跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/12 18:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇煜程
研究生(外文):Yu-Cheng Su
論文名稱:極化感應形成p-型氮化鋁鎵的穿透電子顯微研究
論文名稱(外文):Transmission Electron Microscopy Study on Polarization Induced p-type AlGaN
指導教授:楊志忠楊志忠引用關係
指導教授(外文):Chih-Chung Yang
口試委員:林浩雄黃建璋陳奕君吳育任
口試委員(外文):Hao-Hsiung LinJian-Jang HuangI-Chun ChengYuh-Renn Wu
口試日期:2020-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:71
中文關鍵詞:穿透電子顯微鏡氮化鋁鎵
外文關鍵詞:transmission electron microscopyAlGaNd-spacing
DOI:10.6342/NTU202001985
相關次數:
  • 被引用被引用:0
  • 點閱點閱:87
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
基於穿透電子顯微術觀察中的能量色散X-光能譜(EDX)和d-spacing晶格分析方法,我們研究用分子束磊晶生長的六個鋁含量梯度的氮化鋁鎵樣品和三個鋁含量固定的氮化鋁鎵樣品中的鋁含量變化。生長鋁梯度氮化鋁鎵樣品可以產生極化感應的p-型行為,而固定的鋁含量樣品可當作參考來比較鋁含量變化。從能量色散X-光能譜數據,我們可以估算這些樣品中鋁含量的變化趨勢。數據可以線性擬合,但我們也觀察到鋁含量些許偏離目標值。基於局部區域繞射圖的d-spacing晶格分析,我們可以精確地計算沿c軸,a軸或m軸的局部晶格常數。
從計算的晶格常數,在氮化鋁鎵未受應變影響的假設下可以估算鋁含量。但由於獲得繞射圖案以實現高精度晶格常數需要相當大的晶體區域,因此在厚度為100-200奈米的氮化鋁鎵層內只能獲得有限的數據點。
Based on the energy-dispersive X-ray spectroscopy (EDX) and d-spacing crystal lattice analysis methods in transmission electron microscopy observation, we study the Al content variations in six Al-gradient AlGaN samples and three fixed Al-content AlGaN samples, all grown with molecular beam epitaxy. The Al-gradient AlGaN samples are grown for producing polarization induced p-type behaviors. The fixed Al-content samples are used as the references for comparing the Al-content variations. From the EDX data, we can estimate the variation trends of Al content in those samples. The data are well fitted with linear variation lines. However, deviations of Al content from the targeted values are observed. Based on the d-spacing crystal lattice analysis from the diffraction pattern of a local region, we can precisely evaluate the local lattice constants along the c-, a-, or m-axis. From the evaluated lattice constants, we can estimate the Al content assuming that AlGaN is un-strained. Because quite a large crystal region is required for obtaining the diffraction pattern to achieve a high-precision lattice constant, only limited data points can be obtained across an AlGaN layer of 100-200 nm in thickness.
Contents
誌謝................................................................... I
中文摘要................................................................ II
ABSTRACT............................................................... III
CONTENT................................................................ IV
LIST OF FIGURE......................................................... V
CHAPTER 1 INTRODUCTION................................................. 1
1.1 P-TYPE PROBLEM IN ALGAN-BASED ULTRAVIOLET LIGHT-EMITTING DIODE..... 1
1.2 POLARIZATION INDUCED P-TYPE ALGAN.................................. 2
1.3 RESEARCH MOTIVATIONS............................................... 3
1.4 THESIS STRUCTURE................................................... 4
CHAPTER 2 SAMPLE STRUCTURES AND PREPARATION............................ 5
2.1 SAMPLE STRUCTURES AND GROWTH CONDITIONS............................ 5
2.2 HALL MEASUREMENT RESULTS........................................... 5
CHAPTER 3 ENERGY-DISPERSIVE X-RAY SPECTROSCOPY STUDY................... 9
3.1 ENERGY-DISPERSIVE X-RAY SPECTROSCOPY RESULTS....................... 9
3.2 COMPARISON WITH OTHER MEASUREMENT RESULTS.......................... 10
CHAPTER 4 D-SPACING CRYSTAL LATTICE ANALYSIS........................... 28
4.1 ANALYSIS PROCEDURE................................................. 28
4.2 ANALYSIS RESULTS................................................... 30
CHAPTER 5 CONCLUSIONS.................................................. 68
REFERENCES............................................................. 69
References
1. D. J. Kim and D. Y. Ryu, N. A. Bojarczuk, J. Karasinski, S. Guha, S. H. Lee, and J. H. Lee, “Thermal activation energies of Mg in GaN:Mg measured by the Hall effect and admittance spectroscopy,” J. Appl. Phys. 88, 2564 (2000).
2. K. B. Nam, M. L. Nakarmi, J. Li, J. Y. Lin, and H. X. Jiang, “Mg acceptor level in AlN probed by deep ultraviolet photoluminescence,”Appl. Phys. Lett. 83, 878 (2003).
3. M. Zhong, J. Roberts, W. Kong, A. S. Brown, and A. J. Steckl, “p-type GaN grown by phase shift epitaxy,” Appl. Phys. Lett. 104, 012108 (2014).
4.M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82, 3041 (2003).
5.Y. Chen, H. Wu, E. Han, G. Yue, Z. Chen, Z. Wu, G. Wang, and H. Jiang, “High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping,” Appl. Phys. Lett. 106, 162102 (2015).
6. C. Bayram, J. L. Pau, R. McClintock, and M. Razeghi, “Delta-doping optimization for high quality p-type GaN,” J. Appl. Phys. 104, 083512 (2008).
