[1] A. Titov, K. Acharya, C. Wang, J. Hyvonen, J. Tokarz and P. H. Holloway, “6‐3: Quantum Dot LEDs: Problems & Prospects”, SID Symp. Dig. Tech. Pap., 2017, 48(1), 58-60.
[2] Y. E. Panfil, M. Oded, and U. Banin, Angew. “Colloidal Quantum Nanostructures: Emerging Materials for Display Applications”, Angew. Chem. Int. Ed., 2018, 57(16), 4274-4295.
[3] W. K. Bae, S. Brovelli, and V. I. Klimov, “Spectroscopic insights into the performance of quantum dot light-emitting diodes”, MRS Bull., 2013, 38(9), 721-730.
[4] L. Qian, Y. Yang, W. Cao, C. Xiang, X. Xie, Z. Liu, S. Chen, L. Wu, and X. Yan, “6‐2: Invited Paper: Key Challenges towards the Commercialization of Quantum‐Dot Light‐Emitting Diodes”, SID Symp. Dig. Tech. Pap., 2017, 48(1), 55-57.
[5] C. Lee, M. Park, J Lim, H. Jung, J. Kwak, W. K. Bae, K. Char, S. Lee, “46.1: Invited Paper: Recent Progress of Light‐Emitting Diodes Based on Colloidal Quantum Dots”, SID Symp. Dig. Tech. Pap., 2015, 46(1), 685-687.
[6] C. Xiang, W. Cao, Y. Yang, L. Qian, and X. Yan, “The Dawn of QLED for the FPD Industry”, Information Display., 2018, 34(6), 14-17.
[7] Y. Shirasaki, G. J. Supran, M. G. Bawendi and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies”, Nat. Photonics, 2013, 7(1), 13-23.
[8] J. R. Manders, J. Hyvonen, A. Titov, K. P. Acharya, J. Tokarz‐Scott, Y. Yang, W. Cao, Y. Zheng, L. Qian, J. Xue, and P. H. Holloway, “48‐1: Invited Paper: High Efficiency and Ultra‐Wide Color Gamut Quantum Dot LEDs for Next Generation Displays”, SID Symp. Dig. Tech. Pap., 2016, 47(1), 644-647.
[9] T. Davidson-Hall, and H. Aziz, “Perspective: Toward highly stable electroluminescent quantum dot lightemitting devices in the visible range”, Appl. Phys. Lett., 2020, 116(1), 010502.
[10] Y. Sun, W. Wang, H. Zhang, Q. Su, J. Wei, P. Liu, S. Chen, and S. Zhang, “High-Performance Quantum Dot Light-Emitting Diodes Based on Al-Doped ZnO Nanoparticles Electron Transport Layer”, ACS Appl. Mater. Interfaces, 2018, 10(22), 18902-18909.
[11] Z. Zhang, Y. Ye, C. Pu, Y. Deng, X. Dai, X. Chen, D. Chen, X. Zheng, Y. Gao, W. Fang, X. Peng, and Y. Jin, “High-Performance, Solution-Processed, and Insulating-Layer-Free Light-Emitting Diodes Based on Colloidal Quantum Dots”, Adv. Mater., 2018, 30(28), 1801387.
[12] X. Jin, C. Chang, W. Zhao, S. Huang, X. Gu, Q. Zhang, F. Li, Y. Zhang, and Q. Li, “Balancing the Electron and Hole Transfer for Efficient Quantum Dot Light-Emitting Diodes by Employing a Versatile Organic Electron-Blocking Layer”, ACS Appl. Mater. Interfaces, 2018, 10(18), 15803-15811.
[13] K. P. Acharya, A. Titov, J. Hyvonen, C. Wang, J. Tokarz and P. H. Holloway, “High efficiency quantum dot light emitting diodes from positive aging”, Nanoscale, 2017, 9(38), 14451-14457.
