跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/09 00:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:余家濠
研究生(外文):Chia-Hao Yu
論文名稱:矽基異質磊晶工程:從矽鍺異質接合介面的能帶結構分析到甲基化矽基板上的氧化鋅凡得瓦磊晶成長
論文名稱(外文):Si Heteroepitaxial Engineering: From Probing Fine Structure at Commensurate Si/Ge Heterointerface to Incommensurate van der Waals Epitaxial Growth of ZnO on Methylated Si Surface
指導教授:溫政彥
指導教授(外文):Cheng-Yen Wen
口試委員:陳俊維顏鴻威李紹先吳恆良
口試委員(外文):Chun-Wei ChenHung-Wei YenShan-Sian LiHeng-Liang Wu
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:183
中文關鍵詞:異質磊晶超高真空化學氣相沉積矽鍺異質接合奈米線氣固固相成長原子層沉積掃描穿透式電子顯微鏡-電子損失能譜3D/3D凡德瓦磊晶化學浴沉積氧化鋅奈米柱甲烷化疏水表面自我組裝薄膜
外文關鍵詞:HeteroepitaxyUltra-high vacuum chemical vapor depositionSi/Ge heterojunction nanowirevapor-solid-solid growthatomic layer depositionScanning transmission electron microscopy-electron energy loss spectroscopy3D/3D van der Waals epitaxychemical bath depositionZnO nanorodTwo-step halogenation/methylationhydrophobic surfaceself-assembly monolayer
DOI:10.6342/NTU202000198
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
磊晶(Epitaxy)擴展了材料製程的可能性,但其受限於兩個材料間的晶格不匹配(Lattice mismatch)。本論文從兩個面向的研究以助矽磊晶領域的更進一步發展。磊晶不只能分別整合多種單晶薄膜材料於一單晶基板上,並且能控制晶體的成長方向,於矽的半導體磊晶製程領域,更能進行應變工程(Strain engineering),將矽薄膜磊晶成長於矽鍺虛擬基體(Virtual substrate)上以獲得應變矽(Strained silicon),進而提高矽的載子遷移率(Mobility)。隨著近來奈米尺度結構下磊晶成長的研究發展,具有極窄過渡區(Transition region)且無缺陷的矽/鍺異質介面,可透過由下而上(Bottom-up)的氣固固相(Vapor-solid-solid)成長法於高真空的環境下製備。本論文運用掃描穿透式電子顯微鏡的電子能量損失能譜分析(Scanning transmission electron microscopy-electron energy loss spectroscopy, STEM-EELS)以及幾何相位分析法(Geometrical phase analysis, GPA),以探討矽/鍺異質接面對於材料能帶結構(Band structure)的效應,此研究從微觀角度揭露了大應變下矽/鍺異質接面的電子能帶結構特性。另一方面雖然相稱的(Commensurate)異質磊晶系統可以在一些材料系統上實現,但本質上還是大幅地受限於材料間的晶格不匹配,並且在矽的異質磊晶系統裡,還要考量矽表面極易被氧化而影響磊晶製程的問題。因此在本論文的另一部份,嘗試運用凡得瓦磊晶(van der Waals epitaxy)的機制特性-磊晶材料與基材間不具備化學鍵結,於矽基材上發展凡得瓦磊晶成長。此研究成功地利用嫁接(Grafting)甲基官能基(Functional group)於矽基材表面,建構出不具有懸鍵(Dangling bonds)並且可延緩氧化發生的週期性表面,並在化學浴沉積製程 (Chemical bath deposition)的成長環境下發展出了矽基材上的氧化鋅凡得瓦磊晶成長。此外,更從中發現在氧化鋅的水溶液成長系統中,具有低表面能(Surface energy)的基板表面上會有鋅化合物的自我組裝(Self-assembly)成核特性。透過此一特性以及表面改質(Surface modification)製程,c軸取向氧化鋅奈米結構可直接成長於任意基材表面。
Heteroepitaxial growth is largely used in Si industry. Carrier mobility can be enhanced in the strained Si layer by introducing commensurate epitaxial system of Si/SiGe. Epitaxial stress in the heterointerface is determined by the lattice mismatches and the sharpness of the heterointerface. Considering the intrinsic material characteristic, ultimate plate strain is limited, generally < 1%. Recently, preparation of dislocation-free Si/Ge heterojunction is succeeded in nanoscale with the vapor-solid-solid (VSS) growth method. Large degrees of strain engineering, up to 4.2%, are then achievable in this unique structure. Up to now, there is still no experimental analyzation work of the localized strain effect on the band structure of that nanostructure. We therefore use geometrical phase analysis (GPA) to study the degree of strain near the Si/Ge heterointerface and electron energy loss spectroscopy in the scanning transmission electron microscopy (STEM-EELS) mode to further study the localized fine structure at