跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/01 02:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝(王亭)妮
研究生(外文):Ting-Ni Hsieh
論文名稱:頭前溪與蘭陽溪流域之降雨量、山崩及河川化性之關係
論文名稱(外文):Relationships between Rainfall, Landslide and River chemistry around Tao-Cheng and Lanyang catchments
指導教授:陳宏宇陳宏宇引用關係
指導教授(外文):Hongey Chen
口試委員:林立虹劉雅瑄王瑞斌
口試委員(外文):Li-Hung LinYa-Hsuan Liou
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:128
中文關鍵詞:顆粒性碳溶解性碳離子濃度山崩輸砂量颱風
外文關鍵詞:particulate carbondissolved carbonion concentrationlandslidesediment dischargetyphoon
DOI:10.6342/NTU201904447
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要在探討北台灣西半部的頭前溪,以及東半部蘭陽溪兩個集水區流域,自 2009 年至 2017 年間,其降雨、崩塌和輸砂量在 5 個相同颱風事件中的相互關係與特性。調查工作並於 2018 年 9 月至 2019 年 3 月期間,進行兩個流域上游及下游的河川採樣,分析顆粒性有機碳、無機碳與溶解態有機碳、無機碳之濃度與含量在不同流域的分布特性,以及上下游空間上之差異關係。另外,從溶解態離子濃度的分析,包括 Na+、K+、Mg2+、Ca2+、SO42-和 Cl-,可以進一步探討兩集水區流域之矽酸鹽類和碳酸鹽類之風化速率。研究結果也發現,頭前溪與蘭陽溪流域之溶解態離子,主要是分別由矽酸鹽與碳酸鹽類所貢獻。
從近十年 SPOT 衛星影像在颱風事件的崩塌判釋結果發現,蘭陽溪流域之崩塌率介於 0.98%至 2.17%之間,2012 年蘇拉颱風過後崩塌率最高,達 2.17%,頭前溪流域之崩塌率介於 0.22%至 0.3%之間。在空間分布上,山崩事件大部分集中在上游地區,其崩塌的重現率高於新生率。輸砂量的估算結果顯示,蘭陽溪流域各颱風事件的總輸砂量與降雨量以 2012 年蘇拉颱風的 12.7 百萬噸及 1880.5mm為最高;頭前溪流域則以莫拉克颱風之總輸砂量 0.46 萬噸及總降雨量 1050mm 最高。在颱風期間,兩集水區流域之降雨量與輸砂量呈現正相關。年平均輸砂量在蘭陽溪集水區下游及上游分別為 4.65 百萬噸與 1.21 百萬噸,頭前溪集水區下游及上游分別為11.1 萬噸與7.6 萬噸,也即兩集水區流域之下游輸砂量均高於上游。整體而言,位於東部的蘭陽溪流域之輸砂量高於西部之頭前溪流域,其年平均輸砂量的差異介於 11 至 60 倍之間。
This research focus on the relationship between rainfall, landslides distribution and sediment discharge in four typhoon events during the period 2009-2017. We conducted investigations and hydro-chemical sampling from September 2018 to March 2019 along Lanyang and Tao-Cheng catchments in the east and west part of northern Taiwan, respectively. With analyzing the particulate carbon and dissolved carbon in the rivers, we found the spatial difference between the upstream and downstream as well as the difference between the two catchments. Besides, based on the major ion composition : Na+、 K+、 Mg2+、 Ca2+、 SO42-, and Cl-, the chemical weathering sources were dominated by the decomposition of silicates and carbonates. The results show that the major ion sources of Tao-Cheng river and Lanyang river are silicates and carbonates, respectively.
According to the interpretations of the SPOT satellite images in 10 years, the landslide ratios ranged from 0.98 % to 2.17 % along Lanyang catchment. The highest difference of landslide ratio occurred in Typhoon Saola which is 2.17%. In contrast, the landslide ratio ranged from 0.22 % to 0.30 % along the Tao-Cheng catchment is lower than Lanyang catchment. From the statistics of the sediment discharge and rainfall in each typhoon events, there are the highest sediment discharge and average daily rainfall in Typhoon Saola and Morakot along Lanyang and Tao-Cheng catchments, respectively. This result revealed that a good correlation between rainfall and sediment discharge.
