跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 23:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳又瑄
研究生(外文):You-Syuan Chen
論文名稱:南西伯利亞一萬四千年氣候變遷:石筍記錄
論文名稱(外文):Climate change of South Siberia since 14 ka: stalagmite records
指導教授:李紅春李紅春引用關係
指導教授(外文):Hong-Chun Li
口試委員:米泓生黃國芳
口試委員(外文):Horng-sheng MiiKuo-Fang Huang
口試日期:2020-03-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:53
中文關鍵詞:南西伯利亞石筍AMS 14C定年δ18Oδ13C總太陽輻照
外文關鍵詞:South SiberiastalagmiteAMS 14C datingδ18Oδ13Ctotal solar irradiance
DOI:10.6342/NTU202001300
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高緯度地區在地球氣候系統中扮演重要的角色,其中南西伯利亞地區更位處北半球最重要的三個氣候系統:西風、極鋒(polar front)及西伯利亞高壓的交會帶,對於古氣候重建有重大意義。然此地過往的研究往往受限於材料特性與解析度,使得此區域的古氣候記錄仍不完備。本研究利用AMS 14C定年,搭配210Pb定年與平均沉積速率法,為Nadezhda洞(52º38.872’N, 88º39.194’E, 550m a.s.l.)的H1與Lunnaya洞(52º40.729 N, 88º43.854 E, 481 m a.s.l.)的L2,兩支釷放射性比值過低(230Th/232Th < 10)的石筍建立年代模式。在分別扣除400年與500年的死碳效應(dead carbon influence, DCI)後,本研究建立了第一個南西伯利亞14,000年以來的高解析度(平均解析度約10年)δ18O與δ13C石筍記錄。本研究的δ18O記錄與總太陽輻照(total solar irradiance, TSI)呈現反相關,顯示阿爾泰地區石筍碳氧同位素並非主要反映氣溫變化,而是反映降水變化。記錄顯示南西伯利亞自14,000年前的冷乾環境逐漸轉暖濕,在約10,000 ~ 7,500年前進入暖濕的全新世最宜期(optimum),最宜期結束後進入長期的冷乾情況,僅在約6,000年前與1,800 ~ 1,400年前較暖濕。記錄中多次出現總太陽輻照減弱同時δ18O與δ13C變重的冷乾事件(7.5 ~ 6.0 ka, 5.0 ~ 4.2 ka, 2.3 ~ 1.7 ka, 1.4 ka及小冰期),顯示阿爾泰地區的氣候主控因子為總太陽輻照。這些由總太陽輻照驅動的冷乾事件,可能是經由總太陽輻照減弱,促使西伯利亞高壓增強所導致。
The climate system of the high latitude region plays an important role in the Earth’s climate system. Paleoclimate study of South Siberia is very important since South Siberia is affected by the three most important climate systems in the northern hemisphere: westerly, polar front, and Siberia High. However, human impact and natural variability of the climatic changes in the Siberian region are not clear due to limited high-resolution records. This study reported two stalagmite records, H1 and L2, from Nadezhda cave (52º38.872’N, 88º39.194’E, 550m a.s.l.) and Lunnaya cave (52º40.729 N, 88º43.854 E, 481 m a.s.l.), respectively. These two stalagmites had low thorium radio-isotopic ratio (230Th/232Th < 10), which led to unsuccessful 230Th/U dating. Instead, this study used AMS 14C dates to construct the age model. To estimate the dead carbon influence (DCI), we used 210Pb dating and the average growth rate method then found the initial 14C age caused by DCI to be 400 (for H1) and 500 (for L2) years. After removing the DCI, we reconstructed the first high-resolution stalagmite δ18O and δ13C record in South Siberia during the past 14 ka. The δ18O record of the study shows a negative correlation with total solar irradiance (TSI), indicating that δ18O and δ13C of stalagmites in the Altai mountain region mainly reflect changes in precipitation (amount effect). The record shows that South Siberia gradually became warm and humid since 14 ka from the cold and dry environment during the last deglacial, and entered the Holocene Optimum during the period of 10 ~ 7.5 ka. After the end of the optimum, the region entered a long term cold and dry condition. Relatively warmer and wetter conditions occurred at about 6 ka and 1.8 ~ 1.4 ka. Cold and dry episodes were 7.5 ~ 6.0 ka, 5.0 ~ 4.2 ka, 2.3 ~ 1.7 ka, 1.4 ka, and the Little Ice Age, during which TSI decreased, and both δ18O and δ13C became heavier repeatedly. Our records indicate that the major climate control factor in the Altai mountain region is TSI. These cold and dry events may be caused by the enhancement of Siberian high driven by decreasing of TSI.