7. Y. Chen, H. Wu, G. Yue, Z. Chen, Z. Zheng, Z. Wu, G. Wang, H. Jiang, “Enhanced Mg doping efficiency in p-type GaN by indium-surfactant- assisted delta doping method,” Appl. Phys. Express 6, 041001 (2013).
8. E. C. H. Kyle, S. W. Kaun, E. C. Young, and J. S. Speck, “Increased p-type conductivity through use of an indium surfactant in the growth of Mg-doped GaN,” Appl. Phys. Lett. 106, 222103 (2015).
9. B. Sarkar, S. Mita, P. Reddy, A. Klump, F. Kaess, J. Tweedie, I. Bryan, Z. Bryan, R. Kirste, E. Kohn, R. Collazo, and Z. Sitar, “High free carrier concentration in p-GaN grown on AlN substrates,” Appl. Phys. Lett. 111, 032109 (2017).
10. M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-dopping,” Appl. Phys. Lett. 82, 3041 (2003).
11. K. B. Nam, M. L. Nakarmi, J. Li, J. Y. Lin, and H. X. Jiang, “Mg acceptor level in AlN probed by deep ultraviolet photoluminescence,”Appl. Phys. Lett. 83, 878 (2003).
12. T. Kinoshita, T.Obata, H. Yanagi, and S. I. Inoue, “High p-type conduction in high-Al content Mg-doped AlGaN,” Appl. Phys. Lett. 102, 012105 (2013).
13. Y. Chen, H. Wu, E. Han, G. Yue, Z. Chen, Z. Wu, G. Wang, and H. Jiang, “High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping,” Appl. Phys. Lett. 106, 162102 (2015).
14. Y. H. Liang, N. T. Nuhfer, and E. Towe, “Liquid-metal-enabled synthesis of aluminum-containing III-nitrides by plasma-assisted molecular beam epitaxy,” J. Vac. Sci. Technol. B 34, 02L112 (2016).
15. Y. H. Liang and E. Towe, “Heavy Mg-doping of (Al,Ga)N films for potential applications in deep ultraviolet light-emitting structures,” Journal of Applied Physics 123, 095303 (2018).
16. X. Liu, A. Pandey, D. A. Laleyan, K. Mashooq, E. T. Reid, W. J. Shin and Z. Mi, “Charge carrier transport properties of Mg-doped Al0.6Ga0.4N grown by molecular beam epitaxy,” Semicond. Sci. Technol. 33, 085005 (2018).
17. W. Luo, B. Liu, Z. Li, Liang Li, Q. Yang, L. Pan, C. Li, D. Zhang, X. Dong, D. Peng, F. Yang, and R. Zhang, “Enhanced p-type conduction in AlGaN grown by metal-source flow-rate modulation epitaxy,” Appl. Phys. Lett. 113, 072107 (2018).
18. D. C. Look and R. J. Molnar, “Degenerate layer at GaN/sapphire interface: Influence on Hall-effect measurements,” Appl. Phys. Lett. 70, 3377 (1997).
19. D. C. Look, E. R. Heller, Y. F. Yao, and C. C. Yang, “Significant mobility enhancement in extremely thin highly doped ZnO films,” Appl. Phys. Lett. 106, 152102 (2015).
20. P. Kozodoy, Y. P. Smorchkova, M. Hansen, H. Xing, S. P. DenBaars, U. K. Mishra, A. W. Saxler, R. Perrin, and W. C. Mitchel, “Polarization-enhanced Mg doping of AlGaN/GaN superlattices,” Appl. Phys. Lett. 75, 2444 (1999).
21. E. L. Waldron, J. W. Graff, and E. F. Schubert, “Improved mobilities and resistivities in modulation-doped p-type AlGaN/GaN superlattices,” Appl. Phys. Lett. 79, 2737 (2001).
22. J. Hertkorn, S. B. Thapa, T. Wunderer, F. Scholz, Z. H. Wu, Q. Y. Wei, F. A. Ponce, M. A. Moram, C. J. Humphreys, C. Vierheilig, and U. T. Schwarz, “Highly conductive modulation doped composition graded p-AlGaN/(AlN)/GaN multiheterostructures grown by metalorganic vapor phase epitaxy,” J. Appl. Phys. 106, 013720 (2009).
23. J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide-Band-gap uniaxial semiconductor heterostructures,” Science 327, 60 (2010).
24. S. Li, M. E. Ware, V. P. Kunets, M. Hawkridge, P. Minor, J. Wu, and G. J. Salamo, “Polarization induced doping in graded AlGaN films,” Phys. Status Solidi C 8, No. 7–8, 2182–2184 (2011).
25. S. Li, M. Ware, J. Wu, P. Minor, Z. Wang et al, “Polarization induced pn-junction without dopant in graded AlGaN coherently strained on GaN,” Appl. Phys. Lett. 101, 122103 (2012).
26. S. Li, T. Zhang, J. Wu, Y. Yang, Z. Wang, Z. Wu, Z. Chen, and Y. Jiang, “Polarization induced hole doping in graded AlxGa1-xN (x=0.7~1) layer grown by molecular beam epitaxy,” Appl. Phys. Lett. 102, 062108 (2013).
27. P. M. Lytvyn, A. V. Kuchuk, Y. I. Mazur, C. Li, M. E. Ware, Z. M. Wang, V. P. Kladko, A. E. Belyaev, and G. J. Salamo, “Polarization Effects in Graded AlGaN Nanolayers Revealed by Current-Sensing and Kelvin Probe Microscopy,” ACS Appl. Mater. Interfaces, 10, 6755−6763 (2018).
28. C. C. Chen, “Mg-doped p-AlGaN Growth with Molecular Beam Epitaxy,” MS Thesis, National Taiwan University, October 2019.
29. D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Material Science (New York: Springer, 2009).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top