中文摘要 I
Abstract II
目錄 III
圖目錄 VII
表目錄 X
第一章 序論 1
1.1 研究動機與目的 1
1.2 地理位置與交通概況 3
第二章 文獻回顧 6
2.1 降雨對山崩及邊坡穩定的影響 6
2.2 崩塌與輸砂特性與估算 8
2.3 高山小島嶼型河川之顆粒性有機碳之研究 10
2.4 溶解性物質之研究 13
第三章 研究區域概況 16
3.1 地形概況 16
3.2 地質概況 21
3.3 氣候和水文 25
3.4 颱風事件 28
第四章 研究方法 31
4.1 野外調查及取樣 31
4.1.1 野外露頭量測 31
4.1.2 施密特錘試驗 32
4.1.3 現場岩石採樣 32
4.1.4 溪水現場採樣 35
4.2 室內試驗 35
4.2.1 自然物理性質試驗 35
4.2.2 岩石力學性質試驗 35
4.2.3 河川化學性質試驗 36
4.2.3.1 碳化學分析 36
4.2.3.1.1 顆粒性有機碳含量與濃度之分析 36
4.2.3.1.2 顆粒性無機碳含量與濃度之分析 37
4.2.3.1.3 顆粒性總碳含量分析 37
4.2.3.1.4 溶解態有機碳濃度分析 37
4.2.3.1.5 溶解態無機碳濃度分析 38
4.2.3.1.6 河水碳產量之分析 38
4.2.3.2 主要溶解態離子濃度分析 39
4.2.3.3 端成分分析 40
4.2.3.4 風化速率分析 41
4.3 崩塌地判釋 42
4.4 輸砂量估算 44
第五章 研究結果 46
5.1 山崩判釋之數化及統計結果 46
5.1.1 崩塌地統計 46
5.1.2 崩塌與高程坡度之關係 48
5.2 輸砂量估算結果 52
5.2.1 年輸砂量之統計 52
5.2.2 年度乾濕季輸砂量之統計 55
5.3 地質材料分析結果 57
5.3.1 岩石力學性質試驗結果 57
5.3.2 自然物理性質試驗結果 61
5.4 河川顆粒性總碳分析結果 63
5.4.1 顆粒性有機碳相關之分析 63
5.4.2 顆粒性總碳含量分析結果 68
5.5 河川溶解態碳分析結果 70
5.6 河水碳產量之分析結果 74
5.7 主要溶解態離子濃度分析結果 77
5.7.1 離子濃度之時序變化 77
5.7.2 碳酸鹽類與矽酸鹽類端成分 83
第六章 討論 88
6.1 河川有機碳之特性 88
6.1.1 顆粒性有機碳來源與相關特性 88
6.1.2 溶解態有機碳來源之特性 93
6.2 河川無機碳之特性 96
6.3 碳產量與其他主要河川流域之比較 97
6.4 水文特性與河川化學性質之關係 101
6.4.1 河川中主要離子濃度之季節性變化 101
6.5 季節性降雨與輸砂量之關係 102
6.6 崩塌率與降雨及輸砂量之關係 106
6.7 崩塌率與地質材料強度之關係 107
6.8 台灣北部地區東西岸之集水區差異 109
6.8.1 顆粒性有機碳之時空變化 109
第七章 結論 110
參考文獻 112
附錄一 施密特錘反彈數換算單壓強度關係圖 123
附錄二 自然物理性質試驗 124
附錄三 點荷重試驗方法 126
附錄四 消散耐久性試驗方法 128
中央氣象局 (2009-2017) 氣候資料年報,行政院交通部中央氣象局。
黃炳煌與葉克家 (2001) 頭前溪水系水資源開發調配研究,台灣省新竹農田水利會。
何春蓀 (1986) 臺灣地質概論、臺灣地質圖說明書,第二版。經濟部中央地質調查所,共164頁。
林銘郎與林煜卿 (1998) 新竹寶山地區泥質岩石力學性質研究,研盤工程研討會,新竹,第139-148 頁。
呂名翔 (2007) 新武呂溪流域的山崩與輸砂量在地震與颱風事件中的相對應關係,國立台灣大學地質科學研究所碩士論文,共113 頁。
呂學諭 (1989) 關西、竹東地區超基性擄獲岩的換質作用研究,國立台灣大學地質科學研究所碩士論文,共97 頁。
林孟龍與林俊全 (2003) 颱風對於蘭陽溪上游集水區懸移生產特性的影響,地理學報,第33 期,第39-53 頁
林冠瑋 (2005) 陳有蘭溪流域的山崩作用在颱風及地震事件中與河道輸砂量之相對關係,國立台灣大學地質科學系碩士論文,共130 頁。
施尊穎 (2009) 台東鹿野溪流域之地層滑動與河川化性在卑南地震後之相關性,台灣大學地質科學系研究所碩士論文,共108 頁。
袁承偉 (2007) 大漢溪流域的山崩與輸砂量以及植生狀態在颱風事件中相對應關係,台灣大學地質科學系研究所碩士論文,共121 頁。
陳麒文 (2009) 新竹頭前溪上游集水區地層滑動與植生分布在颱風事件中之關係,台灣大學地質科學系研究所碩士論文,共130 頁。
張睿明 (2012) 旗山溪及蘭陽溪集水區流域之降雨量、山崩及輸砂量之關係,台灣大學地質科學系研究所碩士論文,共103 頁。
