|
[1]T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!,” IEEE Access, vol. 1, pp. 335-349, May 2013. [2]H. Y. Wang, C. H. Cheng, C. T. Tsai, Y. C. Chi, and G. R. Lin, “Multi-Color Laser Diode Heterodyned 28-GHz Millimeter-Wave Carrier Encoded With DMT for 5G Wireless Mobile Networks,” IEEE Access, vol. 1, pp. 122697-122706, Aug. 2019. [3]J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What Will 5G Be?,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065-1082, Jun. 2014. [4]H.-Y. Wang, Y.-C. Chi, and G.-R. Lin, “Remote beating of parallel or orthogonally polarized dual-wavelength optical carriers for 5G millimeter-wave radio-over-fiber link,” Opt. Express, vol. 24, no. 16, pp. 17654-17669, Aug. 2016. [5]ITU, “FG IMT-2020: Report on Standards Gap Analysis,” 2016 [Online]. Available:https://www.ietf.org/lib/dt/documents/LIAISON/liaison-2016-02-26-itu-t-sg-13-ietf-ls-on-report-on-standard-gap-analysis-from-itu-t-focus-group-on-imt-2020-and-on-extension-of-lifetime-of-focus-g-attachment-2.pdf Accessed on: Mar. 25, 2020. [6]ITU, “Setting the scene for 5G: Opportunities & challenges,” ITU report,” 2018 [Online]. Available: https://www.itu.int/en/ITU-D/Documents/ ITU_5G_REPORT-2018.pdf. Accessed on: Mar. 25, 2020. [7]A. M. A.-Samman, T. A. Rahman, M. Ha. A., and S. A. A.-Gailani, “Millimeter-wave propagation measurements and models at 28 GHz and 38 GHz in a dining room for 5G wireless networks,” Opt. Commun., vol. 130, pp. 71-81, Dec. 2018. [8]Z. K. Weng, Y. C. Chi, H. Y. Kao, C. T. Tsai, H. Y. Wang, and G. R. Lin, “Quasi-Color-Free LD-Based Long-Reach 28-GHz MMWoF With 512-QAM OFDM,” J. Lightwave Technol., vol. 36, no. 19, pp. 4282-4296, Oct. 2018. [9]S. Hur, S. Baek, B. Kim, Y. Chang, A. F. Molisch, T. S. Rappaport, K. Haneda, and J. Park, “Proposal on Millimeter-Wave Channel Modeling for 5G Cellular System,” IEEE J. Sel. Top. Signal Process., vol. 10, no. 3, pp. 454-469, Apr. 2016. [10]C.-Y. Lin, Y.-C. Chi, C.-T. Tsai, H.-Y. Wang, and G.-R. Lin, “39-GHz Millimeter-Wave Carrier Generation in Dual-Mode Colorless Laser Diode for OFDM-MMWoF Transmission,” IEEE J. Sel. Top. Quantum Electron., vol. 21, no. 6, pp. 1801810, Nov./Dec. 2015. [11]K. R. Mahmoud and A. M. Montaser, “Synthesis of multi-polarised upside conical frustum array antenna for 5G mm-Wave base station at 28/38 GHz,” IET Microw. Antennas Propag., vol. 12, no. 9, pp. 1559-1569, Jul. 2018. [12]H. Y. Chen, Y. C. Chi, and G.