跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/12 02:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂明陽
研究生(外文):Ming-Yang Lu
論文名稱:都市公共自行車騎乘路線推估
論文名稱(外文):Estimating the urban public bicycle routes
指導教授:蔡博文蔡博文引用關係
指導教授(外文):Bor-Wen Tsai
口試委員:蘇明道孫志鴻
口試委員(外文):Ming-Daw SuChih-Hong Sun
口試日期:2020-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地理環境資源學研究所
學門:社會及行為科學學門
學類:地理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:73
中文關鍵詞:公共自行車系統路網分析K最短路徑演算法
外文關鍵詞:Public bicycle systemsNetwork analysisK-shortest path algorithm
DOI:10.6342/NTU202003896
相關次數:
  • 被引用被引用:0
  • 點閱點閱:294
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了改善過去過於依賴私人運具的交通規劃侷限,公共自行車系統愈來愈受到重視。公共自行車作為短程交通工具,可減少私人載具的使用、都市交通擁擠、環境污染及能源損耗等問題。在臺灣則以臺北市的「YouBike微笑單車」發展最為成熟。雖抱持如此願景,但在臺北市以公共自行車作為日常通勤運具的比例仍然不高,並且自行車常會與其他交通工具產生排擠、爭道等衝突,甚至自行車彼此之間也會有衝突,在不知道公共自行車到底騎在哪裡、缺乏實際了解使用者的行為模式與需求之情況下,相關單位在規劃時並不知道何處是最需要被優先處置的,因此推估公共自行車騎乘路線,並了解整體公共自行車路網,哪裡是騎乘熱區,此不僅對政府單位的資源投資與基礎設施的規劃得以投入於最需要的路段,對於使用者也在路線選擇上有十分重要的參考價值。
但目前由於公共自行車資料上的限制,僅具有借還的起訖站點,以及租借時間,缺乏實際的騎乘路線資料,在研究上十分困難,過去研究多以場站站點為研究主體,缺乏都市交通路網的空間尺度。因此本研究將路網分析納入公共自行車研究中,並選擇臺北市大安區作為研究區,以2015年5月至2018年5月臺北市YouBike的逐次租借資料,運用K最短路徑方法,得出公共自行車於通勤尖峰時段之路線,並更進一步計算都市內之公共自行車路網。
研究結果發現若與最短路徑計算之公共自行車路網相比,以K最短路徑計算之路網,可以反映更加詳盡、於巷弄之間的公共自行車騎乘路段熱區。在道路狹小、缺乏交通號誌的巷弄中,更需要被指認出何處為公共自行車騎乘熱區,以免發生危險。
在學術理論上,突破無實際騎乘路線資料限制,以路網分析進行之外,本研究也跳脫過去以站點為主體的分析視角,以都市路網的空間尺度重新理解公共自行車;在實務上,得以供相關單位審視及參考,以利其資源的投資與規劃,也可提供民眾何處為自行車騎乘熱區,作為其路線選擇之依據,鼓勵民眾使用公共自行車作為通勤載具,連結都市交通的「最後一哩路」。
In order to overcome the limitations of automobile-dependent transport planning, there has been increasing attention on public bicycle systems. Public bicycle systems are well known as short-distance transit vehicles, expecting to reduce the use of private vehicles and the traffic congestion, environmental pollution, energy consumption and other problems. In Taipei, Taiwan, YouBike is the well-developed public bicycle system.
Although there is the expectation for YouBike, the percentage of using YouBike as a usual commuting mode in Taipei are still small. There are some conflicts not only between bicycles and other transportations, but between every bicycles. In this context, the competent authority can’t realize where are needed to implement policies first without recognizing the movement behavior of users of public bicycles and what paths they follow. As a result, it is essential to estimate public bicycle routes and realize whole public bicycle road network. Where are the hot spots of public bicycles? There are __for the government to invest resources and infrastructure in the road segments where they are needed, as well as users to choose alternative path.
Because of the data limitation of public bicycles which lack the real routes data, not many studies have focused on the real routes of public bicycle systems. Furthermore, previous studies have focused on the station level, which have lacked the spatial scale from urban road networks.