鄒年喬 (2010) 石門水庫集水區之降雨特性對崩塌及輸砂量的關係,國立台灣大學地質科學研究所碩士論文,共126 頁。
經濟部中央地質調查所 (2000) 台灣二十五萬分之一地質圖,經濟部中央地質調查所。
經濟部水利署 (2004-2016) 台灣水文年報總冊,行政院經濟部水利署。
經濟部水利署 (2006) 以蘭陽溪流域為例檢討生態能值方法評估土地利用與河川永續發展
Amiotte-Suchet, P.A. and Probst, J.L. (1995) A global model for present-day atmospheric soil CO2 consumption by chemical erosion of continental rocks GEM-CO2. Tellus 47B, 273-280
Amiotte-Suchet, P.A., Probst, J.L. and Ludwig, W. (2003) Worldwide distribution of continental rock lithology: implications for the atmospheric/soil CO2 uptake by
continental weathering and alkalinity river transport to the oceans. Global. Biogeochem. Cy. 17 Art. No. 1038.
Aleotti, P. (2004) A warning system for rainfall-induced shallow failures. Engineering Geology, 73, 247-265.
Blair, N.E. and Aller, R.C. (2012) The fate of terrestrial organic carbon in the marine environment. Annual Review of Marine Science, 4: 401-423.
Berner, R.A., Lasaga, A.C. and Garrels, R.M. (1983) The carbonate–silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years Am. J. Sci., 283, 641-683
Berner E.K. and Berner R.A. (1987) The global water cycle: Geochemistry and Environment: Prentice-Hall, Inc.,Englewood Cliffs, NJ, 142-155.
Benner, R. and Storm, M. (1993) A critical re-evaluation of the analytical blank associated with DOC measurements by high-temperature catalytic oxidation. Mar. Chem., 41: 153-160.
Berner, R.A. (1994) GEOCARB II: A revised model of atmospheric CO2 over Phanerozoic time. Amer. J. Sci., 294: 56-91.
Berner, E.K. and Berner, R. A., (1996) Global environment: water, air, and geochemical cycles.
Berner, R.A. and Berner, E.K. (1997) Silicate weathering and climate In: W. F. Ruddiman and W. Prell (eds.), Tectonics uplift and Climate Change, Plenum Press, New York, 535 Berto, D., Rampazzo, F., Noventa, S., Cacciatore, F., Gabellini, M., Aubry, F.B., Girolimetto, A. and Brusà, R.B. (2013) Stable carbon and nitrogen isotope ratios as tools to evaluate the nature of particulate organic matter in the Venice lagoon. Estuar. Coast. Shelf Sci. 135, 66-76.
