跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 09:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陸金志
研究生(外文):Jin-Jhih Lu
論文名稱:基於液晶的高效率相位可調之超穎表面
論文名稱(外文):High-Efficiency Phase-Tunable Metasurfaces Based on Liquid Crystals
指導教授:邱奕鵬
指導教授(外文):Yih-Peng Chiou
口試委員:張世慧蕭惠心
口試委員(外文):Shih-Hui ChangHui-Hsin Hsiao
口試日期:2020-04-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:119
中文關鍵詞:時域有限差分法超穎表面2π 相位調製範圍液晶光束偏轉偏振轉換
外文關鍵詞:Finitedifference timedomain (FDTD) methodmetasurfaces2π phase coverageliquid crystalbeam steeringpolarization conversion
DOI:10.6342/NTU202000724
相關次數:
  • 被引用被引用:0
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
動態可調的超穎表面近年來逐漸受到重視,由於其可調製任意位置相位之特性,可應用於自駕車、相機及遙測等領域。我們藉由次波長三明治型光柵理論,提出一個電控可調的液晶超穎表面以控制光束方向和偏振特性。此理論有效率地預測一個可引發共振疊加的結構以達到2π 的相位改變。我們亦以自建之平行化三維時域有限差分法電磁模擬器搭配各向異性材料演算法驗證該理論。我們設計之超穎表面是以內含液晶的矽柱為最小單元組成之陣列,隨著施加偏壓以改變約0.2的液晶分子折射率變化範圍,此設計針對1550 奈米波長的近紅外線達到1.96π 相位調製範圍及超過99% 的反射率。藉著控制反射波的相位,我們個別演示了光束偏轉器及偏振轉換器之應用。該可調式光束偏轉器的最大的偏轉角度為40.23 度。該偏振轉換器能將線偏光轉換成與之互相垂直之線偏光、左右旋極化光,甚至是橢偏光,並具有接近全反射的效率及超過30 dB 的優異消光比。
Dynamic metasurfaces with arbitrary phase manipulation are favorable for numerous applications in the fields of self-driving cars, cameras, and sensing. We propose an electrically tunable liquid crystal (LC) metasurfaces for beam steering and polarization manipulation by exploiting the modal method of subwavelength sandwich gratings. This method efficiently predicts a resonance overlapping structure for 2π phase tuning. The in-house parallelized three-dimensional finite-difference time-domain (FDTD) electromagnetic numerical solver for anisotropic materials is established to verify the correctness of modal method. The delicate metasurface consisting of embedded LC silicon pillar resonator array achieves 1.96π phase tuning and ultrahigh reflectance over 99% with a small LC refractive index change of approximately 0.2 for a single wavelength 1550 nm. By controlling the phase of reflected wave, the metasurface realizes a tunable beam deflector or a polarization converter. The proposed beam deflector has a maximum deflected angle of 40.23◦. The proposed polarization converter can transform linear to crossed linear, circular, or elliptical polarization with near total reflection and excellent polarization extinction ratios over 30 dB.