[14] Q. Su, Y. Sun, H. Zhang, and S. Chen, “Origin of Positive Aging in Quantum-Dot Light-Emitting Diodes”, Adv. Sci., 2018, 5(10), 1800549.
[15] D. Chen, D. Chen, X. Dai, Z. Zhang, J. Lin, Y. Deng, Y. Hao, C. Zhang, H. Zhu, F. Gao, X. Peng, and Y. Jin, “Shelf-stable quantum-dot light-emitting diodes with high operational performance”, arXiv preprint arXiv:2005.10735, 2020.
[16] Y. Lee, B. G. Jeong, H. Roh, J. Roh, J. Han, D. C. Lee, W. K. Bae, J.-Y. Kim, and C. Lee, “Enhanced Lifetime and Efficiency of Red Quantum Dot Light-Emitting Diodes with Y-Doped ZnO Sol–Gel Electron-Transport Layers by Reducing Excess Electron Injection”, Adv. Quantum Technol., 2018, 1(1), 1700006.
[17] F. Liang, Y. Liu, Y. Hu, Y.-L. Shi, Y. Q. Liu, Z. K. Wang, X. D. Wang, B. Q. Sun, and L. S. Liao, “Polymer as an Additive in the Emitting Layer for High-Performance Quantum Dot Light-Emitting Diodes”, ACS Appl. Mater. Interfaces, 2017, 9(23), 20239-20246.
[18] W. Zhang, Z. Wu, X. Zhang, S. Liang, B. Jiao, and X. Hou, “Influence of driving mode on the operation stability of organic light-emitting diodes”, Optoelectron. Adv. Mater.-Rapid Commun., 2010, 4(9), 1379-1383.
[19] W. W. Zhang, Z. X. Wu, X. W. Zhang, S. X. Liang, B. Jiao and X. Hou, “Dependence of the stability of organic light-emitting diodes on driving mode”, Chin. Sci. Bull., 2011, 56(21), 2210-2214.
[20] B. Geffroy, P. Le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: materials, devices and display technologies”, Polym. Int., 2006, 55(6), 572-582.
[21] 陳金鑫、黃孝文,OLED夢幻顯示器.OLED材料與元件,五南圖書出版股份有限公司,2007。
[22] C. Adachi, “Third-generation organic electroluminescence materials”, Jpn. J. Appl. Phys., 2014, 53(6), 060101.
[23] M. Sarma, and K. T. Wong, “Exciplex: An Intermolecular Charge-Transfer Approach for TADF”, ACS Appl. Mater. Interfaces, 2018, 10(23), 19279-19304.
[24] W. Y. Hung, T. C. Wang, P. Y. Chiang, B. J. Peng, and K. T. Wong, “Remote Steric Effect as a Facile Strategy for Improving the Efficiency of Exciplex-Based OLEDs”, ACS Appl. Mater. Interfaces, 2017, 9(8), 7355-7361.
[25] H. Uoyama1, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence”, Nature, 2012, 492(7428), 234-238.
[26] Y. J. Cho, K. S. Yook, and J. Y. Lee, “A Universal Host Material for High External Quantum Efficiency Close to 25% and Long Lifetime in Green Fluorescent and Phosphorescent OLEDs”, Adv. Mater., 2014, 26(24), 4050-4055.
[27] J. W. Sun, J. H. Lee, C. K. Moon, K. H. Kim, H. Shin, and J. J. Kim, “A Fluorescent Organic Light-Emitting Diode with 30% External Quantum Efficiency”, Adv. Mater., 2014, 26(32), 5684-5688.
[28] B. S. Kim and J. Y. Lee, “Phosphine Oxide Type Bipolar Host Material for High Quantum Efficiency in Thermally Activated Delayed Fluorescent Device”, ACS Appl. Mater. Interfaces, 2014, 6(11), 8396-8400.
[29] M. Kim, S. K. Jeon, S. H. Hwang, and J. Y. Lee, “Bicarbazole based donor–acceptor compound as a host for thermally activated delayed fluorescent emitter”, Synth. Met., 2015, 209, 19-23.