-R. Lin, “Remote heterodyne millimeter-wave over fiber based OFDM-PON with master-to-slave injected dual-wavelength colorless FPLD pair,” Opt. Express, vol. 23, no. 17, pp. 22691–22705, 2015. [13]J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photon. Technol. Lett., vol. 18, no. 13, pp. 1418–1420, 2006. [14]Y. Fang, J. Yu, N. Chi, Z. Dong, and G. K. Chang, “9.952-Gb/s ON/OFF KEYING SIGNAL TRANSMISSION OVER 92-GHz RADIOOVER-FIBER SYSTEM WITH 40-km SINGLE-MODE FIBER AND 2-m AIR LINK,” Microw. Opt. Technol. Lett., vol. 55, no. 5, pp. 1014-1017, May 2013. [15]M. J. Fice, E. Rouvalis, F. van Dijk, A. Accard, F. Lelarge, C. C. Renaud, G. Carpintero, and A. J. Seeds, “146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system,” Opt. Express, vol. 20, no. 2, pp. 1769-1774, Jan. 2012. [16]X. Pang, M. Beltrán, J. Sánchez, E. Pellicer, J. J. V. Olmos, R. Llorente, and I. T. Monroy, “Centralized Optical-Frequency-Comb-Based RF Carrier Generator for DWDM Fiber-Wireless Access Systems,” J. Opt. Commun. Netw., vol. 6, no. 1, pp. 1-7, Jan. 2014. [17]J. Yao, “Microwave Photonics,” J. Lightwave Technol., vol. 27, no.13, pp. 314-335, Feb. 2009. [18]G. H. Smith and D. Novak, “Broad-Band Millimeter-Wave (38 GHz) Fiber-Wireless Transmission System Using Electrical and Optical SSB Modulation to Overcome Dispersion Effects,” IEEE Photonics Technol. Lett., vol. 10, no. 1, pp. 141-143, Jan. 1998. [19]S. H. Fan, C. Liu, and G. K. Chang, “Heterodyne Optical Carrier Suppression for Millimeter-Wave-over-Fiber Systems,” J. Lightwave Technol., vol. 31, no.19, pp. 1957-1967, Oct. 2013. [20]J. Zhang, J. Yu, N. Chi, F. Li, and X. Li, “Experimental demonstration of 24-Gb/s CAP-64QAM radio-over-fiber system over 40-GHz mm-wave fiber-wireless transmission,” Opt. Express, vol. 21, no. 22, pp. 26888-26895, Nov. 2013. [21]G. C. Mandal, R. Mukherjee, B. Das, A. S. Patra, “Bidirectional and simultaneous transmission of baseband and wireless signals over RSOA based WDM radio-over-fiber passive optical network using incoherent light injection technique,” AEU-Int. J. Electron. Commun., vol. 80, pp. 193-198, Oct. 2017. [22]H.-Y. Chen, Y.-C. Chi, C.-Y. Lin, C.-T. Tsai, and G.-R. Lin, “Four-Wave-Mixing Suppression of Master-to-Slave Injection-Locked Two-Wavelength FPLD Pair for MMW-PON,” J. Lightwave Technol., vol. 34, no. 19, pp. 4810-4818, Oct. 2016. [23]C.-Y. Lin, Y.-C. Chi, C.-T. Tsai, H.-Y. Chen, M. X., G.-K. Chang, and G.-R. Lin, “Tunable Millimeter-Wave Carrier Embedded Colorless Laser Diode for 5G MMWoF Link,” J. Lightwave Technol., vol. 35, no. 12, pp. 2409-2420, Jun. 2017. [24]Y. Cui, K. Xu, J. Dai, X. Sun, Y. Dai, Y. Ji, and J. Lin, “Overcoming Chromatic-Dispersion-Induced Power Fading in ROF Links Employing Parallel Modulators,” IEEE Photonics Technol. Lett., vol. 24, no. 14, pp. 1173-1175, Jul. 2012. [25]W. Li, W. H. Sun, W. T. Wang, and N. H. Zhu, “All-optical frequency upconversion for radio-over-fiber applications based on cross-gain modulation and cross-polarization modulation in a semiconductor optical amplifier,” Opt. Lett., vol. 39, no. 9, pp. 2672-2675, May 2014. [26]C.-T. Tsai, M.-C. Cheng, Y.-C. Chi, and G.