Brunet, F., Dubois, K., Veizer, J., Nkoue Ndondo, G. R., Ndam Ngoupayou, J. R., Boeglin, J. L., and Probst, J. L. (2009) Terrestrial and fluvial carbon fluxes in a tropical watershed: Nyong basin, Cameroon, Chem. Geol., 265, 563-572.
Cai, W.-J., Guo, X., Chen, C.-T. A., Dai, M., Zhang, L., Zhai, W., Lohrenz, S.E., Yin, K., Harrison, P.J. and Wang, Y. (2008) A comparative overview of weathering intensity and HCO3- flux in the world’s major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers. Cont. Shelf. Res. 28:1538-1549.
Caine, N. (1980) The rainfall intensity duration control of shallow landslides and debris flows. Geografiska Annaler: Series A, Physical Geography, 62, 23-27.
Caissie, D., Pollock, T.L. and Cunjak, R.A. (1996) Variation in stream water chemistry and hydrograph separation in a small drainage basin. Journal of Hydrology, 178, 137-157.
Calmels, D., Galy, A., Hovius, N., Bickle, M., West, A.J., Chen, M.-C. and Chapman, H. (2011) Contribution of deep groundwater to the weathering budget in a rapidly eroding mountain belt, Taiwan. Earth and Planetary Science Letters, 303, 48-58.
Campbell, I. C., James, K., Hart, B., Devereaux, A. (1992) Allochtonous coarse particulate organic material in forest and pasture reaches of two south-eastern Australian streams. II Litter processing. Freshwater Biology, vol. 27, 353-365.
Chang, K.T., Chiang, S.H. and Lei, F. (2008) Analysing the Relationship Between Typhoon-Triggered Landslides and Critical Rainfall Conditions. Earth Surface Processes and Landforms, Vol. 33, 1261-1271.
Chuang, S.J., Chen, H., Lin, G.W., Lin, C.W. and Chang, C.P. (2009) Increase in basin sediment yield from landslides in storms following major seismic disturbance. Engineering Geology, 103, 59–65.
Coynel, A., Seyler, P., Etcheber, H., Meybeck, M. and Orange, D. (2005) Spatial and seasonal dynamics of total suspended sediment and organic carbon species in the Congo River, Global Biogeochem. Cycles, 19, GB4019
Coynel, A. (2005) Contribution of small mountainous rivers to particulate organic carbon input in the Bay of Biscay, Biogeochemistry, 74, 151-171.
Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M.L., Willett, S.D., Hu, J.C., Horng, M.J., Chen, M.C., Stark, C.P., Lague, D. and Lin, J.C. (2003) Links between erosion, runoff variability, and seismicity in the Taiwan orogen. Nature, v. 426, 648-651.
Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Lin, J.C., Hsu, M.L., Lin, C.W., Horng, M.J., Chen, C.T., Milliman, J. and Stark, C.P. (2004) Earthquake-triggered increase in sediment delivery from an active mountain Belt. Geology, v. 32, 733-736.
Dadson, S.J., Hovius, N., Pegg, S., Dade, W.B., Horng, M.J. and Chen, H. (2005) Hyperpycnal river flows from an active mountain belt. Journal of Geophysical Research, v. 110, F04016
Dawason, H.J., Ugolini, F.C., Hrutfiord, B.F. and Zachara, J. (1978) Role of soluble organics in the soil process of a podzol. Soil Sci. 132: 191-199.
Degens, E.T., S. Kempe and Richey, J. E. (1990) Biogeochemistry of major world rivers, John Wiley & Sons, New York, 356
Dahal, R.K., and Hasegawa, S. (2008) Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology, Vol. 100, 498-510.
