跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 15:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:章詩悅
研究生(外文):Shiyue Zhang
論文名稱:建成環境對網約車使用之影響
論文名稱(外文):The Influences of Built Environments on Ridesourcing Usage
指導教授:林楨家林楨家引用關係
指導教授(外文):Jen-Jia Lin
口試委員:溫在弘許聿廷
口試委員(外文):Tzai-Hung WenYu-Ting Hsu
口試日期:2020-06-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地理環境資源學研究所
學門:社會及行為科學學門
學類:地理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:186
中文關鍵詞:網約車旅運需求建成環境旅次發生空間廻歸
外文關鍵詞:ridesourcingtravel demandbuilt environmenttrip generationspatial regression
DOI:10.6342/NTU202002917
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
網約車是近年来新興的運具,網約車公司利用智慧手機應用程式連接旅運者和私人駕駛員。旅運者通過應用程式發送訂單請求,當司機端接受訂單後,旅運者可以看到事實的車輛座標位置及車輛到達的預估時間。網約車在城市地區快速發展,但目前學界仍未釐清影響網約車使用的相關關係。本研究希望通過釐清建成環境因素對網約車旅次發生、旅行時間的影響,在學術上補足網約車使用在建成環境因素方向上的研究空缺。
本研究使用中國成都市『滴滴出行』網約車公司在2016年11月的訂單資料,以鄉級行政區爲空間分析單元,使用訂單起迄點發生率和起迄點旅行時間作爲衡量網約車使用之特性,將建成環境以5『D』變量密度、多樣性、設計、地點可及性以及到達大衆運輸系統的距離分類整理爲解釋變數,以旅行距離作爲旅行時間的控制變量。經過空間相關性檢驗,本研究資料存在空間相關性,使用空間落遲模型和空間誤差模型作爲本研究的廻歸模型。
結果驗證建成環境之密度、設計、地點可及性分別在旅次發生和旅行時間兩個方面影響網約車使用,對起點、迄點旅次發生均產生影響。建成環境影響網約車使用的特徵在平日和假日之間、平日一日之不同時段、假日一日之不同時段均存在差異性。
學術上,本研究對建成環境因素進行了系統性的整理,探討其與網約車使用間的關係,證實建成環境之特徵對網約車的使用存在顯著影響關係;本研究結果比對相關文獻,發現網約車使用和計程車使用、大衆運輸系統使用存在差異。實務上,本研究建議城市規劃者規劃城市建成環境時應注意從密度、設計、地點可及性三個方面減小網約車的出現對城市交通系統造成的負擔;建議網約車業者規劃營運策略時,以建成環境因素作爲車輛調度和動態調價的依據。
In recent years, an app-based service, which connects travelers and drivers and is called ridesourcing, provides a new choice of modern mobility. This service is provided by transportation network companies (TNCs) such as Uber from the U.S. and DiDi Chuxing from China. Travelers can use mobile apps to send travel requests to TNCs, once a request is accepted by a driver, the traveler can see a real-time updated location of the driver and the estimated arrival time. Ridesourcing services have a rapid growth in urban areas, but the determinants of ridesourcing usage is still unclear in the literature. This research aims at clarifying the impacts of built environments on trip generation and travel time of ridesourcing uses.
This research used the complete services records of DiDi Chuxing TNC in Chengdu, China in November, 2016 as the study data and applied spatial regression methods to analyze the data. Using township level division as a spatial observation unit, the dependent variables include number of requests at origins and destinations (O-D) and O-D travel time. To explain the dependent variables, the 5Ds variables including density, diversity, design, destination accessibility and distance to transit are applied to measure built environment attributes, and the travel distance was used as control variable. With the help of Moran's I analyses, the observations were confirmed to be spatially auto-correlated and hence the Spatial Lag Model and Spatial Error Model were applied to regression analyses.
