跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/13 07:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王懷永
研究生(外文):Huai-Yung Wang
論文名稱:以單載波正交分頻多工直調雙/三模雷射二極體建構毫米波光纖整合第五代無線通訊
論文名稱(外文):Dual-/Tri-Mode Laser Diode with Single-Mode OFDM Modulation for Hybrid MMWoF and 5G mobile Communication
指導教授:林恭如
指導教授(外文):Gong-Ru Lin
口試委員:林俊廷鄒志偉葉建宏吳肇欣黃建璋魏嘉建彭朋群
口試委員(外文):Chun-Ting LinChi-Wai ChowChien-Hung YehChao-Hsin WuJian-Jang HuangChia-Chien WeiPeng-Chun Peng
口試日期:2020-07-20
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:142
中文關鍵詞:第五代無線通訊毫米波光纖傳輸系統雙/三模傳輸器單載波調變正交極化廣義分頻多工位元承載無色雷射二極體垂直面射型雷射二極體無本地震盪器
外文關鍵詞:5G mobile networkMillimeter-wave over fiber (MMWoF)Dual-/tri-mode transmitterSingle-carrier modulationOrthogonal polarizationGeneralized frequency division multiplexingBit-loading schemecolorless laser diodeVCSELSynthesizer-free
DOI:10.6342/NTU202002418
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了因應大容量於長距離的傳輸,本研究工作在於開發適用於第五代無線通訊並整合長距離毫米波光纖傳輸系統。為了建構毫米波光纖傳輸系統,雙/三模發射器的開發是不可或缺的。另一方面,長距離傳輸所伴隨的色散效應也是無法忽視的。因此本研究透過注入鎖定無色雷射二極體與垂直面射型雷射二極體來開發正交極化之雙/三模發射器用於建構適用於第五代無線通訊之毫米波光纖通訊系統。另外,在有限的頻寬下透過M階正交振幅調變-正交分頻多工(QAM-OFDM)、廣義分頻多工(GFDM)與位元承載(Bit-loading)等技術來提升傳輸位元率並整合於毫米波光纖通訊系統將有助於實現適用於第五代無線通訊之長距離有線整合無線傳輸系統。
在第一部分中,首先透過正交雙模光載波注入鎖定無色雷射二題體來產生正交雙模且單載波調變之雙模光載波來抑制長距離所產生之色散效應並用於建構毫米波光纖有線於無線傳輸系統。在傳統平行即化之雙模載波注入比較下,所產生之四波混頻模態在經過調整雙模間距在0.32 nm下可被抑制致-26與-41 dBm。在經過正交極化與單載波調變的優化下,被調變之64-QAM OFDM且傳輸位元率為24 Gbit/s在經過背對背及25公里單模光纖傳輸下,其各自的誤碼率及錯誤向量分析分別為2.2X10-4/6.48%與2.2X10-4/7.07%。再經過1.6公尺的無線距離後,最大可傳輸16-QAM OFDM且傳輸位元率為8 Gbit/s,對應之誤碼率以及錯誤向量分析分別為3.4X10-3和17.14%。
相較於雙模光載波系統,三模光載波可以產生功率為原本兩倍大之毫米波載波並提升無線傳輸之品質,在第二部分的研究中,透過正交注入鎖定產生正交之三模且單載波調變之光載波用於建構75公里長距離之28-GHz毫米波光纖傳輸系統。透過無色雷射二極體只支持TE極化之注入鎖定成功達到單載波調變。和傳統之平行三模光載波相比,正交三模光載波於75公里單模光纖有線傳輸下最大可傳輸64-QAM OFDM且調變頻寬以及傳輸位元率可高達8.3 GHz與50 Gbit/s,伴隨的訊雜比、誤碼率以及錯誤向量分析分別為21.2 dB、3.5X10-4與8.8%。除此之外,在透過Bit-loading的技術下,透過從64-QAM至1024-QAM其最大傳輸位元率可達88 Gbit/s。經過10公尺之無線傳輸後,透過正交三模光載波且單載波調變最大可傳輸16-QAM OFDM達4.5 GHz (18 Gbit/s)。除此之外,在透過Bit-loading的技術下可提升最大傳輸位元率到29.6 Gbit/s。
在本研究之第三部分中,透過極弱功率注入鎖定垂直面射型雷射二極體來產生正交雙模光載波用於建構無須本地震盪之28-GHz毫米波光纖傳輸系統。另外,為了在有縣頻寬中最大化傳輸位元率,將使用新型QAM-GFDM以及Bit-loading技術整合至傳輸系統中。首先,在經過-26 dBm (2.5 μW)下注入後可產生雙模功率差只有5.43 dB之正交雙模光載波,且經過全光拍頻後可產生28 GHz之毫米波且尖峰功率達-59.8 dBm。另一方面,在經過注入鎖定後,其雷射的相對強度雜訊幾乎沒有改變,除此之外,在模間雜訊的分析下,經過極弱功率注入後期雜訊僅提升2 dBc/Hz。在經過50公里單模光纖有線傳輸後,在調變64-QAM GFDM下最大可傳輸之頻寬為6.75 GHz (40 Gbit/s)。此外,透過Bit-loading技術下,可用調變頻寬可延伸至12.23 GHz,且最大傳輸位元率可達51.9 Gbit/s,此時頻寬使用率可提升至4.24 bit/s/Hz。在經過2公尺無線傳輸且透過功率偵測器達到自我降頻後,透過調變4-QAM GFDM最大可達調變頻寬2 GHz (4 Gbit/s)。另外,透過Bit-loading技術下,最大調變頻寬及傳輸位元率可達4.11 GHz及11.1 Gbit/s,其頻寬使用率為2.69 bit/s/Hz。相較於使用QAM-GFDM,其傳輸容量可提升177.5%。