口試委員會審定書 I
誌謝 II
中文摘要 III
Abstract IV
目錄 V
圖目錄 VIII
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
第二章 石筍研究的基本原理與工具 3
2.1 石筍的形成 3
2.2 石筍的定年 4
2.2.1 鈾系定年 5
2.2.2 14C定年 7
2.2.3 210Pb定年 8
2.3 石筍的代用指標 9
2.3.1 碳同位素 9
2.3.2 氧同位素 11
第三章 研究區域概況 13
3.1 現代環境概況 13
3.2 過去環境變遷 15
第四章 研究材料與方法 17
4.1 研究材料 17
4.2 研究流程 20
4.2.1 樣本採集與處理 20
4.2.2 年代模式建立 20
4.2.3 代用指標記錄建立 20
4.2.4 數據分析與討論 20
4.3 實驗方法 21
4.3.1 鈾系定年 21
4.3.2 14C定年 21
4.3.3 210Pb定年 22
4.3.4 碳氧同位素 23
4.3.5 水樣氫氧同位素分析 23
第五章 結果與討論 24
5.1 定年結果 24
5.1.1 鈾系定年結果 24
5.1.2 14C定年結果 24
5.1.3 210Pb定年結果 25
5.2 年代模式 26
5.2.1 H1年代模式 26
5.2.2 L2年代模式 28
5.3 水樣氫氧同位素 31
5.4 石筍碳氧同位素 32
5.4.1 H1石筍碳氧同位素結果 32
5.4.2 L2石筍碳氧同位素結果 32
5.4.3 平衡分餾沉積檢驗 34
5.4.4 碳氧同位素的氣候意義 36
5.5 南西伯利亞氣候變遷 38
5.5.1 第Ⅰ期:14 ~ 10 ka BP 38
5.5.2 第Ⅱ期:10 ~ 7.5 ka BP 39
5.5.3 第Ⅲ期:7.5 ~ 6.0 ka BP 39
5.5.4 第Ⅳ期:6.0 ~ 4.2 ka BP 39
5.5.5 第Ⅴ期:4.2 ~ 1.8 ka BP 40
5.5.6 第Ⅵ期:1.8 ~ 1.4 ka BP 40
5.5.7 第Ⅶ期:1.4 ~ 0 ka BP 40
5.6 南西伯利亞氣候變遷的可能機制 42
第六章 結論 43
參考文獻 44
附錄一 H1的AMS 14C定年結果 52
附錄二 L2的AMS 14C定年結果 53
Agatova, A., Nazarov, A., Nepop, R., & Rodnight, H. (2012). Holocene glacier fluctuations and climate changes in the southeastern part of the Russian Altai (South Siberia) based on a radiocarbon chronology. Quaternary Science Reviews, 43, 74-93. doi:10.1016/j.quascirev.2012.04.012
Aizen, E., Aizen, V., Takeuchi, N., Mayewski, P., Grigholm, B., Fujita, K., & Joswiak, D. (2010). Central Asia Climate Change: Altai, Tien Shan and Pamir Ice Cores Contemporary and Paleo-Reconstruction. Paper presented at the AGU Fall Meeting Abstracts.