Gaillardet, J., Dupre´, B., Louvat, P. (1999) Global silicate weathering and CO consumption rates deduced from the chemistry of large rivers. Chemical Geology, vol. 159, 3-30.
Galy, A. and France-Lanord, C. (1999) Weathering processes in the Ganges-Brahmaputra basin and the riverine alkalinity budget, Chem. Geol. 159, 31-60.
Gallay, M., Mora, A., Martinez, J.M., Gardel, A., Laraque, A., Sarrazin, M., Beaucher, E., Doudou, J.C., and Lagane, C. (2018) Dynamics and fluxes of organic carbon
and nitrogen in two Guiana Shield river basins impacted by deforestation and mining activities., Hydrol. Processes, vol. 32, no. 1, 17.
Gibbs, R. J. (1970) Mechanisms controlling world water chemistry. Science, 170, 1088-1090.
Gurumurthy, G., Balakrishna, K., Riotte, J., Braun, J.-J., Audry, S., Shankar, H. and Manjunatha, B. (2012) Controls on intense silicate weathering in a tropical river, southwestern India. Chemical Geology, 300, 61-69.
Guzzetti, F., Cardinali, M., Reichenbach, P., Cipolla, F., Sebastiani, C., Galli, M., and Salvati, P. (2004) Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy.Engineering Geology, 73, 229-245.
Hilton, R., Galy, A. and Hovius, N. (2008) Riverine particulate organic carbon from an active mountain belt: Importance of landslides. Global Biogeochemical Cycle, vol. 22, 1017-1029.
Hoffman, W.A., Lindberg, S.E. and Turner, R.R. (1980) Some observations of organic constituents in rain above and below a forest canopy. Environ. Sci. and Technol., 14: 999-1002.
Hood, E., Fellman, J. and Spencer, R.G. (2009) Glaciers as a Source of ancient and labile organic matter to the marine en-Vironment. Nature, 462: 1044-1047.
Hovius, N., Stark, C.P., Chu, H.T. and Lin, J.C. (2000) Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan. The Journal of Geology, 108, 73-89.
Huang, T.H., Fu, Y.H., Pan, P.Y., and Chen, C.T.A. (2012) Fluvial carbon fluxes in tropical rivers. Current Opinion in Environmental Sustainability, 4(2): 162-169.
Kao, S.J. and Liu, K.K. (1996) Particulate organic carbon export from a subtropical mountainous river (Lanyang Hsi) in Taiwan, Limnol. Oceanogr., 41, 1749-1757
Kao, S.J. and Liu, K.K. (1997) Fluxes of dissolved and nonfossil particulate organic carbon from an oceania small river (Lanyang Hsi) in Taiwan, Biogeochemistry, 39, 255–269
Kao, S.J. and Liu, K.K. (2000) Stable carbon and nitrogen isotope systematics in a human-disturbed watershed (Lanyang-Hsi) in Taiwan and the estimation of biogenic particulate organic carbon and nitrogen fluxes . Global Biogeochemical Cycles, v.14, 189-198
Kao, S.J. and Liu, K.K. (2001). Estimating od suspended load by using the historical hydrometric record from Lanyang river watershed. TAO, 401-414.
Kao, S.J., Chan, S.C., Kuo, C.H. and Liu, K.K. (2005) Transpot-dominated sediment loading in Taiwan rivers: a case study from the Mn-an stream. Geology, v. 113, 217-225.
Kao, S.J. and Milliman, J.D. (2008) Water and Sediment Discharge from Small Mountainous Rivers, Taiwan: The Roles of Lithology, Episodic Events and Human Activities. J.Geol. 116 (5), 431–448.
Keefer, D.K. (2000) Statistical Analysis of an Earthquake-induced Landslide Distribution - the 1989 Loma Prieta, California Event. Engineering Geology, 58, 213-249.
Kendall, C., Silva, S.R., and Kelly, V.J. (2001) Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States. Hydrological Processes 15 (7), 1301-1346.
Leithold, E.L. and Blair, N.E. (2001) Watershed control on the carbon loading of marine sedimentary particles, Geochim. Cosmochim. Acta, 65, 2231- 2240.