This thesis aims to implement a fusion of millimeter wave (MMW) 5th generation (5G) mobile wireless and long-reach fiber wired network with high transmission capacity. Dual- and tri-mode transmitter based on orthogonally injection-locking a slave colorless laser diode (CLD) or dual-mode vertical-cavity surface-emitting laser (VCSEL) with extremely weak injection-locking are developed for constructing the long-reach MMWoF system. Besides, using M-quadrature amplitude modulation orthogonal frequency division multiplexing (M-QAM OFDM), generalized frequency division multiplexing (GFDM) and bit-loading scheme, which can improve the usage of modulation bandwidth, can further help for establishing high data rate and long-reach fiber-wireless access links for 5G applications.
First of all, a novel MMWoF-OFDM link with chromatic dispersion suppression is demonstrated for wireline and wireless transmission by injection-locking a slave CLD with an orthogonally polarized dual-mode optical carrier. At the parallel polarized dual-wavelength optical carrier injection-locking case, the four-wave mixing (FWM) modes can be suppressed to -26.6 and -41 dBm with the dual-mode spacing of 0.32 nm. After optimization, For the wireline transmission, the bit error rate (BER) of the delivered 24-Gbit/s 64-QAM OFDM modulated on the orthogonally polarized and single-carrier modulated (SCM) coherent dual-mode transmitter can be improved to 2.2X10-4 and 5.9X10-4 after BtB and 25-km single-mode fiber (SMF) with each error vector magnitude (EVM) of 6.48% and 7.07%, respectively. For wireless transmission, the encoded 16-QAM OFDM with 8 Gbit/s is achieved with its BER of 3.4X10-3 and EVM of 17.14% after 25-km SMF and 1.6-m free space.
An orthogonally polarized tri-mode transmitter with SCM, which can improve the transmission performance and avoid the dispersion induced fading distortion, is demonstrated for building the 75-km long-reach MMWoF. The SCM optical carrier is obtained by injection-locking the CLD which favors the only TE-mode feedback with the polarized suppression ratio over 40 dB. The maximal modulation bandwidth of the modulated 64-QAM OFDM by the orthogonally polarized SCM tri-mode optical carrier (3λ-⊥-SCM) is 8.3 GHz (50 Gbit/s) with the SNR of 21.2 dB, BER of 3.5X10-3 and EVM of 8.8% after passing 75-km transmission. By employing the bit-loading M-ray OFDM ranged from 64- to 1024-QAM OFDM, the raw data rate can be improved to 88 Gbit/s. For the wireless transmission after 75-km transmission and 10-m wireless transmission, the maximal modulation bandwidth of the delivered 16-QAM OFDM by the orthogonally polarized SCM tri-mode transmitter (3λ-⊥-SCM) is 4.5 GHz (with 18 Gbit/s). Finally, the transmission capacity is optimized to 29.6 Gbit/s by the bit-loading scheme for 5G mobile application.