[30] M. P. Gaj, C. F.-Hernandez, Y. Zhang, S. R. Marder, B. Kippelen, “Highly efficient Organic Light-Emitting Diodes from thermally activated delayed fluorescence using a sulfone–carbazole host material”, Org. Electron., 2015, 16, 109-112.
[31] C. W. Lee and J. Y. Lee, “Systematic Control of Photophysical Properties of Host Materials for High Quantum Efficiency above 25% in Green Thermally Activated Delayed Fluorescent Devices”, ACS Appl. Mater. Interfaces, 2015, 7(4), 2899-2904.
[32] D. R. Lee, B. S. Kim, C. W. Lee, Y. Im, K. S. Yook, S. H. Hwang, and J. Y. Lee, “Above 30% External Quantum Efficiency in Green Delayed Fluorescent Organic Light-Emitting Diodes”, ACS Appl. Mater. Interfaces, 2015, 7(18), 9625-9629.
[33] S. W. Li, C. H. Yu, C. L. Ko, T. Chatterjee, W. Y. Hung, and K. T. Wong, “Cyanopyrimidine−Carbazole Hybrid Host Materials for High-Efficiency and Low-Efficiency Roll-Off TADF OLEDs”, ACS Appl. Mater. Interfaces, 2018, 10(15), 12930-12936.
[34] L. S. Cui1, S. B Ruan, F. Bencheikh, R. Nagata, L. Zhang, K. Inada, H. Nakanotani, L. S. Liao, and C. Adachi, “Long-lived efficient delayed fluorescence organic light-emitting diodes using n-type hosts”, Nat. Commun., 2017, 8(1), 2250.
[35] T. Kamata, H. Sasabe, N. Ito, Y. Sukegawa, A. Arai, T. Chiba, D. Yokoyama, and Junji Kido, “Simultaneous realization of high-efficiency, low-drive voltage, and long lifetime TADF OLEDs by multifunctional hole-transporters”, J. Mater. Chem. C, 2020, 8(21), 7200-7210.
[36] 黃昭郡,苯並咪唑化合物之合成、光譜性質分析及以其作為母體材料在高效率藍光有機發光二極體的研究,臺灣大學,博士論文 2016.[37] J. J. Huang, Y. H. Hung, P. L. Ting, Y. N. Tsai, H. J. Gao, T. L. Chiu, J. H. Lee, C. L. Chen, P. T. Chou, and M.-k. Leung, “Orthogonally Substituted Benzimidazole-Carbazole Benzene As Universal Hosts for Phosphorescent Organic Light-Emitting Diodes”, Org. Lett., 2016, 18(4), 672-675.
[38] J. J. Huang, L. K. Yun, T. J. Kung, C. L. Chen, J. H. Lee, Y. R. Wu, T. L. Chiu, P. T. Choua, and M.-k. Leung, “Networking hole and electron hopping paths by Y-shaped host molecules: promoting blue phosphorescent organic light emitting diodes”, J. Mater. Chem. C, 2017, 5(14), 3600-3608.
[39] Y. Yang, A. Titov, J. Hyvonen, Y. Zheng, L. Qian, P. H. Holloway, Yang, Yixing, et al. “Method and structure of promoting positive efficiency aging and stabilization of quantum dot light-emitting diode”, U.S. Patent No. 9,780,256, 2017.
[40] 曾柏宸,藍色複合激發體觸發三重態-三重態湮滅及不同熱活化延遲螢光發光體有機發光二極體之效率提升研究,臺灣大學,碩士論文 2017.[41] 殷力嘉,以咔唑及咪唑衍生物作為藍色磷光有機發光二極體主體材料之研究,臺灣大學,碩士論文 2017.[42] 李政頡,咔唑與苯並咪唑碳氮連接之雙極性衍生物為主體材料之藍色磷光及熱活性型螢光有機發光二極體之研究,臺灣大學,碩士論文 2017.