Therefore, this study aims to introduce the network analysis into research of public bicycle systems. This study chooses Da’an District, Taipei City as the study area, and employs all of the rental records of YouBike from May, 2015 to May, 2018. K-shortest path algorithm is used to analyze routes of public bicycles in peak hour, and explore the public bicycle networks within the city.
This study contributes to recognize the more detailed hot spots in alleys. Because it is very dangerous in the alleys which are narrow and lacking in traffic signs, recognizing the hot spots in alleys is very vital to avoid the accident.
Theoretically, this study not only uses the network analysis to overcome the data limitation, but also realizes public bicycle systems from different spatial scale; in practice, it can be beneficial for government to plan where are needed to invest resources, and for users to choose the safer, more comfortable path. Therefore, citizens can be encouraged to use public bicycles as commuting vehicles, and to build the "last mile" connection to the urban transportation.
目錄
論文口試委員審定書 I
謝誌 II
摘要 III
ABSTRACT V
第一章 緒論 1
第一節 研究背景及動機 1
第二節 研究目的 4
第三節 研究流程 5
第二章 文獻回顧 8
第一節 臺北市微笑單車之發展 8
第二節 自行車路線選擇 13
第三節 路網分析 18
第四節 綜合評析 27
第三章 研究方法 30
第一節 研究範圍 30
第二節 研究架構 33
第三節 研究方法 34
第四章 研究分析與結果 37
第一節 資料處理 37
第二節 資料敘述統計分析 40
第三節 可能騎乘路線分析 43
第四節 都市公共自行車路網分析 51
第五節 實際案例 58
第五章 結論及建議 61
第一節 結論 61
第二節 建議 63
引用文獻 66
李佳倩 (2018)。臺北市 YouBike 使用特性報乎你知。臺北市政府主計處。
李佩璇 (2009)。自行車的休閒化:休閒實作型式的象徵鬥爭(碩士論文)。取自華藝線上圖書館系統。(系統編號U0001-1208200917135200) doi: 10.6342/NTU.2009.00956
胡守任、劉昭堂(2014)。公共自行車租賃站最佳區位選擇模式:以高雄市公共自行車為例。運輸計劃季刊,43(4),367-392。
林沛澐 (2012)。自行車行駛車道選擇行為偏好模式之研究(碩士論文)。取自華藝線上圖書館系統。(系統編號U0001-1008201212362100) doi:10.6342/NTU.2012.00903
洪偉傑 (2012)。自行車通勤政策的轉借與實踐──以臺北為例(碩士論文)。取自華藝線上圖書館系統。(系統編號U0001-3007201207592300) doi:10.6342/NTU.2012.03184
高精地圖產學研資訊交流平台 (2019)。高精地圖是什麼?。高精地圖研究發展中心。取自http://www.hdm.geomatics.ncku.edu.tw/QA/QA.aspx
張勝雄 (2008)。臺北市自行車政策之研究。臺北市:臺北市政府研究發展考核委員會。
張勝雄 (2010)。發展都市自行車運輸的另類思維與策略。運輸計劃季刊,39(4),359-380。
黃武次 (2013)。據審計部函報︰稽察臺北市政府交通局辦理「敦化南北路自行車專用道工程計畫」情形,發現涉有未盡職責及效能過低情事乙案。監察院。
羅孝賢、劉力銘 (2010)。接駁型公共自行車租賃系統辦理經驗與未來展望。都市交通,25(1),56-61。doi:10.29774/UT.201006.0005
解鴻年、張馨文 (2011)。新竹科學城民眾使用公共自行車意願分析。建築與規劃學報,12(3),237-263。
鍾智林、黃晏珊(2016)。開放式數據為基礎之公共自行車營運特性分析:以臺北YouBike為例。運輸學刊,28(4),455-478。
鍾智林、李舒媛 (2018)。以悠遊卡大數據初探YouBike租賃及轉乘捷運行為。都市交通,33(1),16-36。
警政署統計室 (2019)。警政統計通報(108年第28週)。中華民國內政部警政署全球資訊網。取自https://www.npa.gov.tw/NPAGip/wSite/ct?xItem=92989&ctNode=12594&mp=1。
鄭永祥、田蕙寧 (2015)。騎乘自行車之潛在風險分析。運輸計劃季刊,44(3),271-287。
鄭麗淑 (2018)。大數據分析臺北市公共自行車使用特性。107年統計精進與推展研討會。
鄭麗淑、李佳倩 (2018)。近二年臺北市公共自行車使用特性。臺北市政府交通局。取自https://www.dot.gov.taipei/News.aspx?n=44EAAF8913752298&sms=DADC9630355BA510。
審計部 (2017)。審計部專案審計報告:臺北市公共自行車租賃系統建置及營運管理計畫執行情形。臺北市:審計部。
臺北市交通管制工程處 (2018)。自行車道建置表。取自https://www.bote.gov.taipei/cp.aspx?n=9E7799DC94488A28。