A synthesizer-free 28-GHz 5G MMWoF Link is built based on an orthogonally polarized dual-mode VCSEL and power envelope detection for self-heterodyne down-conversion. After an extremely weak power of only -26 dBm (2.5 μW) injection-controlling at TM-mode polarization, the dual-mode optical carrier with a power difference of only 5.43 dB is achieved and optical heterodyning a 28-GHz MMW carrier with a peak power of -59.8 dBm. Note that the injection-controlled VCSEL is with a similar relative intensity noise (RIN) than the free-running case. Moreover, its mode partition noise (MPN) is just increased less than 2 dBc/Hz. After the long-reach 50-km transmission, the maximal bandwidth and raw data rate of the modulated 64-QAM GFDM are achieved to 6.75 GHz and 40 Gbit/s, respectively. After the bit-loading optimization, the modulation bandwidth is broadened to 12.23 GHz with a total data rate of 51.9 Gbit/s and a ratio of data rate to bandwidth of 4.24 bit/s/Hz. For the wireless transmission with 2-m transmission, the maximal bandwidth and data rate of the received 4-QAM GFDM data are obtained as 2 GHz and 4 Gbit/s, respectively. After bit-loading optimization, the modulation bandwidth is increased to 4.11 GHz with a corresponding total data rate of 11.1 Gbit/s and a ratio of data rate to bandwidth ratio of 2.69 bit/s/Hz. This optimized data rate by using the bit-loading technique is enhanced to 177.5% than that by using the QAM-GFDM modulation.
誌謝 i
中文摘要 iii
ABSTRACT v
CONTENTS viii
LIST OF FIGURES xii
LIST OF TABLES xviii
Chapter 1 Introduction 1
1.1 Historical review of hybrid 5G mobile network and MMW-over-fiber link 1
1.2 MMW carrier generation at 28/38 GHz based on dual-/tri-mode transmitter 2
1.3 Motivation 3
1.4 Organization of thesis 5
Chapter 2 Orthogonally polarized dual-mode optical carrier with SCM modulation by injection-locked colorless LD 8
2.1 Introduction 8
2.2 Experimental setup 9
2.2.1 Parallel polarization output with parallel polarization injection 9
2.2.2 Parallel polarization output with orthogonal polarization injection 10
2.2.3 Orthogonal polarization output with single injection 11
2.3 Operating Theory 12
2.3.1 Parallel polarization output with orthogonal polarization injection 12
2.3.2 Orthogonal polarization output with single injection 14
2.4 Results and Discussions 15
2.4.1 The performances of the CLD injection-locked by the dual-longitudinal-mode master 15
2.4.2 The wireline transmission performance of PPI-PPO, OPI-PPO and SI-OPO systems 18
2.4.3 The performance of the wireless transmission after 25-km SMF 26
2.5 Summary 30
Chapter 3 Long-distance MMWoF based on orthogonally polarized tri-mode LD with SCM modulation 33
3.1 Introduction 33
3.2 Experimental setup 34
3.3 Principle 36
3.3.1 Orthogonal tri-mode optical carrier with single-carrier modulation 36
3.4 Results and Discussions 39
3.4.1 The performance of orthogonally tri-mode injection-locking slave colorless LD with SCM 39
3.4.2 Comparisons on the wireline transmission performances of tri-mode parallel and orthogonal injection locking after SSMF and DM-SMF 45
3.4.3 Tri-mode carrier with orthogonal polarization and SCM for channelized DMT application 54
3.4.4 Optical heterodyne of 28-GHz MMW carrier for wireless access link based on tri-mode carrier with orthogonal polarization and SCM 60
3.5 Summary 67
Chapter 4 Orthogonally polarized dual-mode VCSEL for LO-free 28-GHz MMWoF via GFDM and bit-loading modulation 70
4.1 Introduction 70
4.2 Experimental setup 72
4.2.1 Performance analysis of orthogonally polarized dual-mode VCSEL 72
4.2.2 LO-free 28-GHz MMWoF with GFDM and bit-loaded OFDM based on orthogonally polarized dual-mode VCSEL 73
4.3 Principle of operation 75
4.3.1 Extremely weak power control for equalized dual-mode carrier generation in free-running VCSEL 75
4.3.2 Self-heterodyne down-conversion based on power envelope detection 78
4.3.3 Characterization of Generalized Frequency Division Multiplexing 81
4.3.4 Characterization of Bit-loaded Orthogonal Frequency Division Multiplexing 84
4.4 Results and discussions 86
4.4.1 The basic characteristic analysis of orthogonally polarized dual-mode VCSEL 86
4.4.2 The dual-mode optical carrier generation via the VCSEL with extremely weak power controlling 92
4.4.3 Analog modulation bandwidth and relative intensity noise analyses of the dual-mode VCSEL 94
4.4.4 Performance of QAM-GFDM modulated by the dual-mode VCSEL with extremely weak power controlling 100
4.4.5 Long-reach wired transmission at based on dual-mode VSEL with QAM-GFDM and bit-loaded OFDM 102
4.4.6 Wireless performance based on dual-mode VCSEL with QAM-GFDM and bit-loaded OFDM 112
4.5 Summary 119
Chapter 5 Conclusion 122
REFERENCE 125
作者簡介 133
Publication list 134
[1]T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!,” IEEE Access, vol. 1, pp. 335-349, May 2013.