1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Introduction to Computational Electromagnetics . . . . . . . . . . . . . . 4
1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 The FiniteDifference
TimeDomain
Method 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The Courant Stability Limit . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 The TotalField
/ ScatteredField
Technique . . . . . . . . . . . . . . . . 11
2.4 Convolutional Perfectly Matched Layer . . . . . . . . . . . . . . . . . . 13
2.5 Periodic Boundary Condition (PBC) . . . . . . . . . . . . . . . . . . . . 16
2.6 Implementation of Dispersive Material Models . . . . . . . . . . . . . . 17
2.6.1 The Drude Model . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6.2 The DrudeLorentz
Model . . . . . . . . . . . . . . . . . . . . . 19
2.6.3 The Auxiliary Differential Equation (ADE) Method . . . . . . . . 20
2.7 The FDTD Algorithm for Anisotropic Material . . . . . . . . . . . . . . 23
2.8 Mathematical Description of Liquid Crystals Rotation in Space . . . . . . 28
2.9 Parallelized FDTD Method . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.10 Validation of FDTD Simulated Results with Analytical Solutions . . . . . 32
2.10.1 Phasor Calculation for 2D
Circular Cylinders . . . . . . . . . . . 32
2.10.2 Phasor Calculation for 3D
Silver Sphere . . . . . . . . . . . . . 33
2.10.3 Calculation of Total Scattering CrossSection
. . . . . . . . . . . 37
2.10.4 Reflectance Calculation for Periodic Structure . . . . . . . . . . . 39
2.10.5 Phase Calculation for Anisotropic material . . . . . . . . . . . . 40
2.11 Periodic NeartoFarField
Transformation . . . . . . . . . . . . . . . . . 43
3 Mechanism of HighContrast
Grating in Subwavelength Region 45
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Theoretical Analysis of Binary Subwavelength Grating . . . . . . . . . . 46
3.2.1 TMPolarized
SurfaceNormal
Incidence . . . . . . . . . . . . . 48
3.2.2 Comparison of TM Analytic and FDTD Simulation . . . . . . . . 55
3.2.3 TEPolarized
SurfaceNormal
Incidence . . . . . . . . . . . . . . 58
3.2.4 Comparison of TE Analytic and FDTD Simulation . . . . . . . . 61
3.2.5 Calculation of Periodic Waveguide ω − β Relation by Finite Difference
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Theoretical Analysis of Sandwich Subwavelength Grating . . . . . . . . 64
3.4 Mode Mechanism of HighContrast
Grating in Dual Mode Region . . . . 69
3.4.1 Types of Periodic Waveguide Array Modes . . . . . . . . . . . . 70
3.4.2 High Transmittance and Reflectance Mechanism . . . . . . . . . 75
3.5 Mechanisms of HighContrast
Grating and Huygens’ Metasurface . . . . 77
4 PhaseTunable
Liquid Crystal Metasurfaces 81
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Static Metasurfaces for Controlling Light Propagation . . . . . . . . . . . 82
4.2.1 Transmitted Beam Deflection Subwavelength Grating . . . . . . 82
4.2.2 Reflected Beam Deflection Subwavelength Grating . . . . . . . . 85
4.3 Tunable Liquid Crystal Metasurfaces for Beam Steering . . . . . . . . . 88
4.3.1 Steering of ±1st Diffracted Beams . . . . . . . . . . . . . . . . . 90
4.3.2 Steering of a Single Diffracted Beam . . . . . . . . . . . . . . . 93
4.4 HighQ
SandwichShaped
Resonator for Full Phase Coverage . . . . . . 96
4.4.1 HighQ
Resonant Beam Deflector . . . . . . . . . . . . . . . . . 97
4.4.2 HighQ
Resonant Polarization Converter . . . . . . . . . . . . . 102
5 Conclusion 109
Bibliography 111
[1] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Techn., vol. 47, pp. 2075–2084, 1999.
[2] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter, vol. 10, pp. 4785–4809, 1998.
[3] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, pp. 4184–4187, 2000.
[4] N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics, vol. 3, pp. 157–162, 2009.
[5] R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B, vol. 83, p. 035105, 2011.
[6] F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett., vol. 12, p. 1702–1706, 2012.
[7] T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photonics, vol. 4, pp. 312–315, 2010.
[8] N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science, vol. 340, pp. 1304–1307, 2013.
[9] H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90◦ polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett., vol. 104, p. 034102, 2014.
[10] A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. v. Hulst1, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science, vol. 329, pp. 930–933, 2010.
[11] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science, vol. 334, pp. 333–337, 2011.
[12] S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett., vol.12, pp.6223–6229, 2012.
[13] S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater., vol. 11, pp. 426– 431, 2012.
[14] L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett., vol. 12, p. 5750–5755, 2012.
[15] S.-C. Jiang, X. Xiong, Y.-S. Hu, S.-W. Jiang, Y.-H. Hu, D.-H. Xu, R.-W. Peng, and M. Wang, “High-efficiency generation of circularly polarized light via symmetry-induced anomalous reflection,” Phys. Rev. B, vol. 91, p. 125421, 2015.