臺北市政府 (2018)。臺北市大安區都市計畫通盤檢討(主要計畫)案。臺北:臺北市政府。取自https://dbas.gov.taipei/News.aspx?n=B92B6711ADF4A1D6&sms=B448ADA5CF5DA6A7。
臺北市政府主計處 (2018)。臺北市各行政區重要統計指標 中華民國107年。
臺北市政府交通局(2015)。封面故事-臺北市鄰里交通改善計畫。都市交通,30(2),103-112。
YouBike公共自行車(2020)。關於YouBike。取自https://taipei.youbike.com.tw/about/youbike?5cb7e47c083e7b459404a872。
Akgün, V., Erkut, E., & Batta, R. (2000). On finding dissimilar paths. European Journal of Operational Research, 121(2), 232-246.
Aultman-Hall, L., Hall, F. L., & Baetz, B. B. (1997). Analysis of bicycle commuter routes using geographic information systems: implications for bicycle planning. Transportation research record, 1578(1), 102-110.
Austwick, M. Z., O’Brien, O., Strano, E., & Viana, M. (2013). The structure of spatial networks and communities in bicycle sharing systems. PloS one, 8(9), e74685.
Broach, J., Dill, J., & Gliebe, J. (2012). Where do cyclists ride? A route choice model developed with revealed preference GPS data. Transportation Research Part A: Policy and Practice, 46(10), 1730-1740.
Catalano, S. F., & Van der Zijpp, N. (2001). A forecasting model for inland navigation based on route enumeration. In Proceedings of the AET European Transport Conference.
Chang, K. T. (2014). Introduction to geographic information systems. Boston: McGraw-Hill Higher Education.
Fishman, E., Washington, S., & Haworth, N. (2013). Bike share: a synthesis of the literature. Transport reviews, 33(2), 148-165.
Fishman, E., Washington, S., & Haworth, N. (2014). Bike share’s impact on car use: Evidence from the United States, Great Britain, and Australia. Transportation Research Part D: Transport and Environment, 31, 13-20.
Fishman, E. (2016). Cycling as transport. Transport Reviews, 36(1), 1-8.
Faghih-Imani, A., & Eluru, N. (2015). Analysing bicycle-sharing system user destination choice preferences: Chicago’s Divvy system. Journal of transport geography, 44, 53-64.
González, F., Melo-Riquelme, C., & de Grange, L. (2016). A combined destination and route choice model for a bicycle sharing system. Transportation, 43(3), 407-423.
Heinen, E., van Wee, B., & Maat, K. (2010). Commuting by Bicycle: An Overview of the Literature. Transport Reviews, 30(1), 59–96.
Hood, J., Sall, E., & Charlton, B. (2011). A GPS-based bicycle route choice model for San Francisco, California. Transportation letters, 3(1), 63-75.
Howard, C., & Burns, E. K. (2001). Cycling to work in Phoenix: Route choice, travel behavior, and commuter characteristics. Transportation Research Record, 1773(1), 39-46
Kim, C., Sunwoo, M., & Jo, K. (2018). Simultaneous Localization and Map Change Update for the High Definition Map-Based Autonomous Driving Car. Sensors., 18(9), 3145.
Khatri, R., Cherry, C. R., Nambisan, S. S., & Han, L. D. (2016). Modeling route choice of utilitarian bikeshare users with GPS data. Transportation research record, 2587(1), 141-149.