[2]H. Y. Wang, C. H. Cheng, C. T. Tsai, Y. C. Chi, and G. R. Lin, “Multi-Color Laser Diode Heterodyned 28-GHz Millimeter-Wave Carrier Encoded With DMT for 5G Wireless Mobile Networks,” IEEE Access, vol. 1, pp. 122697-122706, Aug. 2019.
[3]J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What Will 5G Be?,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065-1082, Jun. 2014.
[4]H.-Y. Wang, Y.-C. Chi, and G.-R. Lin, “Remote beating of parallel or orthogonally polarized dual-wavelength optical carriers for 5G millimeter-wave radio-over-fiber link,” Opt. Express, vol. 24, no. 16, pp. 17654-17669, Aug. 2016.
[5]ITU, “FG IMT-2020: Report on Standards Gap Analysis,” 2016 [Online]. Available:https://www.ietf.org/lib/dt/documents/LIAISON/liaison-2016-02-26-itu-t-sg-13-ietf-ls-on-report-on-standard-gap-analysis-from-itu-t-focus-group-on-imt-2020-and-on-extension-of-lifetime-of-focus-g-attachment-2.pdf Accessed on: Mar. 25, 2020.
[6]ITU, “Setting the scene for 5G: Opportunities & challenges,” ITU report,” 2018 [Online]. Available: https://www.itu.int/en/ITU-D/Documents/ ITU_5G_REPORT-2018.pdf. Accessed on: Mar. 25, 2020.
[7]A. M. A.-Samman, T. A. Rahman, M. Ha. A., and S. A. A.-Gailani, “Millimeter-wave propagation measurements and models at 28 GHz and 38 GHz in a dining room for 5G wireless networks,” Opt. Commun., vol. 130, pp. 71-81, Dec. 2018.
[8]Z. K. Weng, Y. C. Chi, H. Y. Kao, C. T. Tsai, H. Y. Wang, and G. R. Lin, “Quasi-Color-Free LD-Based Long-Reach 28-GHz MMWoF With 512-QAM OFDM,” J. Lightwave Technol., vol. 36, no. 19, pp. 4282-4296, Oct. 2018.
[9]S. Hur, S. Baek, B. Kim, Y. Chang, A. F. Molisch, T. S. Rappaport, K. Haneda, and J. Park, “Proposal on Millimeter-Wave Channel Modeling for 5G Cellular System,” IEEE J. Sel. Top. Signal Process., vol. 10, no. 3, pp. 454-469, Apr. 2016.
[10]C.-Y. Lin, Y.-C. Chi, C.-T. Tsai, H.-Y. Wang, and G.-R. Lin, “39-GHz Millimeter-Wave Carrier Generation in Dual-Mode Colorless Laser Diode for OFDM-MMWoF Transmission,” IEEE J. Sel. Top. Quantum Electron., vol. 21, no. 6, pp. 1801810, Nov./Dec. 2015.
[11]K. R. Mahmoud and A. M. Montaser, “Synthesis of multi-polarised upside conical frustum array antenna for 5G mm-Wave base station at 28/38 GHz,” IET Microw. Antennas Propag., vol. 12, no. 9, pp. 1559-1569, Jul. 2018.
[12]H. Y. Chen, Y. C. Chi, and G.-R. Lin, “Remote heterodyne millimeter-wave over fiber based OFDM-PON with master-to-slave injected dual-wavelength colorless FPLD pair,” Opt. Express, vol. 23, no. 17, pp. 22691–22705, 2015.
[13]J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photon. Technol. Lett., vol. 18, no. 13, pp. 1418–1420, 2006.
[14]Y. Fang, J. Yu, N. Chi, Z. Dong, and G. K. Chang, “9.952-Gb/s ON/OFF KEYING SIGNAL TRANSMISSION OVER 92-GHz RADIOOVER-FIBER SYSTEM WITH 40-km SINGLE-MODE FIBER AND 2-m AIR LINK,” Microw. Opt. Technol. Lett., vol. 55, no. 5, pp. 1014-1017, May 2013.
[15]M. J. Fice, E. Rouvalis, F. van Dijk, A. Accard, F. Lelarge, C. C. Renaud, G. Carpintero, and A. J. Seeds, “146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system,” Opt. Express, vol. 20, no. 2, pp. 1769-1774, Jan. 2012.
[16]X. Pang, M. Beltrán, J. Sánchez, E. Pellicer, J. J. V. Olmos, R. Llorente, and I. T. Monroy, “Centralized Optical-Frequency-Comb-Based RF Carrier Generator for DWDM Fiber-Wireless Access Systems,” J. Opt. Commun. Netw., vol. 6, no. 1, pp. 1-7, Jan. 2014.
