跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 15:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:丁玟呈
研究生(外文):Wen-Cheng Ding
論文名稱:藍色量子點發光二極體的效率及壽命提升及高效率綠色熱活化延遲螢光有機發光二極體之研究
論文名稱(外文):Study on Efficiency and Lifetime Enhancement of Blue Quantum Dot Light-emitting Diodes and High Efficiency Green Thermally Activated Delayed Fluorescence Organic Light-emitting Diodes
指導教授:李君浩
指導教授(外文):Jiun-Haw Lee
口試委員:邱天隆梁文傑李俊育
口試委員(外文):Tien-Lung ChiuMan-kit LeungChun-Yu Lee
口試日期:2020-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:114
中文關鍵詞:量子點發光二極體效率正向熟成壽命有機發光二極體熱活化延遲螢光
外文關鍵詞:Quantum dot light-emitting diodeefficiencypositive aginglifetimeorganic light-emitting diodethermally activated delayed fluorescence
DOI:10.6342/NTU202003497
相關次數:
  • 被引用被引用:1
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文中包含兩個研究主題。第一個研究主題,我們與友達光電股份有限公司進行產學合作計畫,在量子點發光二極體 (quantum dot light-emitting diode, QLED) 中採用正向熟成處理,以提高元件效率表現。通過正向熟成處理,量子點 (quantum dots, QDs) 與ZnO界面或QDs層具有了更好的載子注入或傳輸能力。與未經處理的QLED相比,在短期內 (<1天) QLED的操作電壓在電流密度1.5 mA / cm2驅動下降低1.46 V,且其效率提高約3.8倍;而在經過長達20天以上的正向熟成後,元件效率更進一步地提高至約7倍。除此之外,藍光QLED中的電洞傳輸層 (hole-transporting layer, HTL) 在定電流驅動下的損壞是影響元件操作壽命的主要原因。透過脈衝驅動的方式,我們將藍光QLED的操作壽命延長了1.85倍,並且在綠光及紅光QLED中亦分別延長了1.76倍和17.22倍的操作壽命。
第二個研究主題中,我們研究以2,4,5,6‐tetra(9H‐carbazol‐9‐yl)isophthalonitrile (4CzIPN) 作為摻雜材料的高效率綠色熱活化延遲螢光 (thermally-activated delayed fluorescence, TADF) 有機發光二極體 (organic light-emitting diode, OLED),並以9,9'-(2-(1-Phenyl-1H-benzo[d]imidazol-2-yl)-1,3-phenylene)bis(9H-carbazole) (o-DiCbzBz), 9,9',9''-(2-(1-phenyl-1H-benzo[d]imidazol-2-yl)benzene-1,3,5-triyl)tris(9H-carbazole) (o-3CbzBz), 和 9,9',9'',9'''-(3-(1-phenyl-1H-benzo[d]imidazol-2-yl)benzene-1,2,4,5tetrayl)tetrakis(9H-carbazole) (o-4CbzBz) 作為發光層 (emitting layer, EML) 的主體材料,它們是由台灣大學化學系梁文傑教授的研究群所設計及合成的。藉由4CzIPN的低摻雜濃度 (0.5%) 來抑制摻雜濃度猝熄,以及主體材料中的較長的三重態激子擴散長度,使4CzIPN在低摻雜濃度下能獲取盡可能多的三重態激子,我們得以在以o-DiCbzBz,o-3CbzBz和o-4CbzBz為主體材料中的綠色TADF OLED中分別得到了最大電流效率為88.93 cd/A,91.2 cd/A和88.34 cd/A;最大功率效率為79.99 lm/W,82.07 lm/W和79.46 lm/W;以及最大外部量子效率(external quantum efficiency, EQE)為30.3%,31.75% 和29.44% 的元件表現。
There are two topics in this thesis. In the first topic, we collaborate with AU Optronics Corporation and employ positive aging treatment in quantum dot light-emitting diode (QLED) for improving device efficiency. By positive aging treatment, the quantum dots (QDs)/ZnO interface and/or QDs layer were modified with better carrier injection and/or transporting ability. Compared to QLED without treatment, device voltage decreased (1.46 V at J= 1.5 mA/cm2) and efficiency increased (~3.8-times) in short term (within 1 day). After a long storage (as long as >20 days), device efficiency further improved to ~7-times higher than QLED without treatment. Besides, the degradation of hole transporting layer (HTL) in our blue QLED was the main reason for luminance loss under constant current driving. Using pulsed driving method, we extended our blue QLED lifetime with 1.85-times improvement, and also obtained 1.76- and 17.22-times lifetime elongation in green and red QLEDs, respectively.