[16] M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens'surfaces,” Adv. Opt. Mater., vol. 3, p. 813–820, 2015.
[17] V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express, vol. 18, pp. 16973– 16988, 2010.
[18] C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics, vol. 4, pp. 379–440, 2012.
[19] S. Colburn, A. Zhan, and A. Majumdar, “Tunable metasurfaces via subwavelength phase shifters with uniform amplitude,” Sci. Rep., vol. 7, p. 40174, 2017.
[20] Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett., vol. 16, pp. 5319–5325, 2016.
[21] M. Zhang, W. Zhang, A. Q. Liu, F. C. Li, and C. F. Lan, “Tunable polarization conversion and rotation based on a reconfigurable metasurface,” Sci. Rep., vol. 7, p. 12068, 2017.
[22] M. R. Tavakol, B. Rahmani, and A. Khavasi, “Tunable polarization converter based on one-dimensional graphene metasurfaces,” J. Opt. Soc. Am. B, vol. 35, p. 2574– 2581, 2018.
[23] A. Alhashimi, CStatistical Calibration Algorithms for Lidars. Luleå: Luleå tekniska universitet, 2016.
[24] O. C. Zienkiewicz and Y. K. Cheung, “Finite elements in the solution of field problems,” The Engineer, vol. 220, pp. 507–510, 1965.
[25] M. Albani and P. Bernardi, “A numerical method based on the discretization of Maxwell equations in integral form,” IEEE Trans. Microw. Theory Techn., vol. 22, pp. 446–450, 1974.
[26] R. Harrington, “The method of moments in electromagnetics,” J. Electromagn. Waves Appl., vol. 1, pp. 181–200, 1987.
[27] ANSYS. https://www.ansys.com.
[28] COMSOL. https://www.comsol.com.
[29] Agilent. https://www.agilent.com.
[30] K. Yee, “NumericalsolutionofinitialboundaryvalueproblemsinvolvingMaxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag., vol. 14, pp. 302–307, 1966.
[31] T. Weiland, “A discretization model for the solution of Maxwell’s equations for six-component fields,” Electron. Commun. (AEU), vol. 31, pp. 116–120, 1977.
[32] Lumerical. https://www.lumerical.com.
[33] Remcom. https://www.remcom.com.
[34] C. S. T. (CST). https://www.cst.com.
[35] G. MUR, “Absorbingboundaryconditionsforthefinite-differenceapproximationof the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat., vol. 23, pp. 377–382, 1981.
[36] K. Umashankar and A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,” IEEE Trans. Electromagn. Compat., vol. 24, pp. 397–405, 1982.
[37] J. A. Roden and S. D. Gedney, “Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media,” Microw. Opt. Technol. Lett., vol. 27, pp. 334–339, 2000.
[38] M. Okoniewski, M. Mrozowski, and M. A. Stuchly, “Simple treatment of multi- term dispersion in FDTD,” IEEE Microwave Guided Wave Lett., vol.7, pp.121–123, 1997.
[39] A. Taflove and S. C. Hagness, Computational Electrodynamics The Finite-Difference Time-Domain Method. Norwood: Artech House, 3rd ed., 2005.
[40] R. Courant, K. Friedrichs, and H. Lewy, “Über die partiellen differenzengleichungen der mathematischen physik,” Math. Ann., vol. 100, pp. 32–74, 1928.
[41] T. Tan and M. Potter, “1-D multipoint auxiliary source propagator for the total-field/scattered-field FDTD formulation,” IEEE Antennas Wirel. Propag. Lett., vol.6, pp. 144–148, 2007.
[42] T. Tan and M. Potter, “FDTD discrete planewave (FDTD-DPW) formulation for a perfectly matched source in TFSF simulations,” IEEE Trans. Antennas Propaga., vol. 58, pp. 2641–2648, 2010.
[43] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys., vol. 114, pp. 185–200, 1994.
[44] S. D. Gedney, “An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media,” Electromagnetics, vol. 16, pp. 399–415, 1996.