[17]J. Yao, “Microwave Photonics,” J. Lightwave Technol., vol. 27, no.13, pp. 314-335, Feb. 2009.
[18]G. H. Smith and D. Novak, “Broad-Band Millimeter-Wave (38 GHz) Fiber-Wireless Transmission System Using Electrical and Optical SSB Modulation to Overcome Dispersion Effects,” IEEE Photonics Technol. Lett., vol. 10, no. 1, pp. 141-143, Jan. 1998.
[19]S. H. Fan, C. Liu, and G. K. Chang, “Heterodyne Optical Carrier Suppression for Millimeter-Wave-over-Fiber Systems,” J. Lightwave Technol., vol. 31, no.19, pp. 1957-1967, Oct. 2013.
[20]J. Zhang, J. Yu, N. Chi, F. Li, and X. Li, “Experimental demonstration of 24-Gb/s CAP-64QAM radio-over-fiber system over 40-GHz mm-wave fiber-wireless transmission,” Opt. Express, vol. 21, no. 22, pp. 26888-26895, Nov. 2013.
[21]G. C. Mandal, R. Mukherjee, B. Das, A. S. Patra, “Bidirectional and simultaneous transmission of baseband and wireless signals over RSOA based WDM radio-over-fiber passive optical network using incoherent light injection technique,” AEU-Int. J. Electron. Commun., vol. 80, pp. 193-198, Oct. 2017.
[22]H.-Y. Chen, Y.-C. Chi, C.-Y. Lin, C.-T. Tsai, and G.-R. Lin, “Four-Wave-Mixing Suppression of Master-to-Slave Injection-Locked Two-Wavelength FPLD Pair for MMW-PON,” J. Lightwave Technol., vol. 34, no. 19, pp. 4810-4818, Oct. 2016.
[23]C.-Y. Lin, Y.-C. Chi, C.-T. Tsai, H.-Y. Chen, M. X., G.-K. Chang, and G.-R. Lin, “Tunable Millimeter-Wave Carrier Embedded Colorless Laser Diode for 5G MMWoF Link,” J. Lightwave Technol., vol. 35, no. 12, pp. 2409-2420, Jun. 2017.
[24]Y. Cui, K. Xu, J. Dai, X. Sun, Y. Dai, Y. Ji, and J. Lin, “Overcoming Chromatic-Dispersion-Induced Power Fading in ROF Links Employing Parallel Modulators,” IEEE Photonics Technol. Lett., vol. 24, no. 14, pp. 1173-1175, Jul. 2012.
[25]W. Li, W. H. Sun, W. T. Wang, and N. H. Zhu, “All-optical frequency upconversion for radio-over-fiber applications based on cross-gain modulation and cross-polarization modulation in a semiconductor optical amplifier,” Opt. Lett., vol. 39, no. 9, pp. 2672-2675, May 2014.
[26]C.-T. Tsai, M.-C. Cheng, Y.-C. Chi, and G.-R. Lin, “A Novel Colorless FPLD Packaged With TO-Can for 30-Gbit/s Preamplified 64-QAM-OFDM Transmission,” IEEE J. Sel. Top. Quantum Electron., vol. 21, no. 6, pp. 1500313, Nov. /Dec. 2015.
[27]X. Chen and J. Yao, “A High Spectral Efficiency Coherent RoF System Based on OSSB Modulation With Low-Cost Free-Running Laser Sources for UDWDM-PONs,” J. Lightwave Technol., vol. 34, no. 11, pp. 2789-2895, Jun. 2016.
[28]H. Zhou, Y. Zeng, M. Chen, and Y. Shen, “Radio-over-fiber system with octuple frequency optical millimeter-wave signal generation using dual-parallel Mach–Zehnder modulator based on four-wave mixing in semiconductor optical amplifier,” Opt. Eng., vol. 57, no. 3, pp. 036101, Mar. 2018.
[29]O. Omomukuyo, M. P. Thakur, and J. E. Mitchell, “Simple 60-GHz MB-OFDM Ultrawideband RoF System Based on Remote Heterodyning,” IEEE Photonics Technol. Lett., vol. 25, no. 3, pp. 268-271, Feb. 2013.
[30]H.-Y. Wang, Y.-Ch. Chi and G.-R. Lin, “Dual-Mode Laser Diode Carrier with Orthogonal Polarization and Single-mode Modulation for Remote-node Heterodyne MMW-RoF,” Opt. Lett., vol. 41, no. 20, pp. 4076-4679, Oct. 2016.
[31]Z. Zhu, S. Zhao, Z. Yao, Q. Tan, Y. Li, X. Chu, L. Shi, and R. Hou, “A novel OCS millimeter-wave generation scheme with data carried only by one sideband and wavelength reuse for uplink connection,” Opt. Laser Technol., vol. 44, pp. 2366-2370, 2012.