In the second topic, we focus on the high efficiency green thermally activated delayed fluorescence (TADF) organic light-emitting diode (OLED) based on 2,4,5,6‐tetra(9H‐carbazol‐9‐yl)isophthalonitrile (4CzIPN) as the dopant material, and 9,9'-(2-(1-Phenyl-1H-benzo[d]imidazol-2-yl)-1,3-phenylene)bis(9H-carbazole) (o-DiCbzBz), 9,9',9''-(2-(1-phenyl-1H-benzo[d]imidazol-2-yl)benzene-1,3,5-triyl)tris(9H-carbazole) (o-3CbzBz), and 9,9',9'',9'''-(3-(1-phenyl-1H-benzo[d]imidazol-2-yl)benzene-1,2,4,5tetrayl)tetrakis(9H-carbazole) (o-4CbzBz) as the host materials of the emitting layer (EML), which were designed and synthesized by Prof. Man-Kit Leung’s group, Department of Chemistry in National Taiwan University, respectively. With the low dopant concentration (0.5%) of 4CzIPN for suppressing the concentration quenching, and the long triplet diffusion length in hosts for harvesting triplet excitons in 4CzIPN, the maximum current efficiency (cd/A) of 88.93 cd/A, 91.2 cd/A, and 88.34 cd/A, the maximum power efficiency (lm/W) of 79.99 lm/W, 82.07 lm/W, and 79.46 lm/W, and the maximum external quantum efficiency (EQE) of 30.30%, 31.75%, and 29.44% were achieved in OLEDs with o-DiCbzBz, o-3CbzBz, and o-4CbzBz hosts, respectively.
致謝 i
摘要 iii
Abstract iv
Contents vi
List of Figures viii
List of Tables xiii
Chapter 1 Introduction 1
1.1 Overview 1
1.2 Introduction of QLED 2
1.3 Review of efficiency improvement and lifetime elongation for QLED 3
1.3.1 Motivation 8
1.4 Introduction of OLED 8
1.5 Review of green TADF OLED with 4CzIPN as dopant 10
1.5.1 Motivation 13
Chapter 2 Experiments 14
2.1 Introduction 14
2.2 Post treatment procedure of blue QLED 14
2.3 Fabrication process of OLED 15
2.4 Luminance-current density-voltage (L-J-V) measurement 16
2.5 TrEL system 17
2.6 Absorption and SSPL measurement 18
2.7 TrPL and PLQY system 18
Chapter 3 Efficiency and Lifetime Enhancement of Blue Quantum Dot Light-emitting Diodes 20
3.1 Introduction 20
3.2 Positive aging treatment in blue QLED 21
3.3 Degradation mechanism of blue QLED with different thicknesses of HTL 27
3.4 QLED lifetime improvement under different pulsed driving 34
3.5 QLED with post treatment measured in different period 41
3.5.1 Device performances of blue QLED with and without positive aging treatment 41
3.5.2 Positive aging effect on electron-only device 50
Chapter 4 High Efficiency Green Thermally Activated Delayed Fluorescence Organic Light-emitting Diodes 53
4.1 Introduction 53
4.2 High efficiency green TADF-OLEDs with o-DiCbzBz, o-3CbzBz and o-4CbzBz as host materials 54
4.2.1 SSPL and TrPL properties 59
4.2.2 Partially doped OLED with o-3CbzBz as the host 61
4.2.3 Non-doped OLEDs with o-DiCbzBz, o-3CbzBz and o-4CbzBz 64
4.3 Optimization procedures of TADF OLED with o-DiCbzBz, o-3CbzBz and o-4CbzBz as host 67
4.3.1 Device optimization of green TADF OLED with o-DiCbzBz as the host 67
4.3.1.1 Dopant concentration optimization 67
4.3.1.2 ETL optimization 71
4.3.1.3 EML optimization 74
4.3.2 Device optimization of green TADF OLED with o-3CbzBz as the host 78
4.3.2.1 Dopant concentration optimization 78
4.3.2.2 ETL optimization 82
4.3.2.3 EML optimization 85
4.3.3 Device optimization of green TADF OLED with o-4CbzBz as the host 89
4.3.3.1 Dopant concentration optimization 89
4.3.3.2 ETL optimization 93
4.3.3.3 EML optimization 97
4.3.4 Partially doped OLED and non-doped OLED 101
Chapter 5 Summary 107
Reference 108
Appendix 113
[1] A. Titov, K. Acharya, C. Wang, J. Hyvonen, J. Tokarz and P. H. Holloway, “6‐3: Quantum Dot LEDs: Problems & Prospects”, SID Symp. Dig. Tech. Pap., 2017, 48(1), 58-60.