-R. Lin, “A Novel Colorless FPLD Packaged With TO-Can for 30-Gbit/s Preamplified 64-QAM-OFDM Transmission,” IEEE J. Sel. Top. Quantum Electron., vol. 21, no. 6, pp. 1500313, Nov. /Dec. 2015. [27]X. Chen and J. Yao, “A High Spectral Efficiency Coherent RoF System Based on OSSB Modulation With Low-Cost Free-Running Laser Sources for UDWDM-PONs,” J. Lightwave Technol., vol. 34, no. 11, pp. 2789-2895, Jun. 2016. [28]H. Zhou, Y. Zeng, M. Chen, and Y. Shen, “Radio-over-fiber system with octuple frequency optical millimeter-wave signal generation using dual-parallel Mach–Zehnder modulator based on four-wave mixing in semiconductor optical amplifier,” Opt. Eng., vol. 57, no. 3, pp. 036101, Mar. 2018. [29]O. Omomukuyo, M. P. Thakur, and J. E. Mitchell, “Simple 60-GHz MB-OFDM Ultrawideband RoF System Based on Remote Heterodyning,” IEEE Photonics Technol. Lett., vol. 25, no. 3, pp. 268-271, Feb. 2013. [30]H.-Y. Wang, Y.-Ch. Chi and G.-R. Lin, “Dual-Mode Laser Diode Carrier with Orthogonal Polarization and Single-mode Modulation for Remote-node Heterodyne MMW-RoF,” Opt. Lett., vol. 41, no. 20, pp. 4076-4679, Oct. 2016. [31]Z. Zhu, S. Zhao, Z. Yao, Q. Tan, Y. Li, X. Chu, L. Shi, and R. Hou, “A novel OCS millimeter-wave generation scheme with data carried only by one sideband and wavelength reuse for uplink connection,” Opt. Laser Technol., vol. 44, pp. 2366-2370, 2012. [32]J. Ma, Y. Zhan, M. Zhou, H. Liang, Y. Shao, and Ch. Yu, “Full-Duplex Radio Over Fiber With a Centralized Optical Source for a 60 GHz Millimeter-Wave System With a 10 Gb/s 16-QAM Downstream Signal Based on Frequency Quadrupling,” Opt. Commun. Netw., vol. 4, no. 7, pp. 557-564, Jul. 2012. [33]A. Lebedev, X. Pang, J. J. V. Olmos, S. Forchhammer, and I. T. Monroy, “Simultaneous 60-GHz RoF Transmission of Lightwaves Emitted by ECL, DFB, and VCSEL,” IEEE Photonics Technol. Lett., vol. 26, no. 7, pp. 733-736, Apr. 2014. [34]P. Pérez, A. Quirce, A. Valle, A. Consoli, I. Noriega, L. Pesquera, and I. Esquivias, “Photonic Generation of Microwave Signals Using a Single-Mode VCSEL Subject to Dual-Beam Orthogonal Optical Injection,” IEEE Photonics J., vol. 7, no. 1, pp. 5500614, Feb. 2015. [35]C.-Y. Li, H.-H. Lu, C.-H. Chang, C.-Y. Lin, P.-Y. Wu, J.-R. Zheng, and C.-Ru. Lin, “Bidirectional hybrid PM-based RoF and VCSEL-based VLLC system,” Opt. Express, vol. 22, no. 13, pp. 16188-16196, Jun. 2014. [36]C.-T. Tsai, Y.-C. Chi, and G.-R. Lin, “Destructively Interfered Beating Dual-Mode VCSEL for Carrierless MMW Fiber-Wireless Access Link with Suppressed RF Fading,” IEEE J. Sel. Top. Quantum Electron., vol. 23, no. 6, pp. 1700309, Nov./Dec. 2017. [37]R. Yi, Y. Weijian, C. Chase, M. C. Y. Huang, D. D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-Wavelength VCSEL Using High-Contrast Grating,” IEEE J. Sel. Top. Quantum Electron., vol. 19, no. 4, pp. 1701311-1701311, Jul./Aug. 2013. [38]M. Virte, K. Panajotov, H. Thienpont, and