[32]J. Ma, Y. Zhan, M. Zhou, H. Liang, Y. Shao, and Ch. Yu, “Full-Duplex Radio Over Fiber With a Centralized Optical Source for a 60 GHz Millimeter-Wave System With a 10 Gb/s 16-QAM Downstream Signal Based on Frequency Quadrupling,” Opt. Commun. Netw., vol. 4, no. 7, pp. 557-564, Jul. 2012.
[33]A. Lebedev, X. Pang, J. J. V. Olmos, S. Forchhammer, and I. T. Monroy, “Simultaneous 60-GHz RoF Transmission of Lightwaves Emitted by ECL, DFB, and VCSEL,” IEEE Photonics Technol. Lett., vol. 26, no. 7, pp. 733-736, Apr. 2014.
[34]P. Pérez, A. Quirce, A. Valle, A. Consoli, I. Noriega, L. Pesquera, and I. Esquivias, “Photonic Generation of Microwave Signals Using a Single-Mode VCSEL Subject to Dual-Beam Orthogonal Optical Injection,” IEEE Photonics J., vol. 7, no. 1, pp. 5500614, Feb. 2015.
[35]C.-Y. Li, H.-H. Lu, C.-H. Chang, C.-Y. Lin, P.-Y. Wu, J.-R. Zheng, and C.-Ru. Lin, “Bidirectional hybrid PM-based RoF and VCSEL-based VLLC system,” Opt. Express, vol. 22, no. 13, pp. 16188-16196, Jun. 2014.
[36]C.-T. Tsai, Y.-C. Chi, and G.-R. Lin, “Destructively Interfered Beating Dual-Mode VCSEL for Carrierless MMW Fiber-Wireless Access Link with Suppressed RF Fading,” IEEE J. Sel. Top. Quantum Electron., vol. 23, no. 6, pp. 1700309, Nov./Dec. 2017.
[37]R. Yi, Y. Weijian, C. Chase, M. C. Y. Huang, D. D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-Wavelength VCSEL Using High-Contrast Grating,” IEEE J. Sel. Top. Quantum Electron., vol. 19, no. 4, pp. 1701311-1701311, Jul./Aug. 2013.
[38]M. Virte, K. Panajotov, H. Thienpont, and M. Sciamanna, “Deterministic polarization chaos from a laser diode,” Nat. Photonics, vol. 7, no. 286, pp. 60-65, 2013.
[39]L. Ge, W. Zhang, C. Liang, and Z. He, “Threshold-Based Pruned Retraining Volterra Equalization for 100 Gbps/Lane and 100-m Optical Interconnects Based on VCSEL and MMF,” J. Lightwave Technol., vol. 37, no. 13, pp. 3222-3228, Jul. 2019.
[40]D. Wiedenmann, R. King, C. Jung, R. Jager, R. Michalzik, P. Schnitzer, M. Kicherer, and K. J. Ebeling, “Design and Analysis of Single-Mode Oxidized VCSEL’s for High-Speed Optical Interconnects,” IEEE J. Sel. Top. Quantum Electron., vol. 5, no. 3, pp. 503-511, May/Jun. 1999.
[41]A. Quirce, A. Valle, C. Giménez, and L. Pesquera, “Intensity Noise Characteristics of Multimode VCSELs,” J. Lightwave Technol., vol. 29, no. 7, pp. 1039-1045, Apr. 2011.
[42]J. Y. Law and G. P. Agrawal, “Mode-Partition Noise in Vertical-Cavity Surface-Emitting Lasers,” IEEE Photonics Technol. Lett., vol. 9, no. 4, pp. 437-439, Apr. 1997.
[43]C. Liang, W. Zhang, L. Ge, and Z. He, “Mode partition noise mitigation for VCSEL-MMF links by using wavefront shaping technique,” Opt. Express, vol. 26, no. 22, pp. 28641-28650, Oct. 2018.
[44]R. M. Borges, L. A. M. Pereira, H. R. D. Filgueiras, A. C. Ferreira, M. S. B. Cunha, E. R. Neto, D. H. Spadoti, L. L. Mendes, and A. C. Sodre ́, Jr., “DSP-Based Flexible-Waveform and Multi-Application 5G Fiber-Wireless System,” J. Lightwave Technol., vol. 38, no. 3, pp. 642-653, Feb. 2020.
[45]R. M. Borges, T. R. R. Marins, M. S. B. Cunha, H. R. D. Filgueiras, I. F. d. Costa, R. N. d. Silva, D. H. Spadoti, L. L. Mendes, and A. C. Sodre ́, Jr., “Integration of a GFDM-Based 5G Transceiver in a GPON Using Radio Over Fiber Technology,” J. Lightwave Technol., vol. 36, no. 19, pp. 4468-4477, Oct. 2018.
