100 GHz fT and low microwave noise,” IEEE Transactions on Electron Devices, vol. 48, no. 3, pp. 581– 585, 2001. [36] U. K. Mishra, Y.-F. Wu, B. P. Keller, S. Keller, and S. P. Den- baars, “GaN microwave electronics,” IEEE transactions on mi- crowave theory and techniques, vol. 46, no. 6, pp. 756–761, 1998. [37] B. Doyle, B. Boyanov, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, R. Rios, and R. Chau, “Tri-gate fully- depleted CMOS transistors: Fabrication, design and layout,” in 2003 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No. 03CH37407), pp. 133–134, IEEE, 2003. [38] J.-P. Colinge et al., FinFETs and other multi-gate transistors, vol. 73. Springer, 2008. [39] B. Doyle, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, A. Murthy, R. Rios, and R. Chau, “High performance fully-depleted tri-gate CMOS transistors,” IEEE Electron Device Letters, vol. 24, no. 4, pp. 263–265, 2003. [40] C.-K. Li, M. Rosmeulen, E. Simoen, and Y.-R. Wu, “Study on the optimization for current spreading effect of lateral GaN/InGaN LEDs,” IEEE Transactions on Electron Devices, vol. 61, no. 2, pp. 511–517, 2013. [41] C.-K. Wu, C.-K. Li, and Y.-R. Wu, “Percolation transport study in nitride based LED by considering the random alloy fluctuation,” Journal of Computational Electronics, vol. 14, no. 2, pp. 416–424, 2015. [42] T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva, S. N. Yurkov, G. S. Simin, and M. A. Khan, “Carrier mobility model for GaN,” Solid-State Electronics, vol. 47, no. 1, pp. 111–115, 2003. [43] J. P. Ibbetson, P. Fini, K. Ness, S. DenBaars, J. Speck, and U. Mishra, “Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors,” Applied Physics Letters, vol. 77, no. 2, pp. 250–252, 2000. [44] B. Jogai, “Influence of surface states on the two-dimensional electron gas in AlGaN/GaN heterojunction field-effect transistors,” Journal of applied physics, vol. 93, no. 3, pp. 1631–1635, 2003. [45] J. Ma, C. Erine, P. Xiang, K. Cheng, and E. Matioli, “Multi- channel tri-gate normally-on/off AlGaN/GaN MOSHEMTs on Si substrate with high breakdown voltage and low ON-resistance,” Applied Physics Letters, vol. 113, no. 24, p. 242102, 2018. [46] W. Walukiewicz, H. Ruda, J. Lagowski, and H. Gatos, “Electron mobility in modulation-doped heterostructures,” Physical Review B, vol. 30, no. 8, p. 4571, 1984. [47] C. Wang, X. Wang, X. Zheng, Q. He, J. Wu, Y. Tian, W. Mao, X. Ma, and Y. Hao, “GaN-based FinFET with double-channel AlGaN/GaN heterostructure,” Electronics Letters, vol. 54, no. 5, pp. 313–315, 2018. [48] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, “Recessed-gate structure approach toward normally off high- Voltage AlGaN/GaN HEMT for power electronics applications,” IEEE Transactions on Electron Devices, vol. 53, pp. 356–362, Feb 2006. [49] G. Greco, F. Iucolano, and F. Roccaforte, “Review of technology for normally-off HEMTs with p-GaN gate,” Materials Science in Semiconductor Processing, vol. 78, pp. 96–106, 2018.
|