M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics, vol. 7, no. 286, pp. 60-65, 2013. [39]L. Ge, W. Zhang, C. Liang, and Z. He, “Threshold-Based Pruned Retraining Volterra Equalization for 100 Gbps/Lane and 100-m Optical Interconnects Based on VCSEL and MMF,” J. Lightwave Technol., vol. 37, no. 13, pp. 3222-3228, Jul. 2019. [40]D. Wiedenmann, R. King, C. Jung, R. Jager, R. Michalzik, P. Schnitzer, M. Kicherer, and K. J. Ebeling, “Design and Analysis of Single-Mode Oxidized VCSEL’s for High-Speed Optical Interconnects,” IEEE J. Sel. Top. Quantum Electron., vol. 5, no. 3, pp. 503-511, May/Jun. 1999. [41]A. Quirce, A. Valle, C. Giménez, and L. Pesquera, “Intensity Noise Characteristics of Multimode VCSELs,” J. Lightwave Technol., vol. 29, no. 7, pp. 1039-1045, Apr. 2011. [42]J. Y. Law and G. P. Agrawal, “Mode-Partition Noise in Vertical-Cavity Surface-Emitting Lasers,” IEEE Photonics Technol. Lett., vol. 9, no. 4, pp. 437-439, Apr. 1997. [43]C. Liang, W. Zhang, L. Ge, and Z. He, “Mode partition noise mitigation for VCSEL-MMF links by using wavefront shaping technique,” Opt. Express, vol. 26, no. 22, pp. 28641-28650, Oct. 2018. [44]R. M. Borges, L. A. M. Pereira, H. R. D. Filgueiras, A. C. Ferreira, M. S. B. Cunha, E. R. Neto, D. H. Spadoti, L. L. Mendes, and A. C. Sodre ́, Jr., “DSP-Based Flexible-Waveform and Multi-Application 5G Fiber-Wireless System,” J. Lightwave Technol., vol. 38, no. 3, pp. 642-653, Feb. 2020. [45]R. M. Borges, T. R. R. Marins, M. S. B. Cunha, H. R. D. Filgueiras, I. F. d. Costa, R. N. d. Silva, D. H. Spadoti, L. L. Mendes, and A. C. Sodre ́, Jr., “Integration of a GFDM-Based 5G Transceiver in a GPON Using Radio Over Fiber Technology,” J. Lightwave Technol., vol. 36, no. 19, pp. 4468-4477, Oct. 2018. [46]P.-C. Chen, B. Su, and Y. Huang, “Matrix Characterization for GFDM: Low Complexity MMSE Receivers and Optimal Filters,” IEEE Trans. Signal Process., vol. 65, no. 18, pp. 4940-4955, Dec. 2019. [47]M. Matthé, L. L. Mendes, and G. Fettweis, “Generalized Frequency Division Multiplexing in a Gabor Transform Setting,” IEEE Commun. Lett., vol. 18, no. 8, pp. 1379-1382, Aug. 2014. [48]C.-H. Ho, C.-T. Lin, T.-H. Lu, H.-T. Huang, B. Shih, C.-C. Wei, and A. Ng’oma, “Theoretical and Experimental Investigation of a 2 × 2 MIMO OFDM Radio-Over-Fiber System at 60-GHz With I/Q Imbalance Compensation,” J. Lightwave Technol., vol. 32, no. 20, pp. 3901-3909, Oct. 2014. [49]S. C. J. Lee, F. Breyer, S. Randel, O. Ziemann, H. P. A. van den Boom, and A. M. J. Koonen, “Low-cost and robust 1-Gbit/s plastic optical fiber link based on light-emitting diode technology,” presented at the Conf. Opt. Fiber Commun./Nat. Fiber Opt. Eng. Conf., San Diego, CA, USA, 2008. [50]G. Hua, C. Yang, P. Lu, H. X. Zhou, and W. Hong, “Microstrip Folded Dipole Antenna for 35 GHz MMW