[46]P.-C. Chen, B. Su, and Y. Huang, “Matrix Characterization for GFDM: Low Complexity MMSE Receivers and Optimal Filters,” IEEE Trans. Signal Process., vol. 65, no. 18, pp. 4940-4955, Dec. 2019.
[47]M. Matthé, L. L. Mendes, and G. Fettweis, “Generalized Frequency Division Multiplexing in a Gabor Transform Setting,” IEEE Commun. Lett., vol. 18, no. 8, pp. 1379-1382, Aug. 2014.
[48]C.-H. Ho, C.-T. Lin, T.-H. Lu, H.-T. Huang, B. Shih, C.-C. Wei, and A. Ng’oma, “Theoretical and Experimental Investigation of a 2 × 2 MIMO OFDM Radio-Over-Fiber System at 60-GHz With I/Q Imbalance Compensation,” J. Lightwave Technol., vol. 32, no. 20, pp. 3901-3909, Oct. 2014.
[49]S. C. J. Lee, F. Breyer, S. Randel, O. Ziemann, H. P. A. van den Boom, and A. M. J. Koonen, “Low-cost and robust 1-Gbit/s plastic optical fiber link based on light-emitting diode technology,” presented at the Conf. Opt. Fiber Commun./Nat. Fiber Opt. Eng. Conf., San Diego, CA, USA, 2008.
[50]G. Hua, C. Yang, P. Lu, H. X. Zhou, and W. Hong, “Microstrip Folded Dipole Antenna for 35 GHz MMW Communication,” Int. J. Antennas Propag., vol. 2013, no. 603654, pp. 1-6, Nov. 2013.
[51]W. D. Fitzgerald, “A35-GHz Beam Waveguide System for the Millimeter-Wave Radar,” The Lincoln Laboratory Journal, vol. 5, no. 2, pp. 245-272, 1992.
[52]N. Pleros, K. Vyrsokinos, K. Tsagkaris, and N. D. Tselikas, “A 60 GHz Radio-Over-Fiber Network Architecture for Seamless Communication With High Mobility,” J. Lightwave Technol., vol. 27, no.12, pp. 1957-1967, Jun. 2009.
[53]G. H. Smith, D. Novak, and C. Lim, “A Millimeter-Wave Full-Duplex Fiber-Radio Star-Tree Architecture Incorporating WDM and SCM,” IEEE Photonics Technol. Lett., vol. 10, no. 11, pp. 1650-1652, Nov. 1998.
[54]T. Nakasyotani, H. Toda, T. Kuri, and K.-I. Kitayama, “Wavelength-Division-Multiplexed Millimeter-Waveband Radio-on- Fiber System Using a Supercontinuum Light Source,” J. Lightwave Technol., vol. 24, no.1, pp. 404-410, Jan. 2006.
[55]G. P. Agrawal, “Four-wave mixing and phase conjugation in semiconductor laser media,” Opt. Lett., vol. 12, no. 4, pp. 260-262, Apr. 1987.
[56]J. Kim, M. Sung, E.-S. Kim, S.-H. Cho, and J. H. Lee, “4 × 4 MIMO architecture supporting IFoF-based analog indoor distributed antenna system for 5G mobile communications,” Opt. Express, vol. 26, no. 22, pp. 28216-28227, Oct. 2018.
[57]Z.-K. Weng, Y.-C. Chi, H.-Y. Wang, Ch.-T. Tsai, and G.-R. Lin, “75-km Long Reach Dispersion Managed OFDM-PON at 60 Gbit/s With Quasi-Color-Free LD,” J. Lightwave Technol., vol. 36, no. 12, pp. 2394-2408, Jun. 2018.
[58]Y. Wang, Y. Wang, and Q. Shi, “Optimized Signal Distortion for PAPR Reduction of OFDM Signals with IFFT/FFT Complexity via ADMM Approaches,” IEEE Trans. Signal Process., vol. 67, no. 2, pp. 399-414, Jan. 2019.
[59]C. Carlsson, A. Larsson, and A. Alping, “RF Transmission Over Multimode Fibers Using VCSELs—Comparing Standard and High-Bandwidth Multimode Fibers,” J. Lightwave Technol., vol. 22, no. 7, pp. 1694-1700, Jul. 2004.
[60]A. Ng’oma, D. Fortusini, D. Parekh, W. Yang, M. Sauer, S. Benjamin, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Performance of a Multi-Gb/s 60 GHz Radio Over Fiber System Employing a Directly Modulated Optically Injection-Locked VCSEL,” J. Lightwave Technol., vol. 28, no. 16, pp. 2436-2444, Aug. 2010.