Lin, G.W., Shieh, C.L., Yuan, B.D., Shieh, Y.C., Liu, S.H. and Lee, S.Y. (2003) Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: example from the Chenyulan River watershed, Nantou, Taiwan. Engineering Geology, 71, 49-61.
Lin, G.W., Chen, H., Chen, Y.H. and Horng, M.J. (2008) Influence of typhoons and earthquakes on rainfall-induced landslides and suspended sediments discharge. Engineering Geology, 97, 32-41.
Lloret, E., Dessert,C., Pastor, L., Lajeunesse, E., Crispi, O., Gaillardet, J. and Benedetti, M.F. (2013) Dynamic of particulate and dissolved organic carbon in small volcanic mountainous tropical watersheds Chemical Geology, Volume 351, 229-244
Ludwig, W., Probst, J. and Kempe, S. (1996) Predicting the oceanic input of organic carbon by continental erosion, Global Biogeochem. Cycles, 10, 23-41.
Ludwig, W., Amiotte-Suchet, P., Munhoven, G. and Probst, J.-L. (1998) Atmospheric CO2 consumption by continental erosion: present-day controls and implications for the last glacial maximum. Global and Planetary Change 16–17, 107-120.
Mackenzie, F.T., Lerman, A. and Andersson, A.J. (2004) Past and present of sediment and carbon biogeochemical cycling models. Biogeosciences 1, 11-32.
McDowell, W. H. and Wood, T. (1984) Podzolization: soil processes control dissolved organic carbon concentrations in stream water. Soil Sci., 137: 23-32.
McDowell, W.H. and Asbury, C.E. (1994) Export of carbon, nitrogen, and major ion from three tropical montane watersheds. Limnol. Oceanogr., 39:111-125.
Meybeck, M. (1982) Carbon, nitrogen and phosphorus transport by world rivers. Amer. J. Sci., 282: 401-450.
Meybeck, M. (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Amer. J. Sci., 287: 401-428.
Meybeck, M. (1988) How to establish and use world budgets of riverine materials, pp. 247-272. In: A. Lerman and M. Meybeck (eds.), Physical and chemical weathering in geochemical cycles, Kluwer, London, 371
Meybeck, M. (1993a) Riverine transport of atmospheric carbon: sources, global typology and budget. Water, Air and Soil Pollution 70, 443-463.
Milliman, J.D. and Mead, R.H. (1983) World wide delivery of river sediments to the oceans. J. Geol., 91: 1-21.
Milliman, J.D. and Syvistski, J.P.M. (1992) Geomorphic/tectonic control of sediment discharge to the Ocean: The importance of small mountainous rivers. Journal of Geology, vol. 100, 525-544.
Milliman, J.D. and Farnsworth, K.L. (2011) River Discharge to the Coastal Ocean: A
Global Synthesis. Cambridge University Press, Cambridge, 143-144.
Moreira‐Turcq, P., Seyler, P., Guyot, J.L. and Etcheber, H. (2003) Exportation of organic carbon from the Amazon River and its main tributaries, Hydrol. Processes, 17, 1329-1344.
Négrel, P., Allegre, C.J., Dupré, B. and Lewin, E. (1993) Erosion sources determined by inversion of major and trace element ratios in river water: the Congo Basin case Earth Planet. Sci. Lett., 120, 59-76
Ohlenbusch, G., Kumke, M.U. and Frimmel, F.H. (2000) Sorption of phenols to dissolved organic matter investigated by solid phase microextraction. The Science of the Total Environment, 253: 63-74.
Olivié-Lauquet, G., Allard, Th., Bertaux, J. and Muller, J.P. (2000) Crystal chemistry of suspended matter in a tropical hydrosystem, Nyong basin (Cameroon, Africa). Chem. Geol.170, 113–131.
Pedersen, M.F, Wernberg, T. and Thomsen, M.S. (2005) Biomass dynamics of exotic Sargassum muticum and native Halidrys siliquosa in Limfjorden, Denmark: Implications of species replacements on turnover rates. Aquatic Botany, 83: 31-47.