The empirical findings of this research confirm that the built environments of density, design and destination accessibility were associated with ridesourcing uses and O-D travel time and the associations were different between weekdays and weekends and among time periods in a day.
This research verified the influences of built environments on ridesourcing uses in an overall perspective and provided an original evidence of the influences. To compare with other transports, ridesourcing uses is different from taxi uses and public transportation uses. In practice, this research suggests urban planners about how they can decrease ridesourcing-caused traffic congestions by changing the attributes of density, design, destination accessibility, and gives TNCs a reference when formulating vehicle scheduler and dynamic pricing strategy.
第一章、緒論....................1
第一節 研究動機....................1
第二節 研究目的....................4
第三節 研究範疇....................5
第四節 研究流程與內容....................11
第五節 研究方法....................14
第二章、文獻回顧....................15
第一節 網約車研究....................15
第二節 網約車旅運需求....................18
第三節 建成環境與旅運需求....................30
第四節 綜合評析....................33
第三章、研究設計....................35
第一節 研究課題....................35
第二節 假說研提....................52
第三節 驗證方法....................57
第四章、樣本資料....................67
第一節 資料收集....................67
第二節 敘述性統計分析....................76
第三節 空間自相關分析....................82
第五章、實證分析....................85
第一節 廻歸分析....................85
第二節 假說驗證....................95
第三節 意涵討論....................104
第六章 結論與建議....................117
第一節 結論....................117
第二節 建議....................121
參考文獻....................129
附錄一 空間廻歸模型之結果....................135
Alexander, C. (1977) A pattern language: towns, buildings, construction. Oxford, UK: Oxford university press.
Anselin, L.J.C.f.s.i.s.s. (2005) Exploring spatial data with GeoDaTM: a workbook.
Austin, D., Zegras, P.C. (2012) Taxicabs as public transportation in Boston, Massachusetts. Transportation Research Record, 2277: 65-74.
Brake, J., Mulley, C., Nelson, J.D., Wright, S. (2007) Key lessons learned from recent experience with flexible transport services. Transport Policy, 14: 458-466.
Cervero, R. (1997) Paratransit in America: Redefining mass transportation. Westport, CT, US: Greenwood Publishing Group.
Cervero, R., Kockelman, K. (1997) Travel demand and the 3Ds: density, diversity, and design. Transportation Research Part D: Transport and Environment, 2: 199-219.
Cervero, R., Kockelman, K.J.T.r.P.D., Transport, environment (1997) Travel demand and the 3Ds: Density, diversity, and design. 2: 199-219.
Cervero, R., Sarmiento, O.L., Jacoby, E., Gomez, L.F., Neiman, A.J.I.j.o.s.t. (2009) Influences of built environments on walking and cycling: lessons from Bogotá. 3: 203-226.
Chen, X.M., Zahiri, M., Zhang, S. (2017) Understanding ridesplitting behavior of on-demand ride services: An ensemble learning approach. Transportation Research Part C: Emerging Technologies, 76: 51-70.
Chen, Y., Chang, K.-t., Han, F., Karacsonyi, D., Qian, Q.J.H.I. (2016) Investigating urbanization and its spatial determinants in the central districts of Guangzhou, China. 51: 59-69.
Choi, K.J.C. (2018) The influence of the built environment on household vehicle travel by the urban typology in Calgary, Canada. 75: 101-110.
Correa, D., Xie, K., Ozbay, K. (2017) Exploring the taxi and Uber demand in New York City: An empirical analysis and spatial modeling, in, 96th Annual Meeting of the Transportation Research Board, Washington, DC.
Crane, R. (1996) On form versus function: Will the new urbanism reduce traffic, or increase it? Journal of Planning Education and Research, 15: 117-126.
Dias, F.F., Lavieri, P.S., Kim, T., Bhat, C.R., Pendyala, R.M. (2018) Fusing Multiple Sources of Data to Understand Ride-Hailing Use.