[61]C.-T. Tsai, Y.-C. Chi, and G.-R. Lin, “Power fading mitigation of 40-Gbit/s 256-QAM OFDM carried by colorless laser diode under injection-locking,” Opt. Express, vol. 23, no. 22, pp. 29065-29078, Nov. 2015.
[62]C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multiuser OFDM with Adaptive Subcarrier, Bit, and Power Allocation,” IEEE J. Sel. Areas Commun., vol. 17, no. 10, pp. 1747-1758, Oct. 1999.
[63]D. Maugis, “Adhesion of spheres: The JKR-DMT transition using a dugdale model,” J. Colloid Interface Sci., vol. 150, no. 1, pp. 243-269, Apr. 1992.
[64]C.-Y. Peng, C.-T. Tsai, H.-Y. Wang, Y.-C. Wu, T.-T. Shih, J. J. Huang, H.-C. Kuo, W.-H. Cheng, G.-R. Lin, and C.-H. Wu, “High-Temperature Insensitivity of 50-Gb/s 16-QAM-DMT Transmission by Using the Temperature-Compensated Vertical-Cavity Surface-Emitting Lasers,” J. Lightwave Technol., vol. 36, no. 16, pp. 3332-3343, Aug. 2018.
[65]M. Kasmi, S. Mhatli, F. Bahloul, I. Dayoub, K. Oh, “Performance analysis of UFMC waveform in graded index fiber for 5G communications and beyond,” Opt. Commun., vol. 454, pp. 1-7, Jan. 2020.
[66]R. Zakaria and D. L. Ruyet, “A Novel Filter-Bank Multicarrier Scheme to Mitigate the Intrinsic Interference: Application to MIMO Systems,” IEEE Trans. Wirel. Commun., vol. 11, no. 3, pp. 1112-1123, Mar. 2012.
[67]Y.-F. Huang, C.-T. Tsai, Y.-C. Chi, D.-W. Huang, and G.-R. Lin, “Filtered Multicarrier OFDM Encoding on Blue Laser Diode for 14.8-Gbps Seawater Transmission,” J. Lightwave Technol., vol. 36, no. 9, pp. 1739-1745, May 2018.
[68]H. Saeedi-Sourck, Y. Wu, J. W. M. Bergmans, S. Sadri, and B. Farhang-Boroujeny, “Complexity and Performance Comparison of Filter Bank Multicarrier and OFDM in Uplink of Multicarrier Multiple Access Networks,” IEEE Trans. Signal Process., vol. 59, no. 4, pp. 1907-1912, Apr. 2011.
[69]D. Qu, S. Lu, and T. Jiang, “Multi-Block Joint Optimization for the Peak-to-Average Power Ratio Reduction of FBMC-OQAM Signals,” IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1605-1613, Apr. 2013.
[70]A. Farhang, N. Marchetti, and L. E. Doyle, “Low-Complexity Modem Design for GFDM,” IEEE Trans. Signal Process., vol. 64, no. 6, pp. 1507-1518, Mar. 2016.
[71]H. E. Levin, “A complete and optimal data allocation method for practical discrete multitone systems,” presented at the IEEE Global Telecommun. Conf., San Antonio, TX, USA, 2001.
[72]P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun., vol. 43, no. 234, pp. 773–775, Feb./Mar./Apr. 1995.
[73]Y. Hou, Q. Zhang, S. Qi, X. Feng, and P. Wan, “1.5 μm polarization-maintaining dual-wavelength single-frequency distributed Bragg reflection fiber laser with 28 GHz stable frequency difference,” Opt. Lett., vol. 43, no. 6, pp. 1383-1386, Mar. 2018.
[74]P. Pellandini, R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett., vol. 71, no. 864, pp. 864-866, Aug. 1997.
[75]A. Quirce, P. Pérez, A, Popp, Á, Valle, L. Pesquera, Y. Hong, H, Thienpont, and K. Panajotov, “Polarization switching and injection locking in vertical-cavity surface-emitting lasers subject to parallel optical injection,” Opt. Lett., vol. 41, no. 11, pp. 2664-2667, Jun. 2016.
[76]Y.-C. Su, Y.-C. Chi, S.-Y. Lin, Y.-C. Li, C.-T. Tsai, H.-L. Wang, G.-C. Lin, and G.-R. Lin, “Effect of Injection Coherence on Noise and Bandwidth of Long-Cavity Colorless Laser Diode for Digital Modulation and Transmission,” IEEE J. Quantum Electron., vol. 51, no. 2, pp. 2000214, Feb. 2015.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top