Qin, J., Huh, Y., Edmond, J.M., Du, G. and Ran, J. (2006) Chemical and physical weathering in the Min Jiang, a headwater tributary of the Yangtze River. Chemical Geology, 227, 53-69.
Rock, L. and Mayer, B. (2006) Tracing nitrates and sulphates in riverbasins using isotope techniques. Water Science and Technology 53 (10), 209-217.
Salmon, C.D., Walter, M.T., Hedin, L.O. and Brown, M.G.(2001) Hydrological controls on chemical export from an undisturbedold-growth Chilean forest. Journal of Hydrology, 253, 69-80.
Schlesinger, W.H. and Melack, J.M. (1981) Transport of organic carbon in the world''s rivers. Tellus 33, 172–187.
Schlesinger, W.H. (1991) Biogeochemistry: An Analysis of Global change, Academic Press, San Diego, 425
Sidle, R.C. and Swanston, D.N. (1982) Analysis of a small debris slide in coastal Alaska. Canadian Geotechnical Journal, 19, 167-174.
Siegenthaler, U. and Sarmiento, J.L. (1993) Atmospheric carbon dioxide and the oceans, Nature, 365, 119-125.
Stallard, R.F. and Edmond, J.M. (1983) Geochemistry of the Amazon. The influence of the geology and weathering environment on the dissolved land. J. Geophys. Res., 88: 9671-9688.
Stallard, R.F. and Edmond, J.M. (1987) Geochemistry of the Amazon. Weathering chemistry and limits to dissolved inputs. J. Geophys. Res., 92: 8293-8302.
Stallard, R.F. (1998) Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial, Global Biogeochem. Cycles, 12, 231-257.
Salmon, C., Water, M.T., Hedin, L. and Brown, M. (2001) Hydrological Controls on Chemical Export from and Undisturbed Old-Growth Chilean Forest. Journal of Hydrology, 253, 69-80.
Tesi, T., Miserocchi, S. and Goni, M.E.A. (2007) Organic matter origin and distribution in suspended particulate materials and surficial sediments from the western Adriatic Sea (Italy). Estuarine, Coastal and Shelf Science, 73: 431-446.
Thurman, E.M. (1985) Organic Geochemistry of Natural waters. Martinus Nijhof / Dr. W. Junk Publisher sunk Publishers, Dordrecht, Boston, USA.
Veyssy, E., Etcheber, H., Lin, R.G., Buat-Menard, P.(1999). Seasonal variation and origin of Particulate Organic Carbon in the lower Garonne River at La Reole. Hydrobiologia, vol. 391, 113-126.
Wang, L.J., Hsia, Y.J., King, H.B., Harrison, R.B., Liu, C.B., Hwong, J.L. and Liu, C.B. (1996) Storm solute changes in the Fushan forested watershed, NE Taiwan. Journal of Chinese Soil and Water Conservation, 27, 97-105.
Waterson, E.J. and Canuel, E.A. (2008) Sources of sedimentary organic matter in the Mississippi River and adjacent Gulf of Mexico as revealed by lipid biomarker and
δ13CTOC analyses. Organic Geochemistry, 422-439
Wesley, L.D. (2011) Stability of slopes in residual soils, Obras y Proyectos, 10, 47-61.
Westerhoff , P., Anning, D. (2000) Concentrations and characteristics of organic carbon in surface water in Arizona: influence of urbanization. Journal of Hydrology 236:202-222
Wischmeier, W. H., and Smith, D. D. (1978) Prediction Rainfall Erosion Losses. USDA Agricultural Handbook No. 537.
Wu, Y., Zhang, J., Liu, S.M. (2007) Sources and distribution of carbon within the Yangtze River system. Estuarine. Coastal and Shelf Science 71, 13-25.
Zhang, Y., Liu,S., Zhang, Z., Yao, Q., and Hong G. (2007) Source and distribution of carbon within the Yangtze River system, Estuarine. Coastal and Shelf Science, 71, 13-25.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