|
[1] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Techn., vol. 47, pp. 2075–2084, 1999. [2] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter, vol. 10, pp. 4785–4809, 1998. [3] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, pp. 4184–4187, 2000. [4] N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics, vol. 3, pp. 157–162, 2009. [5] R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B, vol. 83, p. 035105, 2011. [6] F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett., vol. 12, p. 1702–1706, 2012. [7] T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photonics, vol. 4, pp. 312–315, 2010. [8] N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science, vol. 340, pp. 1304–1307, 2013. [9] H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90◦ polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett., vol. 104, p. 034102, 2014. [10] A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. v. Hulst1, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science, vol. 329, pp. 930–933, 2010. [11] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science, vol. 334, pp. 333–337, 2011. [12] S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett., vol.12, pp.6223–6229, 2012. [13] S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater., vol. 11, pp. 426– 431, 2012. [14] L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett., vol. 12, p. 5750–5755, 2012. [15] S.-C. Jiang, X. Xiong, Y.-S. Hu, S.-W. Jiang, Y.-H. Hu, D.-H. Xu, R.-W. Peng, and M. Wang, “High-efficiency generation of circularly polarized light via symmetry-induced anomalous reflection,” Phys. Rev. B, vol. 91, p. 125421, 2015. [16] M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens'surfaces,” Adv. Opt. Mater., vol. 3, p. 813–820, 2015. [17] V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express, vol. 18, pp. 16973– 16988, 2010. [18] C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics, vol. 4, pp. 379–440, 2012. [19] S. Colburn, A. Zhan, and A. Majumdar, “Tunable metasurfaces via subwavelength phase shifters with uniform amplitude,” Sci. Rep., vol. 7, p. 40174, 2017. [20] Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett., vol. 16, pp. 5319–5325, 2016. [21] M. Zhang, W. Zhang, A. Q. Liu, F. C. Li, and C. F. Lan, “Tunable polarization conversion and rotation based on a reconfigurable metasurface,” Sci. Rep., vol. 7, p. 12068, 2017. [22] M. R. Tavakol, B. Rahmani, and A. Khavasi, “Tunable polarization converter based on one-dimensional graphene metasurfaces,” J. Opt. Soc. Am. B, vol. 35, p. 2574– 2581, 2018. [23] A. Alhashimi, CStatistical Calibration Algorithms for Lidars. Luleå: Luleå tekniska universitet, 2016. [24] O. C. Zienkiewicz and Y. K. Cheung, “Finite elements in the solution of field problems,” The Engineer, vol. 220, pp. 507–510, 1965. [25] M. Albani and P. Bernardi, “A numerical method based on the discretization of Maxwell equations in integral form,” IEEE Trans. Microw. Theory Techn., vol. 22, pp. 446–450, 1974. [26] R. Harrington, “The method of moments in electromagnetics,” J. Electromagn. Waves Appl., vol. 1, pp. 181–200, 1987. [27] ANSYS. https://www.ansys.com. [28] COMSOL. https://www.comsol.com. [29] Agilent. https://www.agilent.com. [30] K. Yee, “NumericalsolutionofinitialboundaryvalueproblemsinvolvingMaxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag., vol. 14, pp. 302–307, 1966. [31] T. Weiland, “A discretization model for the solution of Maxwell’s equations for six-component fields,” Electron. Commun. (AEU), vol. 31, pp. 116–120, 1977. [32] Lumerical. https://www.lumerical.com. [33] Remcom. https://www.remcom.com. [34] C. S. T. (CST). https://www.cst.com. [35] G. MUR, “Absorbingboundaryconditionsforthefinite-differenceapproximationof the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat., vol. 23, pp. 377–382, 1981. [36] K. Umashankar and A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,” IEEE Trans. Electromagn. Compat., vol. 24, pp. 397–405, 1982. [37] J. A. Roden and S. D. Gedney, “Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media,” Microw. Opt. Technol. Lett., vol. 27, pp. 334–339, 2000. [38] M. Okoniewski, M. Mrozowski, and M. A. Stuchly, “Simple treatment of multi- term dispersion in FDTD,” IEEE Microwave Guided Wave Lett., vol.7, pp.121–123, 1997. [39] A. Taflove and S. C. Hagness, Computational Electrodynamics The Finite-Difference Time-Domain