[45] S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propaga., vol. 44, pp. 1630– 1639, 1992.
[46] R. Luebbers and F. Hunsberger, “FDTD for Nth-order dispersive media,” IEEE Trans. Antennas Propaga., vol. 40, pp. 1297–1301, 1992.
[47] F. Teixeira and W. Chew, “On causality and dynamic stability of perfectly matched layers for FDTD simulations,” IEEETrans.Microw.TheoryTechn.,vol.47,pp.775– 785, 1999.
[48] P. Drude, “Zur elektronentheorie der metalle,” Annalen der Physik, vol. 306, pp. 566–613, 1900.
[49] H. A. Lorentz, The Theory of Electrons. Leipzig: Teubner, 1909.
[50] T. KashiwaandI. Fukai, “A treatment by the FDTD method of the dispersive characteristics associated with electronic polarization,” Microw. Opt. Technol. Lett., vol. 3, pp. 203–205, 1990.
[51] R. M. Joseph, S. C. Hagness, and A. Taflove, “Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses,” Opt. Lett., vol. 16, pp. 1412–1414, 1991.
[52] L. Dou and A. R. Sebak, “3D FDTD method for arbitrary anisotropic materials,” Microw. Opt. Technol. Lett., vol. 48, pp. 2083–2090, 2006.
[53] C. Oh and J. E. M, “Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation,” Opt. Express, vol. 14, pp. 11870– 11884, 2006.
[54] OpenMP. https://www.openmp.org.
[55] M. Forum. https://www.mpi-forum.org.
[56] G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys., vol. 330, pp. 377–445, 1908.
[57] E. D. Palik, Handbook of Optical Constants of Solids. Orlando, FL: AcademicPress, 1985.
[58] B. N. J. Persson and A. Liebsch, “Optical properties of two-dimensional systems of randomly distributed particles,” Phys. Rev. B, vol. 28, pp. 4247–4254, 1983.
[59] C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter,” Opt. Express, vol. 12, pp. 2625–2630, 2004.
[60] S. A. Schelkunoff, “Some equivalence theorems of electromagnetics and their application to radiation problems,” Bell Syst. Tech. J., vol. 15, pp. 92–112, 1936.
[61] C. A. Balanis, Advanced Engineering Electromagnetics. New York: Wiley, 1989.
[62] X. Li, A. Taflove, and V. Backman, “Modified FDTD near-to-far-field transformation for improved backscattering calculation of strongly forward-scattering objects,” IEEE Antennas Wirel. Propag. Lett., vol. 4, pp. 35–38, 2005.
[63] J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun., vol. 3, p. 1171, 2012.
[64] C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultra-broadband mirror using low index cladded subwavelength grating,” IEEE Photon. Technol. Lett., vol. 16, pp. 518–520, 2004.
[65] C. Xu, W. Huang, M. Stern, and S. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc.-Optoelectron., vol. 141, pp. 281–286, 1994.
[66] I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano, vol. 7, pp. 7824–7832, 2013.
[67] A. Komar, R. Paniagua-Domínguez, A. Miroshnichenko, Y. F. Yu, Y. S. Kivshar, A. I. Kuznetsov, and D. Neshev, “Dynamic beam switching by liquid crystal tunable dielectric metasurfaces,” ACS Photonics, vol. 5, pp. 1742–1748, 2018.
[68] J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys., vol. 97, p. 073501, 2005.
[69] P. P. Banerjee, Nonlinear Optics: Theory, Numerical Modeling, and Applications, ch. 10. CRC Press, 1 ed., 2003.
[70] F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, “Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 um,” Opt. Lett., vol. 34, pp. 839–841, 2009.
[71] I. R. Hooper and J. R. Sambles, “Dispersion of surface plasmon polaritons on short-pitch metal gratings,” Phys. Rev. B, vol. 65, p. 165432, 2002.
[72] M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14- µm infrared wavelength range,” IEEE Photon. J., vol. 3, pp. 1171–1180, 2011.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