Ewing, R., Cervero, R. (2010) Travel and the built environment: A meta-analysis. Journal of the American planning association, 76: 265-294.
Gerte, R., Konduri, K.C., Eluru, N. (2018) Is there a limit to adoption of dynamic ridesharing systems? evidence from analysis of uber demand data from new york city. Transportation Research Record, 2672: 127-136.
He, F., Shen, Z.-J.M. (2015) Modeling taxi services with smartphone-based e-hailing applications. Transportation Research Part C: Emerging Technologies, 58: 93-106.
Kockelman, K. (1997) Travel behavior as function of accessibility, land use mixing, and land use balance: evidence from San Francisco Bay Area. Transportation Research Record: Journal of the Transportation Research Board, 1607: 116-125.
Komanduri, A., Wafa, Z., Proussaloglou, K., Jacobs, S. (2018a) Assessing the Impact of App-Based Ride Share Systems in an Urban Context: Findings from Austin. Transportation Research Record 0361198118796025.
Komanduri, A., Wafa, Z., Proussaloglou, K., Jacobs, S. (2018b) Assessing the impact of app-based ride share systems in an urban context: Findings from Austin. Transportation Research Record, 2672: 34-46.
Kooti, F., Grbovic, M., Aiello, L.M., Djuric, N., Radosavljevic, V., Lerman, K. (2017) Analyzing uber's ride-sharing economy, in, Proceedings of the 26th International Conference on World Wide Web CompanionInternational World Wide Web Conferences Steering Committee, 574-582.
Lavieri, P.S., Dias, F.F., Juri, N.R., Kuhr, J., Bhat, C.R. (2017) A model of ridesourcing demand generation and distribution. Transportation Research Record: Journal of the Transportation Research Board 0361198118756628.
Martínez, L.M., Viegas, J.M., Silva, E.A.J.T. (2009) A traffic analysis zone definition: a new methodology and algorithm. 36: 581-599.
Meng, B. (2009) The Spatial Organization of the Separation between Jobs and Residential Locations in Beijing. Acta Geographica Sinica, 64: 1457-1466.
Miller, H.J., Shaw, S.-L. (2001) Geographic information systems for transportation: principles and applicationsOxford University Press on Demand.
Moreira-Matias, L., Gama, J., Ferreira, M., Mendes-Moreira, J., Damas, L.J.I.T.o.I.T.S. (2013) Predicting taxi–passenger demand using streaming data. 14: 1393-1402.
Nie, Y.M. (2017) How can the taxi industry survive the tide of ridesourcing? Evidence from Shenzhen, China. Transportation Research Part C: Emerging Technologies, 79: 242-256.
Qian, X., Ukkusuri, S.V.J.A.G. (2015) Spatial variation of the urban taxi ridership using GPS data. 59: 31-42.
Rayle, L., Dai, D., Chan, N., Cervero, R., Shaheen, S. (2016) Just a better taxi? A survey-based comparison of taxis, transit, and ridesourcing services in San Francisco. Transport Policy, 45: 168-178.
Shaheen, S., Cohen, A., Zohdy, I. (2016) Shared mobility: current practices and guiding principles. Washington, DC, US: U.S. Department of Transportation Federal Highway Administration.
Sun, D.J., Zhang, K., Shen, S. (2018) Analyzing spatiotemporal traffic line source emissions based on massive didi online car-hailing service data. Transportation Research Part D: Transport and Environment, 62: 699-714.
Wang, D., Chai, Y. (2009) The jobs–housing relationship and commuting in Beijing, China: the legacy of Danwei. Journal of Transport Geography, 17: 30-38.
Wang, D., Lin, T. (2014) Residential self-selection, built environment, and travel behavior in the Chinese context. Journal of Transport and Land Use, 7: 5-14.
Wang, D., Zhou, M. (2017) The built environment and travel behavior in urban China: A literature review. Transportation Research Part D: Transport and Environment, 52: 574-585.
