|
[1]Y. Hsieh, Ma IH., "Wide Foveal Pit - Predilection for Maculopathy," presented at the APVRS Congress 2019, Shanghai, China, 2019.
[2]M. Wagner-Schuman et al., "Race-and sex-related differences in retinal thickness and foveal pit morphology," Investigative Ophthalmology & Visual Science, vol. 52, no. 1, pp. 625─634, 2011.
[3]A. Wong, C. Chan, and S. Hui, "Relationship of gender, body mass index, and axial length with central retinal thickness using optical coherence tomography," Eye, vol. 19, no. 3, pp. 292─297, 2005.
[4]C. A. McCannel, J. L. Ensminger, N. N. Diehl, and D. N. Hodge, "Population-based incidence of macular holes," Ophthalmology, vol. 116, no. 7, pp. 1366─1369, 2009.
[5]W. Xiao, X. Chen, W. Yan, Z. Zhu, and M. He, "Prevalence and risk factors of epiretinal membranes: a systematic review and meta-analysis of population-based studies," BMJ open, vol. 7, no. 9, p. e014644, 2017.
[6]S. J. Park, N.-K. Choi, K. H. Park, and S. J. Woo, "Nationwide incidence of clinically diagnosed retinal vein occlusion in Korea, 2008 through 2011: preponderance of women and the impact of aging," Ophthalmology, vol. 121, no. 6, pp. 1274─1280, 2014.
[7]R. Poplin et al., "Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning," Nature Biomedical Engineering, vol. 2, no. 3, p. 158, 2018.
[8]R. J. Sidd, S. L. Fine, S. L. Owens, and A. Patz, "Idiopathic preretinal gliosis," American Journal of Ophthalmology, vol. 94, no. 1, pp. 44─48, 1982.
[9]D. Pascolini et al., "2002 global update of available data on visual impairment: a compilation of population-based prevalence studies," Ophthalmic Epidemiology, vol. 11, no. 2, pp. 67─115, 2004.
[10]N. Congdon et al., "Causes and prevalence of visual impairment among adults in the United States," Archives of Ophthalmology (Chicago, Ill.: 1960), vol. 122, no. 4, pp. 477─485, 2004.
[11]W. H. Organization, "Prevention of blindness and visual impairment," Priority Eye Diseases, 2017.
[12]李新華, 驗光學──眼鏡驗光與加工職業技能基礎教程. 新文京, 2013.
[13]"視網膜介紹." [Online]. Available: https://smallcollation.blogspot.com/2013/06/retina.html?m=1&fbclid=IwAR2ArLWq4gHAytpJuQTvWgNf2FhZatmAvAogww4khKfPmZaC6c4cHGeafj0#gsc.tab=0
[14]"視網膜." [Online]. Available: https://zh.wikipedia.org/wiki/%E8%A7%86%E7%BD%91%E8%86%9C
[15]A. Koh, "Optical Coherence Tomography of the Outer Retinal Layers," in Optical Coherence Tomography, vol. 4: Karger Publishers, 2014, pp. 26─33.
[16]B. K. B. Stanton, Berne & Levy Physiology, Updated Edition 6th Edition. Mosby, 2010.
[17]L. W. Tao, Z. Wu, R. H. Guymer, and C. D. Luu, "Ellipsoid zone on optical coherence tomography: a review," Clinical & Experimental Ophthalmology, vol. 44, no. 5, pp. 422─430, 2016.
[18]"視網膜病變." [Online]. Available: http://www.eyedoc.com.tw/retina_06.html
[19]"脈絡膜." [Online]. Available: https://zh.wikipedia.org/wiki/%E8%84%89%E7%BB%9C%E8%86%9C
[20]眼科学 惠延年主编, 第5版 ed. (新世纪课程教材). 北京: 人民卫生出版社, 2001.
[21]A. Pokharel, G. S. Shrestha, and J. B. Shrestha, "Macular thickness and macular volume measurements using spectral domain optical coherence tomography in normal Nepalese eyes," Clinical Ophthalmology (Auckland, NZ), vol. 10, p. 511, 2016.
