|
References 1. D. J. Kim and D. Y. Ryu, N. A. Bojarczuk, J. Karasinski, S. Guha, S. H. Lee, and J. H. Lee, “Thermal activation energies of Mg in GaN:Mg measured by the Hall effect and admittance spectroscopy,” J. Appl. Phys. 88, 2564 (2000). 2. K. B. Nam, M. L. Nakarmi, J. Li, J. Y. Lin, and H. X. Jiang, “Mg acceptor level in AlN probed by deep ultraviolet photoluminescence,”Appl. Phys. Lett. 83, 878 (2003). 3. M. Zhong, J. Roberts, W. Kong, A. S. Brown, and A. J. Steckl, “p-type GaN grown by phase shift epitaxy,” Appl. Phys. Lett. 104, 012108 (2014). 4.M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82, 3041 (2003). 5.Y. Chen, H. Wu, E. Han, G. Yue, Z. Chen, Z. Wu, G. Wang, and H. Jiang, “High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping,” Appl. Phys. Lett. 106, 162102 (2015). 6. C. Bayram, J. L. Pau, R. McClintock, and M. Razeghi, “Delta-doping optimization for high quality p-type GaN,” J. Appl. Phys. 104, 083512 (2008). 7. Y. Chen, H. Wu, G. Yue, Z. Chen, Z. Zheng, Z. Wu, G. Wang, H. Jiang, “Enhanced Mg doping efficiency in p-type GaN by indium-surfactant- assisted delta doping method,” Appl. Phys. Express 6, 041001 (2013). 8. E. C. H. Kyle, S. W. Kaun, E. C. Young, and J. S. Speck, “Increased p-type conductivity through use of an indium surfactant in the growth of Mg-doped GaN,” Appl. Phys. Lett. 106, 222103 (2015). 9. B. Sarkar, S. Mita, P. Reddy, A. Klump, F. Kaess, J. Tweedie, I. Bryan, Z. Bryan, R. Kirste, E. Kohn, R. Collazo, and Z. Sitar, “High free carrier concentration in p-GaN grown on AlN substrates,” Appl. Phys. Lett. 111, 032109 (2017). 10. M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-dopping,” Appl. Phys. Lett. 82, 3041 (2003). 11. K. B. Nam, M. L. Nakarmi, J. Li, J. Y. Lin, and H. X. Jiang, “Mg acceptor level in AlN probed by deep ultraviolet photoluminescence,”Appl. Phys. Lett. 83, 878 (2003). 12. T. Kinoshita, T.Obata, H. Yanagi, and S. I. Inoue, “High p-type conduction in high-Al content Mg-doped AlGaN,” Appl. Phys. Lett. 102, 012105 (2013). 13. Y. Chen, H. Wu, E. Han, G. Yue, Z. Chen, Z. Wu, G. Wang, and H. Jiang, “High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping,” Appl. Phys. Lett. 106, 162102 (2015). 14. Y. H. Liang, N. T. Nuhfer, and E. Towe, “Liquid-metal-enabled synthesis of aluminum-containing III-nitrides by plasma-assisted molecular beam epitaxy,” J. Vac. Sci. Technol. B 34, 02L112 (2016). 15. Y. H. Liang and E. Towe, “Heavy Mg-doping of (Al,Ga)N films for potential applications in deep ultraviolet light-emitting structures,” Journal of Applied Physics 123, 095303 (2018). 16. X. Liu, A. Pandey, D. A. Laleyan, K. Mashooq, E. T. Reid, W. J. Shin and Z. Mi, “Charge carrier transport properties of Mg-doped Al0.6Ga0.4N grown by molecular beam epitaxy,” Semicond. Sci. Technol. 33, 085005 (2018). 17. W. Luo, B. Liu, Z. Li, Liang Li, Q. Yang, L. Pan, C. Li, D. Zhang, X. Dong, D. Peng, F. Yang, and R. Zhang, “Enhanced p-type conduction in AlGaN grown by metal-source flow-rate modulation epitaxy,” Appl. Phys. Lett. 113, 072107 (2018). 18. D. C. Look and R. J. Molnar, “Degenerate layer at GaN/sapphire interface: Influence on Hall-effect measurements,” Appl. Phys. Lett. 70, 3377 (1997). 19. D. C. Look, E. R. Heller, Y. F. Yao, and C. C. Yang, “Significant mobility enhancement in extremely thin highly doped ZnO films,” Appl. Phys. Lett. 106, 152102 (2015). 20. P. Kozodoy, Y. P. Smorchkova, M. Hansen, H. Xing, S. P. DenBaars, U. K. Mishra, A. W. Saxler, R. Perrin, and W. C. Mitchel, “Polarization-enhanced Mg doping of AlGaN/GaN superlattices,” Appl. Phys. Lett. 75, 2444 (1999). 21. E. L. Waldron, J. W. Graff, and E. F. Schubert, “Improved mobilities and resistivities in modulation-doped p-type AlGaN/GaN superlattices,” Appl. Phys. Lett. 79, 2737 (2001). 22. J. Hertkorn, S. B. Thapa, T. Wunderer, F. Scholz, Z. H. Wu, Q. Y. Wei, F. A. Ponce, M. A. Moram, C. J. Humphreys, C. Vierheilig, and U. T. Schwarz, “Highly conductive modulation doped composition graded p-AlGaN/(AlN)/GaN multiheterostructures grown by metalorganic vapor phase epitaxy,” J. Appl. Phys. 106, 013720 (2009). 23. J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide-Band-gap uniaxial semiconductor heterostructures,” Science 327, 60 (2010). 24. S. Li, M. E. Ware, V. P. Kunets, M. Hawkridge, P. Minor, J. Wu, and G. J. Salamo, “Polarization induced doping in graded AlGaN films,” Phys. Status Solidi C 8, No. 7–8, 2182–2184 (2011). 25. S. Li, M. Ware, J. Wu, P. Minor, Z. Wang et al, “Polarization induced pn-junction without dopant in graded AlGaN coherently strained on GaN,” Appl. Phys. Lett. 101, 122103 (2012). 26. S. Li, T. Zhang, J. Wu, Y. Yang, Z. Wang, Z. Wu, Z. Chen, and Y. Jiang, “Polarization induced hole doping in graded AlxGa1-xN (x=0.7~1) layer grown by molecular beam epitaxy,” Appl. Phys. Lett. 102, 062108 (2013). 27. P. M. Lytvyn, A. V. Kuchuk, Y. I. Mazur, C. Li, M. E. Ware, Z. M. Wang, V. P. Kladko, A. E. Belyaev, and G. J. Salamo, “Polarization Effects in Graded AlGaN Nanolayers Revealed by Current-Sensing and Kelvin Probe Microscopy,” ACS Appl. Mater. Interfaces, 10, 6755−6763 (2018). 28. C. C. Chen, “Mg-doped p-AlGaN Growth with Molecular Beam Epitaxy,” MS Thesis, National Taiwan University, October 2019. 29. D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Material Science (New York: Springer, 2009).
|