Wang, E., Yong, T. (2020) 網約車市場盈利與持續發展的挑戰與機遇, https://www.lek.com/zh-hant/insights/ei/wangyuecheshichangyingliyuchixufazhandetiaozhanyujiyu(截取日期:2020.06.17).
Wang, X., He, F., Yang, H., Gao, H.O. (2016) Pricing strategies for a taxi-hailing platform. Transportation Research Part E: Logistics and Transportation Review, 93: 212-231.
Wohl, M. (1975) The taxi's role in urban America: Today and tomorrow. Transportation, 4: 143-158.
Zha, L., Yin, Y., Yang, H. (2016) Economic analysis of ride-sourcing markets. Transportation Research Part C: Emerging Technologies, 71: 249-266.
Zhang, K., Sun, D., Shen, S., Zhu, Y.J.J.o.T., Use, L. (2017) Analyzing spatiotemporal congestion pattern on urban roads based on taxi GPS data. 10: 675-694.
Zhang, M. (2004) The role of land use in travel mode choice: Evidence from Boston and Hong Kong. Journal of the American planning association, 70: 344-360.
Zhang, Y., Wu, W., Li, Y., Liu, Q., Li, C.J.S. (2014) Does the built environment make a difference? An investigation of household vehicle use in Zhongshan Metropolitan Area, China. 6: 4910-4930.
Zhao, P., Lü, B., De Roo, G. (2011) Impact of the jobs-housing balance on urban commuting in Beijing in the transformation era. Journal of Transport Geography, 19: 59-69.
Zhou, H. (2014) On some trace inequalities for positive definite Hermitian matrices. Journal of Inequalities and Applications, 2014: 64.
艾媒諮詢 (2018) 2018-2023年全球及中國共享經濟發展模式與典型案例分析報告, http://www.iimedia.cn/61042.html(截取日期:2018.11.06)
北京東方車雲信息技術有限公司 (2018) 易到大事記, https://www.yongche.com/intro/chronicle.html(截取日期:2018.12.03)
北京小桔科技有限公司 (2018) 關於滴滴-發展歷程, https://www.didiglobal.com/about-special/milestone(截取日期:2018.12.03)
滴滴出行科技有限公司 (2017) 交通出行大數據報告, https://sts.didichuxing.com/views/report.html(截取日期:2019.05.20)
第七屆全國人民代表大會常務委員會第十一次會議 (1989) 中華人民共和國城市居民委員會組織法, http://www.npc.gov.cn/wxzl/gongbao/1989-12/26/content_1481131.htm(截取日期:2019.09.18)
馮正民;林楨家 (2000) 都市及區域分析方法建都文化事業公司.
刘定惠, 朱超洪, 杨永春 (2014) 西部大城市居民通勤特征及其与城市空间结构的关系研究——以成都市为例. 人文地理, 29: 61-68.
張欣 (2017) 基于回歸分析的網約車需求量影响因素研究, in 武汉大学.
中華人民共和國國家統計局 (2016) 2016年統計用區劃代碼和城鄉劃分代碼, http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/index(截取日期:2019.09.18)
中華人民共和國國務院辦公廳 (2016) 國務院辦公廳關於深化改革推進出租汽車行業健康發展的指導意見, http://www.gov.cn/zhengce/content/2016-07/28/content_5095567.htm(截取日期:2018.12.03)
中華人民共和國交通運輸部 (2016) 網路預約計程車經營服務管理暫行辦法, http://zizhan.mot.gov.cn/zfxxgk/bnssj/zcfgs/201607/t20160728_2068633.html(截取日期:2018.12.03)
中華人民共和國民政部 (2018) 全國行政區劃查詢平台, http://xzqh.mca.gov.cn/map(截取日期:2019.09.01)
中商諮詢集團 (2016) 2016年中國城市財力50強排行榜:上北深居前三, http://www.askci.com/news/2016/03/07/11434wj23.shtml(截取日期:2018.12.03)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top