Communication,” Int. J. Antennas Propag., vol. 2013, no. 603654, pp. 1-6, Nov. 2013. [51]W. D. Fitzgerald, “A35-GHz Beam Waveguide System for the Millimeter-Wave Radar,” The Lincoln Laboratory Journal, vol. 5, no. 2, pp. 245-272, 1992. [52]N. Pleros, K. Vyrsokinos, K. Tsagkaris, and N. D. Tselikas, “A 60 GHz Radio-Over-Fiber Network Architecture for Seamless Communication With High Mobility,” J. Lightwave Technol., vol. 27, no.12, pp. 1957-1967, Jun. 2009. [53]G. H. Smith, D. Novak, and C. Lim, “A Millimeter-Wave Full-Duplex Fiber-Radio Star-Tree Architecture Incorporating WDM and SCM,” IEEE Photonics Technol. Lett., vol. 10, no. 11, pp. 1650-1652, Nov. 1998. [54]T. Nakasyotani, H. Toda, T. Kuri, and K.-I. Kitayama, “Wavelength-Division-Multiplexed Millimeter-Waveband Radio-on- Fiber System Using a Supercontinuum Light Source,” J. Lightwave Technol., vol. 24, no.1, pp. 404-410, Jan. 2006. [55]G. P. Agrawal, “Four-wave mixing and phase conjugation in semiconductor laser media,” Opt. Lett., vol. 12, no. 4, pp. 260-262, Apr. 1987. [56]J. Kim, M. Sung, E.-S. Kim, S.-H. Cho, and J. H. Lee, “4 × 4 MIMO architecture supporting IFoF-based analog indoor distributed antenna system for 5G mobile communications,” Opt. Express, vol. 26, no. 22, pp. 28216-28227, Oct. 2018. [57]Z.-K. Weng, Y.-C. Chi, H.-Y. Wang, Ch.-T. Tsai, and G.-R. Lin, “75-km Long Reach Dispersion Managed OFDM-PON at 60 Gbit/s With Quasi-Color-Free LD,” J. Lightwave Technol., vol. 36, no. 12, pp. 2394-2408, Jun. 2018. [58]Y. Wang, Y. Wang, and Q. Shi, “Optimized Signal Distortion for PAPR Reduction of OFDM Signals with IFFT/FFT Complexity via ADMM Approaches,” IEEE Trans. Signal Process., vol. 67, no. 2, pp. 399-414, Jan. 2019. [59]C. Carlsson, A. Larsson, and A. Alping, “RF Transmission Over Multimode Fibers Using VCSELs—Comparing Standard and High-Bandwidth Multimode Fibers,” J. Lightwave Technol., vol. 22, no. 7, pp. 1694-1700, Jul. 2004. [60]A. Ng’oma, D. Fortusini, D. Parekh, W. Yang, M. Sauer, S. Benjamin, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Performance of a Multi-Gb/s 60 GHz Radio Over Fiber System Employing a Directly Modulated Optically Injection-Locked VCSEL,” J. Lightwave Technol., vol. 28, no. 16, pp. 2436-2444, Aug. 2010. [61]C.-T. Tsai, Y.-C. Chi, and G.-R. Lin, “Power fading mitigation of 40-Gbit/s 256-QAM OFDM carried by colorless laser diode under injection-locking,” Opt. Express, vol. 23, no. 22, pp. 29065-29078, Nov. 2015. [62]C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multiuser OFDM with Adaptive Subcarrier, Bit, and Power Allocation,” IEEE J. Sel. Areas Commun., vol. 17, no. 10, pp. 1747-1758, Oct. 1999. [63]D. Maugis, “Adhesion of spheres: The JKR-DMT transition using a dugdale model,” J. Colloid Interface Sci., vol. 150, no. 1, pp. 243-269, Apr. 1992. [64]C.-Y. Peng, C.-T. Tsai, H.-Y. Wang, Y.