Alley, R. B. (2000). The Younger Dryas cold interval as viewed from central Greenland. Quaternary Science Reviews, 19(1-5), 213-226. doi:10.1016/S0277-3791(99)00062-1
Alley, R. B., Mayewski, P. A., Sowers, T., Stuiver, M., Taylor, K. C., & Clark, P. U. (1997). Holocene climatic instability: A prominent, widespread event 8200 yr ago. Geology, 25(6), 483-486. doi:10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2
An, C.-B., Chen, F.-H., & Barton, L. (2008). Holocene environmental changes in Mongolia: a review. Global and Planetary Change, 63(4), 283-289. doi:10.1016/j.gloplacha.2008.03.007
Andersen, K. K., Svensson, A., Johnsen, S. J., Rasmussen, S. O., Bigler, M., Röthlisberger, R., Ruth, U., Siggaard-Andersen, M.-L., Steffensen, J. P., & Dahl-Jensen, D. (2006). The Greenland ice core chronology 2005, 15–42 ka. Part 1: constructing the time scale. Quaternary Science Reviews, 25(23-24), 3246-3257. doi:10.1016/j.quascirev.2006.08.002
Andreev, A. A., Pierau, R., Kalugin, I. A., Daryin, A. V., Smolyaninova, L. G., & Diekmann, B. (2007). Environmental changes in the northern Altai during the last millennium documented in Lake Teletskoye pollen record. Quaternary research, 67(3), 394-399. doi:10.1016/j.yqres.2006.11.004
Bajo, P., Borsato, A., Drysdale, R., Hua, Q., Frisia, S., Zanchetta, G., Hellstrom, J., & Woodhead, J. (2017). Stalagmite carbon isotopes and dead carbon proportion (DCP) in a near-closed-system situation: An interplay between sulphuric and carbonic acid dissolution. Geochimica et cosmochimica Acta, 210, 208-227. doi:10.1016/j.gca.2017.04.038
Baker, A., Genty, D., Dreybrodt, W., Barnes, W. L., Mockler, N. J., & Grapes, J. (1998). Testing theoretically predicted stalagmite growth rate with recent annually laminated samples: Implications for past stalagmite deposition. Geochimica et cosmochimica Acta, 62(3), 393-404. doi:10.1016/S0016-7037(97)00343-8
Baker, A., Smith, C. L., Jex, C., Fairchild, I. J., Genty, D., & Fuller, L. (2008). Annually laminated speleothems: a review. International Journal of Speleology, 37(3), 4. doi:10.5038/1827-806X.37.3.4
Bard, E. (1998). Geochemical and geophysical implications of the radiocarbon calibration. Geochimica et cosmochimica Acta, 62(12), 2025-2038. doi:10.1016/S0016-7037(98)00130-6
Baskaran, M., & Iliffe, T. M. (1993). Age determination of recent cave deposits using excess 210Pb‐A new technique. Geophysical Research Letters, 20(7), 603-606. doi:10.1029/93GL00531
Berger, A., & Loutre, M. (1999). Parameters of the Earths orbit for the last 5 Million years in 1 kyr resolution. PANGAEA, doi, 10.
Bezrukova, E. V., Belov, A. V., & Orlova, L. A. (2011). Holocene vegetation and climate variability in North Pre-Baikal region, East Siberia, Russia. Quaternary International, 237(1-2), 74-82. doi:10.1016/j.quaint.2011.01.012
Blaauw, M., & Christen, J. A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian analysis, 6(3), 457-474. doi:10.1214/11-ba618
Blyakharchuk, T., Wright, H., Borodavko, P., van der Knaap, W. O., & Ammann, B. (2004). Late Glacial and Holocene vegetational changes on the Ulagan high-mountain plateau, Altai Mountains, southern Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology, 209(1-4), 259-279. doi:10.1016/j.palaeo.2004.02.011
Blyakharchuk, T., Wright, H., Borodavko, P., van der Knaap, W. O., & Ammann, B. (2007). Late glacial and Holocene vegetational history of the Altai mountains (southwestern Tuva Republic, Siberia). Palaeogeography, Palaeoclimatology, Palaeoecology, 245(3-4), 518-534. doi:10.1016/j.palaeo.2006.09.010
Bowman, S. (1990). Radiocarbon dating. In Vol. 1.