the heterointerface. This research unveils the route to probe the localized fine structure at the Si/Ge heterointerface and potential effect of interface dipole in this system. On the other hand, the available pair selection in the heteroepitaxial material system is still limited by their lattice structures, and Si-based heteroepitaxial growth system is generally vacuum process operated at high temperature. Therefore, we develop a more universal approach for heteroepitaxial growth by grafting the methyl group on Si(111) surface for achieving van der Waals epitaxial growth and deferring the oxidation of the surface. With such a treatment of preparing periodic passivated surface, ZnO nanostructure can be directly epitaxially grown on the methylated Si(111) substrate surface in the chemical bath deposition (CBD) process, with the characteristics of van der Waals epitaxy. Furthermore, self-assembly nucleation behaviors with a preferred orientation at the extended hydrophobic surface are observed on several kinds of hydrophobic substrate surface.
口試委員會審定書 #
致謝 i
ABSTRACT ii
中文摘要 iv
CONTENTS vi
LIST OF FIGURES xii
Chapter 1 Introduction and Motivation 1
Chapter 2 Literature review 5
2.1 Strain engineering in atomically abrupt silicon/germanium heterojunction nanowires 5
2.1.1 Characteristics and syntheses of Si/Ge heterojunction nanowires 7
2.1.2 Characteristics of Si/Ge heterointerface 10
2.1.3 Probing the strain effect on the Si/Ge heterostructure 14
2.2 van der Waals epitaxial growth of ZnO on grafted Si substrate surface by the CBD process 17
2.2.1 van der Waals epitaxy 18
2.2.2 Characteristics and syntheses of ZnO nanostructure 20
2.3 Self-assembly nucleation with a preferred orientation at the extended hydrophobic surface towards textural ZnO nanostructure growth 22
2.3.1 Aqueous solution at the extended hydrophobic surface 23
2.3.2 Seedless ZnO nanostructure growth 26
Chapter 3 Experimental procedures and research methods 34
3.1 Experimental procedures and design 34
3.1.1 Probing localized lattice strain effect on the atomically abrupt silicon/germanium heterointerface by GPA and STEM-EELS 34
3.1.2 van der Waals epitaxial growth of ZnO nanostructures on the methylated Si(111) surface in CBD 37
3.1.3 Self-assembly nucleation at the extended hydrophobic surface towards textural ZnO nanostructure growth 39
3.2 Experimental growth systems 40
3.2.1 Ultra-high vacuum chemical vapor deposition (UHVCVD) system for IV-group semiconductor nanowires growth 41
3.2.2 Atomic layer deposition system of aluminum oxide 43
3.2.3 Chemical bath deposition (CBD) growth system of ZnO 44
3.2.4 Surface modification process on Si substrates 47
3.2.4.1 Two-step halogenation/methylation process 47
3.2.4.2 Self-assembly monolayer (SAM) process 49
3.3 Analysis methods 50
3.3.1 X-ray diffraction (XRD) 51
3.3.1.1 θ-2θ method (scanning of the incident and diffracted beam) 52
3.3.1.2 Grazing incidence XRD (GIXRD, scanning of the diffracted beam) 53
3.3.1.3 Rocking curve measurement 53
3.3.1.4 In-plane X-ray diffraction method 54
3.3.2 Contact angle measurement 54
3.3.3 Ultraviolet-visible (UV-vis) spectroscopy 55
3.3.4 Photoluminescence (PL) 55