[2] Y. E. Panfil, M. Oded, and U. Banin, Angew. “Colloidal Quantum Nanostructures: Emerging Materials for Display Applications”, Angew. Chem. Int. Ed., 2018, 57(16), 4274-4295.
[3] W. K. Bae, S. Brovelli, and V. I. Klimov, “Spectroscopic insights into the performance of quantum dot light-emitting diodes”, MRS Bull., 2013, 38(9), 721-730.
[4] L. Qian, Y. Yang, W. Cao, C. Xiang, X. Xie, Z. Liu, S. Chen, L. Wu, and X. Yan, “6‐2: Invited Paper: Key Challenges towards the Commercialization of Quantum‐Dot Light‐Emitting Diodes”, SID Symp. Dig. Tech. Pap., 2017, 48(1), 55-57.
[5] C. Lee, M. Park, J Lim, H. Jung, J. Kwak, W. K. Bae, K. Char, S. Lee, “46.1: Invited Paper: Recent Progress of Light‐Emitting Diodes Based on Colloidal Quantum Dots”, SID Symp. Dig. Tech. Pap., 2015, 46(1), 685-687.
[6] C. Xiang, W. Cao, Y. Yang, L. Qian, and X. Yan, “The Dawn of QLED for the FPD Industry”, Information Display., 2018, 34(6), 14-17.
[7] Y. Shirasaki, G. J. Supran, M. G. Bawendi and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies”, Nat. Photonics, 2013, 7(1), 13-23.
[8] J. R. Manders, J. Hyvonen, A. Titov, K. P. Acharya, J. Tokarz‐Scott, Y. Yang, W. Cao, Y. Zheng, L. Qian, J. Xue, and P. H. Holloway, “48‐1: Invited Paper: High Efficiency and Ultra‐Wide Color Gamut Quantum Dot LEDs for Next Generation Displays”, SID Symp. Dig. Tech. Pap., 2016, 47(1), 644-647.
[9] T. Davidson-Hall, and H. Aziz, “Perspective: Toward highly stable electroluminescent quantum dot lightemitting devices in the visible range”, Appl. Phys. Lett., 2020, 116(1), 010502.
[10] Y. Sun, W. Wang, H. Zhang, Q. Su, J. Wei, P. Liu, S. Chen, and S. Zhang, “High-Performance Quantum Dot Light-Emitting Diodes Based on Al-Doped ZnO Nanoparticles Electron Transport Layer”, ACS Appl. Mater. Interfaces, 2018, 10(22), 18902-18909.
[11] Z. Zhang, Y. Ye, C. Pu, Y. Deng, X. Dai, X. Chen, D. Chen, X. Zheng, Y. Gao, W. Fang, X. Peng, and Y. Jin, “High-Performance, Solution-Processed, and Insulating-Layer-Free Light-Emitting Diodes Based on Colloidal Quantum Dots”, Adv. Mater., 2018, 30(28), 1801387.
[12] X. Jin, C. Chang, W. Zhao, S. Huang, X. Gu, Q. Zhang, F. Li, Y. Zhang, and Q. Li, “Balancing the Electron and Hole Transfer for Efficient Quantum Dot Light-Emitting Diodes by Employing a Versatile Organic Electron-Blocking Layer”, ACS Appl. Mater. Interfaces, 2018, 10(18), 15803-15811.