Method. Norwood: Artech House, 3rd ed., 2005. [40] R. Courant, K. Friedrichs, and H. Lewy, “Über die partiellen differenzengleichungen der mathematischen physik,” Math. Ann., vol. 100, pp. 32–74, 1928. [41] T. Tan and M. Potter, “1-D multipoint auxiliary source propagator for the total-field/scattered-field FDTD formulation,” IEEE Antennas Wirel. Propag. Lett., vol.6, pp. 144–148, 2007. [42] T. Tan and M. Potter, “FDTD discrete planewave (FDTD-DPW) formulation for a perfectly matched source in TFSF simulations,” IEEE Trans. Antennas Propaga., vol. 58, pp. 2641–2648, 2010. [43] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys., vol. 114, pp. 185–200, 1994. [44] S. D. Gedney, “An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media,” Electromagnetics, vol. 16, pp. 399–415, 1996. [45] S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propaga., vol. 44, pp. 1630– 1639, 1992. [46] R. Luebbers and F. Hunsberger, “FDTD for Nth-order dispersive media,” IEEE Trans. Antennas Propaga., vol. 40, pp. 1297–1301, 1992. [47] F. Teixeira and W. Chew, “On causality and dynamic stability of perfectly matched layers for FDTD simulations,” IEEETrans.Microw.TheoryTechn.,vol.47,pp.775– 785, 1999. [48] P. Drude, “Zur elektronentheorie der metalle,” Annalen der Physik, vol. 306, pp. 566–613, 1900. [49] H. A. Lorentz, The Theory of Electrons. Leipzig: Teubner, 1909. [50] T. KashiwaandI. Fukai, “A treatment by the FDTD method of the dispersive characteristics associated with electronic polarization,” Microw. Opt. Technol. Lett., vol. 3, pp. 203–205, 1990. [51] R. M. Joseph, S. C. Hagness, and A. Taflove, “Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses,” Opt. Lett., vol. 16, pp. 1412–1414, 1991. [52] L. Dou and A. R. Sebak, “3D FDTD method for arbitrary anisotropic materials,” Microw. Opt. Technol. Lett., vol. 48, pp. 2083–2090, 2006. [53] C. Oh and J. E. M, “Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation,” Opt. Express, vol. 14, pp. 11870– 11884, 2006. [54] OpenMP. https://www.openmp.org. [55] M. Forum. https://www.mpi-forum.org. [56] G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys., vol. 330, pp. 377–445, 1908. [57] E. D. Palik, Handbook of Optical Constants of Solids. Orlando, FL: AcademicPress, 1985. [58] B. N. J. Persson and A. Liebsch, “Optical properties of two-dimensional systems of randomly distributed particles,” Phys. Rev. B, vol. 28, pp. 4247–4254, 1983. [59] C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter,” Opt. Express, vol. 12, pp. 2625–2630, 2004. [60] S. A. Schelkunoff, “Some equivalence theorems of electromagnetics and their application to radiation problems,” Bell Syst. Tech. J., vol. 15, pp. 92–112, 1936. [61] C. A. Balanis, Advanced Engineering Electromagnetics. New York: Wiley, 1989. [62] X. Li, A. Taflove, and V. Backman, “Modified FDTD near-to-far-field transformation for improved backscattering calculation of strongly forward-scattering objects,” IEEE Antennas Wirel. Propag. Lett., vol. 4, pp. 35–38, 2005. [63] J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun., vol. 3, p. 1171, 2012. [64] C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultra-broadband mirror using low index cladded subwavelength grating,” IEEE Photon. Technol. Lett., vol. 16, pp. 518–520, 2004. [65] C. Xu, W. Huang, M. Stern, and S. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc.-Optoelectron., vol. 141, pp. 281–286, 1994. [66] I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano, vol. 7, pp. 7824–7832, 2013. [67] A. Komar, R. Paniagua-Domínguez, A. Miroshnichenko, Y. F. Yu, Y. S. Kivshar, A. I. Kuznetsov, and D. Neshev, “Dynamic beam switching by liquid crystal tunable dielectric metasurfaces,” ACS Photonics, vol. 5, pp. 1742–1748, 2018. [68] J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys., vol. 97, p. 073501, 2005. [69] P. P. Banerjee, Nonlinear Optics: Theory, Numerical Modeling, and Applications, ch. 10. CRC Press, 1 ed., 2003. [70] F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, “Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 um,” Opt. Lett., vol. 34, pp. 839–841, 2009. [71] I. R. Hooper and J. R. Sambles, “Dispersion of surface plasmon polaritons on short-pitch metal gratings,” Phys. Rev. B, vol. 65, p. 165432, 2002. [72] M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14- µm infrared wavelength range,” IEEE Photon. J., vol. 3, pp. 1171–1180, 2011.
|