Cheng, H., Edwards, R. L., Shen, C.-C., Polyak, V. J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., & Spötl, C. (2013). Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters, 371, 82-91. doi:10.1016/j.epsl.2013.04.006
Clark, P. U., Shakun, J. D., Baker, P. A., Bartlein, P. J., Brewer, S., Brook, E., Carlson, A. E., Cheng, H., Kaufman, D. S., Liu, Z., Marchitto, T. M., Mix, A. C., Morrill, C., Otto-Bliesner, B. L., Pahnke, K., Russell, J. M., Whitlock, C., Adkins, J. F., Blois, J. L., Clark, J., Colman, S. M., Curry, W. B., Flower, B. P., He, F., Johnson, T. C., Lynch-Stieglitz, J., Markgraf, V., McManus, J., Mitrovica, J. X., Moreno, P. I., & Williams, J. W. (2012). Global climate evolution during the last deglaciation. Proceedings of the National Academy of Sciences, 109(19), E1134-E1142. doi:10.1073/pnas.1116619109
Cohen, J., & Entekhabi, D. (1999). Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophysical Research Letters, 26(3), 345-348. doi:10.1029/1998gl900321
Colman, S. M., Jones, G. A., Rubin, M., King, J., Peck, J., & Orem, W. (1996). AMS radiocarbon analyses from Lake Baikal, Siberia: Challanges of dating sediments from a large, oligotrophic lake. Quaternary Science Reviews, 15(7), 669-684. doi:10.1016/0277-3791(96)00027-3
Déry, S. J., & Brown, R. D. (2007). Recent Northern Hemisphere snow cover extent trends and implications for the snow‐albedo feedback. Geophysical Research Letters, 34(22).
Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., Jouzel, J., & Bond, G. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364(6434), 218-220. doi:10.1038/364218a0
Dorale, J. A., Edwards, R. L., Alexander, E. C., Shen, C.-C., Richards, D. A., & Cheng, H. (2004). Uranium-series dating of speleothems: current techniques, limits, & applications. In Studies of cave sediments (pp. 177-197): Springer. doi:10.1007/978-1-4419-9118-8_10
Dorale, J. A., & Liu, Z. (2009). Limitations of Hendy test criteria in judging the paleoclimatic suitability of speleothems and the need for replication. Journal of Cave and Karst Studies, 71(1), 73-80.
Dreybrodt, W. (1999). Chemical kinetics, speleothem growth and climate. Boreas, 28(3), 347-356. doi:10.1080/030094899422073
Epstein, S., Buchsbaum, R., Lowenstam, H. A., & Urey, H. C. (1953). Revised carbonate-water isotopic temperature scale. Geological Society of America Bulletin, 64(11), 1315-1326. doi:10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2
Fairchild, I. J., Smith, C. L., Baker, A., Fuller, L., Spötl, C., Mattey, D., & McDermott, F. (2006). Modification and preservation of environmental signals in speleothems. Earth-Science Reviews, 75(1-4), 105-153. doi:10.1016/j.earscirev.2005.08.003
Fairchild, I. J., & Treble, P. C. (2009). Trace elements in speleothems as recorders of environmental change. Quaternary Science Reviews, 28(5-6), 449-468. doi:10.1016/j.quascirev.2008.11.007
Gehy, M., & Schleicher, H. (1990). Absolute age determination: Physical and chemical dating methods and their applications. In: Springer-Verlag, Berlin, Germany, 503p.