[22]P. J. Kelty, J. F. Payne, R. H. Trivedi, J. Kelty, E. M. Bowie, and B. M. Burger, "Macular thickness assessment in healthy eyes based on ethnicity using Stratus OCT optical coherence tomography," Investigative Ophthalmology & Visual Science, vol. 49, no. 6, pp. 2668─2672, 2008.
[23]A. H. Kashani et al., "Retinal thickness analysis by race, gender, and age using Stratus OCT," American Journal of Ophthalmology, vol. 149, no. 3, pp. 496-502. e1, 2010.
[24]W. K. Song, S. C. Lee, E. S. Lee, C. Y. Kim, and S. S. Kim, "Macular thickness variations with sex, age, and axial length in healthy subjects: a spectral domain–optical coherence tomography study," Investigative Ophthalmology & Visual Science, vol. 51, no. 8, pp. 3913─3918, 2010.
[25]S. Grover, R. K. Murthy, V. S. Brar, and K. V. Chalam, "Normative data for macular thickness by high-definition spectral-domain optical coherence tomography (spectralis)," American Journal of Ophthalmology, vol. 148, no. 2, pp. 266─271, 2009.
[26]A. C. Sull et al., "Comparison of spectral/Fourier domain optical coherence tomography instruments for assessment of normal macular thickness," Retina (Philadelphia, Pa.), vol. 30, no. 2, p. 235, 2010.
[27]M. Çubuk, B. Kasım, Y. Koçluk, and E. A. Sukgen, "Effects of age and gender on macular thickness in healthy subjects using spectral optical coherence tomography/scanning laser ophthalmoscopy," International Ophthalmology, vol. 38, no. 1, pp. 127─131, 2018.
[28]M. Adhi, S. Aziz, K. Muhammad, and M. I. Adhi, "Macular thickness by age and gender in healthy eyes using spectral domain optical coherence tomography," PLoS One, vol. 7, no. 5, 2012.
[29]R. S. Ramrattan, T. L. van der Schaft, C. M. Mooy, W. De Bruijn, P. Mulder, and P. De Jong, "Morphometric analysis of Bruch's membrane, the choriocapillaris, and the choroid in aging," Investigative Ophthalmology & Visual Science, vol. 35, no. 6, pp. 2857─2864, 1994.
[30]"從卷積層、激活層、池化層到全連接層深度解析卷積神經網絡的原理." [Online]. Available: https://kknews.cc/zh-tw/tech/vvx2qeq.html
[31]"機器/深度學習: 基礎介紹-損失函數." [Online]. Available: https://reurl.cc/Mv5pKk
[32]周飞燕, 金林鹏, and 董军, "卷积神经网络研究综述," 计算机学报, vol. 40, no. 6, pp. 1229─1251, 2017.
[33]李宏毅. "ML Lecture 7: Backpropagation." [Online]. Available: https://www.youtube.com/watch?v=ibJpTrp5mcE&list=PLJV_el3uVTsPy9oCRY30oBPNLCo89yu49&index=12
[34]"The Stanford CS class: Convolutional Neural Networks for Visual Recognition." [Online]. Available: https://cs231n.github.io/neural-networks-3/
[35]G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, "Improving neural networks by preventing co-adaptation of feature detectors," arXiv preprint arXiv:1207.0580, 2012.
[36]"理解dropout." [Online]. Available: https://blog.csdn.net/stdcoutzyx/article/details/49022443
[37]"深度學習中Dropout原理解析." [Online]. Available: https://www.itread01.com/content/1547209261.html.
[38]"深度學習(二)." [Online]. Available: https://blog.csdn.net/mdzzzzzz/article/details/78028123.
[39]K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.
[40]"Brilliant Code.net." [Online]. Available: https://www.brilliantcode.net/1646/convolutional-neural-networks-3-calculate-number-of-parameters/
[41]K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770─778.
[42]C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, "Rethinking the inception architecture for computer vision," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818─2826.
[43]Y. Ding et al., "A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain," Radiology, vol. 290, no. 2, pp. 456─464, 2019.
[44]R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, "Grad-cam: Visual explanations from deep networks via gradient-based localization," in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 618─626.
[45]B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, "Learning deep features for discriminative localization," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2921─2929.
|