[13] K. P. Acharya, A. Titov, J. Hyvonen, C. Wang, J. Tokarz and P. H. Holloway, “High efficiency quantum dot light emitting diodes from positive aging”, Nanoscale, 2017, 9(38), 14451-14457.
[14] Q. Su, Y. Sun, H. Zhang, and S. Chen, “Origin of Positive Aging in Quantum-Dot Light-Emitting Diodes”, Adv. Sci., 2018, 5(10), 1800549.
[15] D. Chen, D. Chen, X. Dai, Z. Zhang, J. Lin, Y. Deng, Y. Hao, C. Zhang, H. Zhu, F. Gao, X. Peng, and Y. Jin, “Shelf-stable quantum-dot light-emitting diodes with high operational performance”, arXiv preprint arXiv:2005.10735, 2020.
[16] Y. Lee, B. G. Jeong, H. Roh, J. Roh, J. Han, D. C. Lee, W. K. Bae, J.-Y. Kim, and C. Lee, “Enhanced Lifetime and Efficiency of Red Quantum Dot Light-Emitting Diodes with Y-Doped ZnO Sol–Gel Electron-Transport Layers by Reducing Excess Electron Injection”, Adv. Quantum Technol., 2018, 1(1), 1700006.
[17] F. Liang, Y. Liu, Y. Hu, Y.-L. Shi, Y. Q. Liu, Z. K. Wang, X. D. Wang, B. Q. Sun, and L. S. Liao, “Polymer as an Additive in the Emitting Layer for High-Performance Quantum Dot Light-Emitting Diodes”, ACS Appl. Mater. Interfaces, 2017, 9(23), 20239-20246.
[18] W. Zhang, Z. Wu, X. Zhang, S. Liang, B. Jiao, and X. Hou, “Influence of driving mode on the operation stability of organic light-emitting diodes”, Optoelectron. Adv. Mater.-Rapid Commun., 2010, 4(9), 1379-1383.
[19] W. W. Zhang, Z. X. Wu, X. W. Zhang, S. X. Liang, B. Jiao and X. Hou, “Dependence of the stability of organic light-emitting diodes on driving mode”, Chin. Sci. Bull., 2011, 56(21), 2210-2214.
[20] B. Geffroy, P. Le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies”, Polym. Int., 2006, 55(6), 572-582.
[21] 陳金鑫、黃孝文,OLED夢幻顯示器.OLED材料與元件,五南圖書出版股份有限公司,2007。
[22] C. Adachi, “Third-generation organic electroluminescence materials”, Jpn. J. Appl. Phys., 2014, 53(6), 060101.
[23] M. Sarma, and K. T. Wong, “Exciplex: An Intermolecular Charge-Transfer Approach for TADF”, ACS Appl. Mater. Interfaces, 2018, 10(23), 19279-19304.
[24] W. Y. Hung, T. C. Wang, P. Y. Chiang, B. J. Peng, and K. T. Wong, “Remote Steric Effect as a Facile Strategy for Improving the Efficiency of Exciplex-Based OLEDs”, ACS Appl. Mater. Interfaces, 2017, 9(8), 7355-7361.
[25] H. Uoyama1, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence”, Nature, 2012, 492(7428), 234-238.
[26] Y. J. Cho, K. S. Yook, and J. Y. Lee, “A Universal Host Material for High External Quantum Efficiency Close to 25% and Long Lifetime in Green Fluorescent and Phosphorescent OLEDs”, Adv. Mater., 2014, 26(24), 4050-4055.
[27] J. W. Sun, J. H. Lee, C. K. Moon, K. H. Kim, H. Shin, and J. J. Kim, “A Fluorescent Organic Light-Emitting Diode with 30% External Quantum Efficiency”, Adv. Mater., 2014, 26(32), 5684-5688.
[28] B. S. Kim and J. Y. Lee, “Phosphine Oxide Type Bipolar Host Material for High Quantum Efficiency in Thermally Activated Delayed Fluorescent Device”, ACS Appl. Mater. Interfaces, 2014, 6(11), 8396-8400.