Genty, D., Baker, A., Massault, M., Proctor, C., Gilmour, M., Pons-Branchu, E., & Hamelin, B. (2001). Dead carbon in stalagmites: carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems. Geochimica et cosmochimica Acta, 65(20), 3443-3457. doi:10.1016/S0016-7037(01)00697-4
Gong, D.-Y., & Ho, C.-H. (2002). The Siberian High and climate change over middle to high latitude Asia. Theoretical and applied climatology, 72(1-2), 1-9. doi:10.1007/s007040200008
Griffiths, M., Fohlmeister, J., Drysdale, R. N., Hua, Q., Johnson, K., Hellstrom, J. C., Gagan, M., & Zhao, J.-X. (2012). Hydrological control of the dead carbon fraction in a Holocene tropical speleothem. Quaternary Geochronology, 14, 81-93. doi:10.1016/j.quageo.2012.04.001
Groisman, P. Y., Blyakharchuk, T. A., Chernokulsky, A. V., Arzhanov, M. M., Marchesini, L. B., Bogdanova, E. G., Borzenkova, I. I., Bulygina, O. N., Karpenko, A. A., Karpenko, L. V., Knight, R. W., Khon, V. C., Korovin, G. N., Meshcherskaya, A. V., Mokhov, I. I., Parfenova, E. I., Razuvaev, V. N., Speranskaya, N. A., Tchebakova, N. M., & Vygodskaya, N. N. (2013). Climate changes in Siberia. In Regional environmental changes in Siberia and their global consequences (pp. 57-109): Springer Netherlands. doi:10.1007/978-94-007-4569-8_3
Haslett, J., & Parnell, A. (2008). A simple monotone process with application to radiocarbon‐dated depth chronologies. Journal of the Royal Statistical Society: Series C (Applied Statistics), 57(4), 399-418. doi:10.1111/j.1467-9876.2008.00623.x
Henderson, K., Laube, A., Gäggeler, H. W., Olivier, S., Papina, T., & Schwikowski, M. (2006). Temporal variations of accumulation and temperature during the past two centuries from Belukha ice core, Siberian Altai. Journal of Geophysical Research: Atmospheres, 111(D3). doi:10.1029/2005jd005819
Hendy, C. (1971). The isotopic geochemistry of speleothems—I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimica et cosmochimica Acta, 35(8), 801-824. doi:10.1016/0016-7037(71)90127-X
Hendy, C., & Wilson, A. (1968). Palaeoclimatic data from speleothems. Nature, 219(5149), 48. doi:10.1038/219048a0
Hiess, J., Condon, D. J., McLean, N., & Noble, S. R. (2012). 238U/235U systematics in terrestrial uranium-bearing minerals. Science, 335(6076), 1610-1614. doi:10.1126/science.1215507
Howell, P., Pisias, N., Ballance, J., Baughman, J., & Ochs, L. (2006). ARAND time-series analysis software. Brown University, Providence RI.
Huang, X., Peng, W., Rudaya, N., Grimm, E. C., Chen, X., Cao, X., Zhang, J., Pan, X., Liu, S., & Chen, C. (2018). Holocene vegetation and climate dynamics in the Altai Mountains and surrounding areas. Geophysical Research Letters, 45(13), 6628-6636. doi:10.1029/2018GL078028
Jaffey, A., Flynn, K., Glendenin, L., Bentley, W. t., & Essling, A. (1971). Precision measurement of half-lives and specific activities of U 235 and U 238. Physical review C, 4(5), 1889. doi:10.1103/PhysRevC.4.1889
Karpov, G., & Esikov, A. (2005). Isotope geochemistry of thermal springs in the Karymsky geothermal areas, Kamchatka, Russian Federation. Use of isotope techniques to trace the origin of acidic fluids in geothermal systems, 1448, 133.
Kaufmann, G. (2003). Stalagmite growth and palaeo-climate: the numerical perspective. Earth and Planetary Science Letters, 214(1-2), 251-266. doi:10.1016/S0012-821X(03)00369-8
Kaufmann, G., & Dreybrodt, W. (2004). Stalagmite growth and palaeo-climate: an inverse approach. Earth and Planetary Science Letters, 224(3-4), 529-545. doi:10.1016/j.epsl.2004.05.020
Ku, T.-L. (1976). The uranium-series methods of age determination. Annual review of Earth and planetary Sciences, 4(1), 347-379. doi:10.1146/annurev.ea.04.050176.002023
Kuo, T.-S., Liu, Z.-Q., Li, H.-C., Wan, N.-J., Shen, C.-C., & Ku, T.-L. (2011). Climate and environmental changes during the past millennium in central western Guizhou, China as recorded by Stalagmite ZJD-21. Journal of Asian Earth Sciences, 40(6), 1111-1120. doi:10.1016/j.jseaes.2011.01.001
Lachniet, M. S. (2009). Climatic and environmental controls on speleothem oxygen-isotope values. Quaternary Science Reviews, 28(5-6), 412-432. doi:10.1016/j.quascirev.2008.10.021
Li, H., Gu, D., Ku, T., Stott, L., & Chen, W. (1998). Applications of interannual-resolution stable isotope records of speleothem: Climatic changes in Beijing and Tianjin, China during the past 500 years—the δ 18O record. Science in China Series D: Earth Sciences, 41(4), 362-368. doi:10.1007/bf02932686
Li, H., Ku, T., Chen, W., Jiao, W., Zhao, S., Chen, T., & Li, T. (1996). Isotope studies of Shihua Cave, Beijing–II: radiocarbon dating and age correction of stalagmite. Seismology and Geology, 18(4), 329-338.