3.3.5 Raman spectroscopy 56
3.3.6 Electron microscopy (EM) 57
3.3.6.1 Scanning electron microscopy (SEM) 59
3.3.6.2 Scanning auger microscopy (SAM) 60
3.3.6.3 Transmission electron microscopy (TEM) 62
I. Selection area electron diffraction (SAED) method 62
II. High resolution transmission electron microscopy (HRTEM) 63
III. Geometric phase analysis (GPA) method 64
IV. Scanning transmission electron microscopy (STEM) 64
V. X-ray energy dispersive spectroscopy (XEDS) 65
VI. Electron energy loss spectroscopy (EELS) 66
3.3.6.4 Preparation of transmission electron microscopy specimen 67
3.3.7 First principle simulation: CASTEP calculation 68
Chapter 4 Probing fine structure at atomically abrupt Si/Ge heterointerface 70
4.1 Preparation of the 1-D Si/Ge heterojunction specimen for the STEM-EELS analysis 70
4.1.1 Growth characteristics of the Si/Ge heterojunction nanowire fabricated by the VLS and VSS method 70
4.1.2 Uniformity and conformity of ALD-deposited Al2O3 thin films on 1-D structures 72
4.2 Lattice strain in the atomically abrupt silicon/germanium heterojunction nanowires 74
4.2.1 Transition regions at the silicon/germanium heterointerface 75
4.2.2 Strain distribution near the Si/Ge heterointerface 76
4.3 Probing the fine structure near the silicon/germanium heterointerface by EELS 78
4.3.1 Valence electron energy-loss spectroscopy analyses near the Si/Ge heterointerface 78
4.3.2 Energy-loss near-edge structure (ELNES) analyses near the Si/Ge heterointerface 82
4.3.3 Further preparation of specimen for the STEM-EELS analysis. 85
4.4 Summary 87
Chapter 5 Grafting methyl group as buffer layer for van der Waals epitaxial growth of ZnO on Si(111) surface 89
5.1 van der Waals epitaxial growth of ZnO on CH3-Si(111) surface 89
5.1.1 Basic examination of the CH3-Si(111) surface 89
5.1.2 ZnO nanostructure growth on the H-Si(111) and CH3-Si(111) surface 91
5.1.2.1 ZnO nanostructure grown on the methylated Si(111) surface 92
5.1.2.2 ZnO nanostructure grown on the H-terminated Si(111) surface 95
5.2 Growth mechanism of van der Waals epitaxial growth of ZnO on CH3-Si(111) surface 96
5.3 Zinc oxide nanostructure growth on other periodic surface which is free of dangling bonds 100
5.3.1 Graphene and HOPG as grown surface 100
5.3.2 MoS2 as the grown surface 102
5.4 Summary 103
Chapter 6 Self-assembly nucleation with a preferred orientation at the extended hydrophobic surface towards textural ZnO nanostructure growth in CBD 105
6.1 Growth properties of ZnO on modified Si surfaces by CBD 105
6.1.1 Zinc oxide nanostructure growth on Si substrates with the conventional seed layer pretreatment 106
6.1.2 Surface modification on silicon substrates by the self-assembly monolayer method 109
6.2 Nucleation of nanosheets at the extended hydrophobic surface 110
6.2.1 Nucleation at the extended hydrophobic surface with different nutrient solution conditions 111
6.2.2 Structural and compositional analyses on the nucleation species formed at the extended hydrophobic surface 117
6.2.2.1 Compositional analyses on the nucleation layer formed at the extended hydrophobic surface 117
6.2.2.2 Structural analyses on the nucleation layer 122