Larsen, J., & El-Geneidy, A. (2011). A travel behavior analysis of urban cycling facilities in Montréal, Canada. Transportation research part D: transport and environment, 16(2), 172-177.
Levy, N., Golani, C., & Ben-Elia, E. (2017). An exploratory study of spatial patterns of cycling in Tel Aviv using passively generated bike-sharing data. Journal of Transport Geography.
Lu, W., Scott, D. M., & Dalumpines, R. (2018). Understanding bike share cyclist route choice using GPS data: Comparing dominant routes and shortest paths. Journal of transport geography, 71, 172-181.
Mayeres, I., Ochelen, S., & Proost, S. (1996). The marginal external costs of urban transport. Transportation Research Part D: Transport and Environment, 1(2), 111-130.
McBain, C., & Caulfield, B. (2018). An analysis of the factors influencing journey time variation in the Cork Public Bike System. Sustainable Cities and Society, 42, 641-649.
McClintock, H., The Bicycle and City Traffic, Belhaven Press, London, 1992
Midgley, P. (2011). Bicycle-sharing schemes: Enhancing sustainable mobility in urban areas. New York: United Nations. Retrieved from http://www.un.org/esa/dsd/resources/res_pdfs/csd-19/Background-Paper8-P.Midgley-Bicycle.pdf
O’brien, O., Cheshire, J., & Batty, M. (2014). Mining bicycle sharing data for generating insights into sustainable transport systems. Journal of Transport Geography, 34, 262-273.
OpenStreetMap Wiki (2020). Bicycle. OpenStreetMap Wiki. Retrieved from https://wiki.openstreetmap.org/w/index.php?title=Bicycle&oldid=1995319.
Pritchard, R. (2018). Revealed preference methods for studying bicycle route choice—A systematic review. International journal of environmental research and public health, 15(3), 470.
Romanillos, G., Zaltz Austwick, M., Ettema, D., & De Kruijf, J. (2016). Big data and cycling. Transport Reviews, 36(1), 114-133.
Romanillos, G., Moya-Gómez, B., Zaltz-Austwick, M., & Lamíquiz-Daudén, P. J. (2018). The pulse of the cycling city: visualising Madrid bike share system GPS routes and cycling flow. Journal of Maps, 14(1), 34-43.
Stinson, M. A., & Bhat, C. R. (2003). Commuter bicyclist route choice: Analysis using a stated preference survey. Transportation Research Record, 1828(1), 107-115.
Segadilha, A. B. P., & da Penha Sanches, S. (2014). Analysis of bicycle Commuter Routes using GPSs and GIS. Procedia-Social and Behavioral Sciences, 162, 198-207.
Sener, I. N., Eluru, N., & Bhat, C. R. (2009). An analysis of bicycle route choice preferences in Texas, US. Transportation, 36(5), 511-539.
Tereshenkov, A. (2017). Network Analyst and ArcPy: finding k-alternate path [Blog post]. Retrieved from https://tereshenkov.wordpress.com/2017/04/27/network-analyst-and-arcpy-finding-k-alternate-path/
Van der Zijpp, N.J., Fiorenzo Catalano, S. (2005). Path enumeration by finding the constrained K-shortest paths. Transp. Res. Part B 39(6), 545–563
Wegman, F., Zhang, F., & Dijkstra, A. (2012). How to make more cycling good for road safety?. Accident Analysis & Prevention, 44(1), 19-29.
Winters, M., Teschke, K., Grant, M., Setton, E. M., & Brauer, M. (2010). How far out of the way will we travel? Built environment influences on route selection for bicycle and car travel. Transportation Research Record, 2190(1), 1-10.
Worboys, M. F., & Duckham, M. (2004). GIS: a computing perspective. CRC press.
Xie, X. F., & Wang, Z. J. (2018). Examining travel patterns and characteristics in a bikesharing network and implications for data-driven decision supports: Case study in the Washington DC area. Journal of Transport Geography, 71, 84-102.
Zhou, X. (2015). Understanding spatiotemporal patterns of biking behavior by analyzing massive bike sharing data in Chicago. PloS one, 10(10), e0137922.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top