Li, J.-Y., Li, H.-C., Li, T.-Y., Mii, H.-S., Yu, T.-L., Shen, C.-C., & Xu, X. (2017). High-resolution d 18 O and d 13 C records of an AMS 14 C and 230 Th/U dated stalagmite from Xinya Cave in Chongqing: Climate and vegetation change during the late Holocene. Quaternary International, 30, 1e14. doi:10.1016/j.quaint.2017.06.075
Li, W., Chakraborty, S., Beard, B. L., Romanek, C. S., & Johnson, C. M. (2012). Magnesium isotope fractionation during precipitation of inorganic calcite under laboratory conditions. Earth and Planetary Science Letters, 333-334, 304-316. doi:10.1016/j.epsl.2012.04.010
MacDonald, G. M., & Edwards, K. J. (1991). Holocene palynology: I principles, population and community ecology, palaeoclimatology. Progress in Physical Geography, 15(3), 261-289. doi:10.1177/030913339101500303
Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G., & Ni, F. (2009). Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science, 326(5957), 1256-1260. doi:10.1126/science.1177303
Mayewski, P. A., Rohling, E. E., Stager, J. C., Karlén, W., Maasch, K. A., Meeker, L. D., Meyerson, E. A., Gasse, F., van Kreveld, S., & Holmgren, K. (2004). Holocene climate variability. Quaternary research, 62(3), 243-255. doi:10.1016/j.yqres.2004.07.001
McDermott, F. (2004). Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quaternary Science Reviews, 23(7-8), 901-918. doi:10.1016/j.quascirev.2003.06.021
Meyers, P. A., & Ishiwatari, R. (1993). Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic geochemistry, 20(7), 867-900. doi:10.1016/0146-6380(93)90100-P
Misra, K. C. (2012). Introduction to geochemistry: principles and applications. In. doi:10.1007/s10337-013-2455-1
Niu, M., Heaton, T., Blackwell, P., & Buck, C. (2013). The Bayesian approach to radiocarbon calibration curve estimation: the IntCal13, Marine13, and SHCal13 methodologies. Radiocarbon, 55(4), 1905-1922. doi:10.2458/azu_js_rc.55.17222
Noller, J. S. (2000). Lead‐210 geochronology. In J. M. S. W. R. L. Jay Stratton Noller (Ed.), Quaternary geochronology: Methods and applications AGU Reference Shelf (Vol. 4, pp. 115-120). doi:10.1029/RF004p0115
O'Leary, M. H. (1981). Carbon isotope fractionation in plants. Phytochemistry, 20(4), 553-567.