-C. Wu, T.-T. Shih, J. J. Huang, H.-C. Kuo, W.-H. Cheng, G.-R. Lin, and C.-H. Wu, “High-Temperature Insensitivity of 50-Gb/s 16-QAM-DMT Transmission by Using the Temperature-Compensated Vertical-Cavity Surface-Emitting Lasers,” J. Lightwave Technol., vol. 36, no. 16, pp. 3332-3343, Aug. 2018. [65]M. Kasmi, S. Mhatli, F. Bahloul, I. Dayoub, K. Oh, “Performance analysis of UFMC waveform in graded index fiber for 5G communications and beyond,” Opt. Commun., vol. 454, pp. 1-7, Jan. 2020. [66]R. Zakaria and D. L. Ruyet, “A Novel Filter-Bank Multicarrier Scheme to Mitigate the Intrinsic Interference: Application to MIMO Systems,” IEEE Trans. Wirel. Commun., vol. 11, no. 3, pp. 1112-1123, Mar. 2012. [67]Y.-F. Huang, C.-T. Tsai, Y.-C. Chi, D.-W. Huang, and G.-R. Lin, “Filtered Multicarrier OFDM Encoding on Blue Laser Diode for 14.8-Gbps Seawater Transmission,” J. Lightwave Technol., vol. 36, no. 9, pp. 1739-1745, May 2018. [68]H. Saeedi-Sourck, Y. Wu, J. W. M. Bergmans, S. Sadri, and B. Farhang-Boroujeny, “Complexity and Performance Comparison of Filter Bank Multicarrier and OFDM in Uplink of Multicarrier Multiple Access Networks,” IEEE Trans. Signal Process., vol. 59, no. 4, pp. 1907-1912, Apr. 2011. [69]D. Qu, S. Lu, and T. Jiang, “Multi-Block Joint Optimization for the Peak-to-Average Power Ratio Reduction of FBMC-OQAM Signals,” IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1605-1613, Apr. 2013. [70]A. Farhang, N. Marchetti, and L. E. Doyle, “Low-Complexity Modem Design for GFDM,” IEEE Trans. Signal Process., vol. 64, no. 6, pp. 1507-1518, Mar. 2016. [71]H. E. Levin, “A complete and optimal data allocation method for practical discrete multitone systems,” presented at the IEEE Global Telecommun. Conf., San Antonio, TX, USA, 2001. [72]P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun., vol. 43, no. 234, pp. 773–775, Feb./Mar./Apr. 1995. [73]Y. Hou, Q. Zhang, S. Qi, X. Feng, and P. Wan, “1.5 μm polarization-maintaining dual-wavelength single-frequency distributed Bragg reflection fiber laser with 28 GHz stable frequency difference,” Opt. Lett., vol. 43, no. 6, pp. 1383-1386, Mar. 2018. [74]P. Pellandini, R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett., vol. 71, no. 864, pp. 864-866, Aug. 1997. [75]A. Quirce, P. Pérez, A, Popp, Á, Valle, L. Pesquera, Y. Hong, H, Thienpont, and K. Panajotov, “Polarization switching and injection locking in vertical-cavity surface-emitting lasers subject to parallel optical injection,” Opt. Lett., vol. 41, no. 11, pp. 2664-2667, Jun. 2016. [76]Y.-C. Su, Y.-C. Chi, S.-Y. Lin, Y.-C. Li, C.-T. Tsai, H.-L. Wang, G.-C. Lin, and G.-R. Lin, “Effect of Injection Coherence on Noise and Bandwidth of Long-Cavity Colorless Laser Diode for Digital Modulation and Transmission,” IEEE J. Quantum Electron., vol. 51, no. 2, pp. 2000214, Feb. 2015.
|