[29] M. Kim, S. K. Jeon, S. H. Hwang, and J. Y. Lee, “Bicarbazole based donor–acceptor compound as a host for thermally activated delayed fluorescent emitter”, Synth. Met., 2015, 209, 19-23.
[30] M. P. Gaj, C. F.-Hernandez, Y. Zhang, S. R. Marder, B. Kippelen, “Highly efficient Organic Light-Emitting Diodes from thermally activated delayed fluorescence using a sulfone–carbazole host material”, Org. Electron., 2015, 16, 109-112.
[31] C. W. Lee and J. Y. Lee, “Systematic Control of Photophysical Properties of Host Materials for High Quantum Efficiency above 25% in Green Thermally Activated Delayed Fluorescent Devices”, ACS Appl. Mater. Interfaces, 2015, 7(4), 2899-2904.
[32] D. R. Lee, B. S. Kim, C. W. Lee, Y. Im, K. S. Yook, S. H. Hwang, and J. Y. Lee, “Above 30% External Quantum Efficiency in Green Delayed Fluorescent Organic Light-Emitting Diodes”, ACS Appl. Mater. Interfaces, 2015, 7(18), 9625-9629.
[33] S. W. Li, C. H. Yu, C. L. Ko, T. Chatterjee, W. Y. Hung, and K. T. Wong, “Cyanopyrimidine−Carbazole Hybrid Host Materials for High-Efficiency and Low-Efficiency Roll-Off TADF OLEDs”, ACS Appl. Mater. Interfaces, 2018, 10(15), 12930-12936.
[34] L. S. Cui1, S. B Ruan, F. Bencheikh, R. Nagata, L. Zhang, K. Inada, H. Nakanotani, L. S. Liao, and C. Adachi, “Long-lived efficient delayed fluorescence organic light-emitting diodes using n-type hosts”, Nat. Commun., 2017, 8(1), 2250.
[35] T. Kamata, H. Sasabe, N. Ito, Y. Sukegawa, A. Arai, T. Chiba, D. Yokoyama, and Junji Kido, “Simultaneous realization of high-efficiency, low-drive voltage, and long lifetime TADF OLEDs by multifunctional hole-transporters”, J. Mater. Chem. C, 2020, 8(21), 7200-7210.
[36] 黃昭郡,苯並咪唑化合物之合成、光譜性質分析及以其作為母體材料在高效率藍光有機發光二極體的研究,臺灣大學,博士論文 2016.
[37] J. J. Huang, Y. H. Hung, P. L. Ting, Y. N. Tsai, H. J. Gao, T. L. Chiu, J. H. Lee, C. L. Chen, P. T. Chou, and M.-k. Leung, “Orthogonally Substituted Benzimidazole-Carbazole Benzene As Universal Hosts for Phosphorescent Organic Light-Emitting Diodes”, Org. Lett., 2016, 18(4), 672-675.
[38] J. J. Huang, L. K. Yun, T. J. Kung, C. L. Chen, J. H. Lee, Y. R. Wu, T. L. Chiu, P. T. Choua, and M.-k. Leung, “Networking hole and electron hopping paths by Y-shaped host molecules: promoting blue phosphorescent organic light emitting diodes”, J. Mater. Chem. C, 2017, 5(14), 3600-3608.
[39] Y. Yang, A. Titov, J. Hyvonen, Y. Zheng, L. Qian, P. H. Holloway, Yang, Yixing, et al. “Method and structure of promoting positive efficiency aging and stabilization of quantum dot light-emitting diode”, U.S. Patent No. 9,780,256, 2017.
[40] 曾柏宸,藍色複合激發體觸發三重態-三重態湮滅及不同熱活化延遲螢光發光體有機發光二極體之效率提升研究,臺灣大學,碩士論文 2017.
[41] 殷力嘉,以咔唑及咪唑衍生物作為藍色磷光有機發光二極體主體材料之研究,臺灣大學,碩士論文 2017.
[42] 李政頡,咔唑與苯並咪唑碳氮連接之雙極性衍生物為主體材料之藍色磷光及熱活性型螢光有機發光二極體之研究,臺灣大學,碩士論文 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