O'Neil, J. R., Clayton, R. N., & Mayeda, T. K. (1969). Oxygen isotope fractionation in divalent metal carbonates. The Journal of Chemical Physics, 51(12), 5547-5558. doi:10.1063/1.1671982
Perșoiu, A., Onac, B. P., Wynn, J. G., Blaauw, M., Ionita, M., & Hansson, M. (2017). Holocene winter climate variability in Central and Eastern Europe. Scientific reports, 7(1), 1196. doi:10.1038/s41598-017-01397-w
Prasad, S., Witt, A., Kienel, U., Dulski, P., Bauer, E., & Yancheva, G. (2009). The 8.2 ka event: Evidence for seasonal differences and the rate of climate change in western Europe. Global and Planetary Change, 67(3-4), 218-226. doi:10.1016/j.gloplacha.2009.03.011
Rasmussen, S. O., Andersen, K. K., Svensson, A., Steffensen, J. P., Vinther, B. M., Clausen, H. B., Siggaard‐Andersen, M. L., Johnsen, S. J., Larsen, L. B., & Dahl‐Jensen, D. (2006). A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research: Atmospheres, 111(D6). doi:10.1029/2005JD006079
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., & Friedrich, M. (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55(4), 1869-1887. doi:10.2458/azu_js_rc.55.16947
Rolph, G., Stein, A., & Stunder, B. (2017). Real-time environmental applications and display sYstem: READY. Environmental Modelling & Software, 95, 210-228. doi:10.1016/j.envsoft.2017.06.025
Rudaya, N., Nazarova, L., Novenko, E., Andreev, A., Kalugin, I., Daryin, A., Babich, V., Li, H.-C., & Shilov, P. (2016). Quantitative reconstructions of mid-to late holocene climate and vegetation in the north-eastern altai mountains recorded in lake teletskoye. Global and Planetary Change, 141, 12-24. doi:10.1016/j.gloplacha.2016.04.002
Ryabogina, N. E., Afonin, A. S., Ivanov, S. N., Li, H.-C., Kalinin, P. A., Udaltsov, S. N., & Nikolaenko, S. A. (2019). Holocene paleoenvironmental changes reflected in peat and lake sediment records of Western Siberia: Geochemical and plant macrofossil proxies. Quaternary International. doi:10.1016/j.quaint.2019.04.006
Schlütz, F., & Lehmkuhl, F. (2007). Climatic change in the Russian Altai, southern Siberia, based on palynological and geomorphological results, with implications for climatic teleconnections and human history since the middle Holocene. Vegetation history and Archaeobotany, 16(2-3), 101-118. doi:10.1007/s00334-006-0073-7
Sharp, Z. (2017). Principles of stable isotope geochemistry. In. doi:10.25844/h9q1-0p82
Shen, C.-C., Li, K.-S., Sieh, K., Natawidjaja, D., Cheng, H., Wang, X., Edwards, R. L., Lam, D. D., Hsieh, Y.-T., & Fan, T.-Y. (2008). Variation of initial 230Th/232Th and limits of high precision U–Th dating of shallow-water corals. Geochimica et cosmochimica Acta, 72(17), 4201-4223. doi:10.1016/j.gca.2008.06.011
Shen, C.-C., Lin, K., Duan, W., Jiang, X., Partin, J. W., Edwards, R. L., Cheng, H., & Tan, M. (2013). Testing the annual nature of speleothem banding. Scientific reports, 3, 2633. doi:0.1038/srep02633
Shen, C.-C., Wu, C.-C., Cheng, H., Edwards, R. L., Hsieh, Y.-T., Gallet, S., Chang, C.-C., Li, T.-Y., Lam, D. D., & Kano, A. (2012). High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols. Geochimica et cosmochimica Acta, 99, 71-86. doi:10.1016/j.gca.2012.09.018
Stein, A., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M., & Ngan, F. (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12), 2059-2077. doi:10.1175/bams-d-14-00110.1
Steinhilber, F., Beer, J., & Fröhlich, C. (2009). Total solar irradiance during the Holocene. Geophysical Research Letters, 36(19). doi:10.1029/2009gl040142
Stenström, K. E., Skog, G., Georgiadou, E., Genberg, J., & Johansson, A. (2011). A guide to radiocarbon units and calculations. Lund University, Department of Physics internal report, 1-17.
Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Rasmussen, S. O., & Röthlisberger, R. (2006). The Greenland ice core chronology 2005, 15–42 ka. Part 2: comparison to other records. Quaternary Science Reviews, 25(23-24), 3258-3267. doi:10.1016/j.quascirev.2006.08.003
Tarasov, P., Dorofeyuk, N., & ‘TSEVA, E. M. (2000). Holocene vegetation and climate changes in Hoton‐Nur basin, northwest Mongolia. Boreas, 29(2), 117-126. doi:10.1080/030094800750044303
Tarasov, P., Jolly, D., & Kaplan, J. (1997). A continuous Late Glacial and Holocene record of vegetation changes in Kazakhstan. Palaeogeography, Palaeoclimatology, Palaeoecology, 136(1-4), 281-292. doi:10.1016/S0031-0182(97)00072-2
Tchebakova, N., Parfenova, E., & Soja, A. J. E. R. L. (2009). The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate. Environmental Research Letters, 4(4), 045013. doi:10.1088/1748-9326/4/4/045013
Team, R. C. (2013). R: A language and environment for statistical computing.
Trumbore, S. E. (2000). Radiocarbon geochronology. In J. M. S. W. R. L. Jay Stratton Noller (Ed.), Quaternary geochronology: Methods and applications AGU Reference Shelf (Vol. 4, pp. 41-60).
Vinther, B. M., Clausen, H. B., Johnsen, S. J., Rasmussen, S. O., Andersen, K. K., Buchardt, S. L., Dahl‐Jensen, D., Seierstad, I. K., Siggaard‐Andersen, M. L., & Steffensen, J. P. (2006). A synchronized dating of three Greenland ice cores throughout the Holocene. Journal of Geophysical Research: Atmospheres, 111(D13). doi:10.1029/2005JD006921
Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U., Flückiger, J., Goosse, H., Grosjean, M., Joos, F., & Kaplan, J. O. (2008). Mid-to Late Holocene climate change: an overview. Quaternary Science Reviews, 27(19-20), 1791-1828. doi:10.1016/j.quascirev.2008.06.013
Westover, K. S., Fritz, S. C., Blyakharchuk, T. A., & Wright, H. E. (2006). Diatom paleolimnological record of Holocene climatic and environmental change in the Altai Mountains, Siberia. Journal of Paleolimnology, 35(3), 519-541. doi:10.1007/s10933-005-3241-3
Xu, X., Trumbore, S. E., Zheng, S., Southon, J. R., McDuffee, K. E., Luttgen, M., & Liu, J. C. (2007). Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: reducing background and attaining high precision. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 259(1), 320-329. doi:10.1016/j.nimb.2007.01.175
Zhao, M., Li, H.-C., Liu, Z.-H., Mii, H.-S., Sun, H.-L., Shen, C.-C., & Kang, S.-C. (2015). Changes in climate and vegetation of central Guizhou in southwest China since the last glacial reflected by stalagmite records from Yelang Cave. Journal of Asian Earth Sciences, 114, 549-561. doi:10.1016/j.jseaes.2015.07.021
Zhao, M., Li, H.-C., Shen, C.-C., Kang, S.-C., & Chou, C.-Y. (2017). δ18O, δ13C, elemental content and depositional features of a stalagmite from Yelang Cave reflecting climate and vegetation changes since late Pleistocene in central Guizhou, China. Quaternary International, 452, 102-115. doi:10.1016/j.quaint.2016.07.022
李红春, & 陳文寄. (1997). 利用洞穴石筍的 δ18O 和 δ13C 重建 3000a 以來北京地區古氣候和古環境――石花洞研究系列之三. 地震地質, 19(1), 77-86.
狩野彰宏. (2012). 石筍古気候学の原理と展開. 地質学雑誌, 118(3), 157-171. doi:10.5575/geosoc.2011.0025

Global Network of Isotopes in Precipitation, IAEA/WMO (current Year). The GNIP Database. Accessible at: https://nucleus.iaea.org/wiser
National Oceanic and Atmospheric Administration (current Year). Climate Monitoring Teleconnections. Accessible at: https://www.ncdc.noaa.gov/teleconnections/
Richard B. Firestone. (2002). The Berkeley Laboratory Isotopes Project's Exploring the Table of Isotopes. From Ernest O. Lawrence Berkeley National Laboratory. Website: https://web.archive.org/web/20070716212227/http://ie.lbl.gov/education/isotopes.htm
Stony Brook University (current Year). Atmospheric Centers of Action Indices. Accessible at: https://you.stonybrook.edu/coaindices/siberian-high/
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top