6.3 Zinc oxide nanostructure growth at the extended hydrophobic surface 128
6.3.1 Textural ZnO nanostructure growth on the methyl-group ended surface 128
6.3.2 Highly textured ZnO nanostructure growth on other kinds of substrate surface 134
6.4 Summary 138
Chapter 7 Conclusion and future prospect 139
Chapter 8 References 141
Appendix A - Optical and electric properties of carbon-doped SrTiO3 prepared by continuous feeding in oxygen-lean thermal CVD system 156
9.1 Background of C-doped SrTiO3 156
9.2 Experimental system and procedures. 161
9.2.1 Chemical vapor deposition system for carbon doping 161
9.2.2 The surface on the SrTiO3 substrate after the CVD treatment 162
9.2.3 Compositional analysis of the dopant species in SrTiO3 by SIMS 163
9.3 Optical and electrical properties of C-doped SrTiO3 164
9.3.1 Optical properties of the C-doped SrTiO3 165
9.3.2 Electrical properties of the C-doped SrTiO3 167
9.4 Doping site of C in SrTiO3 169
Appendix B – Ultrathin pyrolytic carbon grown on single crystalline r-Al2O3 surface 172
10.1 Background of r-Al2O3 172
10.1.1 Structural characterization and preparation of r-Al2O3 173
10.1.2 Graphene growth on r-Al2O3 176
10.2 Procedures of single-crystalline r-Al2O3 epilayers on TiO2-terminated SrTiO3 substrates by ALD 179
10.3 Graphene growth on the r-Al2O3 surface 180
10.3.1 Graphene growth on polycrystalline r-Al2O3 layers 181
10.3.2 Graphene growth on the epitaxial r-Al2O3 layer 183
[1]Krishnamohan, T., D. Kim, T.V. Dinh, A.-t. Pham, B. Meinerzhagen, C. Jungemann, et al. “Comparison of (001),(110) and (111) Uniaxial-and Biaxial-strained-Ge and Strained-Si pMOS DGFETs for All Channel Orientations: Mobility Enhancement, Drive Current, Delay and Off-state Leakage,” in Electron Devices Meeting, 2008.
[2]Wen, C.Y., M.C. Reuter, J. Bruley, J. Tersoff, S. Kodambaka, E.A. Stach, et al., “Formation of Compositionally Abrupt Axial Heterojunctions in Silicon-germanium Nanowires,” Science 326, 1247-1250, 2009.
[3]Yoshida, S., S. Misawa, and S. Gonda, “Improvements on the Electrical and Luminescent Properties of Reactive Molecular-beam Epitaxially Grown GaN Films by Using AlN-coated Sapphire Substrates,” Appl. Phys. Lett. 42, 427-429, 1983.
[4]Legoues, F.K., B.S. Meyerson, J.F. Morar, and P.D. Kirchner, “Mechanism and Conditions for Anomalous Strain Relaxation in Graded Thin-films and Superlattices,” J. Appl. Phys. 71, 4230-4243, 1992.
[5]Dick, K.A., J. Bolinsson, B.M. Borg, and J. Johansson, “Controlling the Abruptness of Axial Heterojunctions in III-V Nanowires: Beyond the Reservoir Effect,” Nano Lett. 12, 3200-3206, 2012.
[6]Liu, Y., Y. Huang, and X.F. Duan, “van der Waals Integration before and beyond Two-dimensional Materials,” Nature 567, 323-333, 2019.
[7]Utama, M.I.B., F.J. Belarre, C. Magen, B. Peng, J. Arbiol, and Q.H. Xiong, “Incommensurate van der Waals Epitaxy of Nanowire Arrays: A Case Study with ZnO on Muscovite Mica Substrates,” Nano Lett. 12, 2146-2152, 2012.
[8]Koma, A., “van der Waals Epitaxy - a New Epitaxial-growth Method for a Highly Lattice-mismatched System,” Thin Solid Films 216, 72-76, 1992.
[9]Utama, M.I.B., Q. Zhang, J. Zhang, Y.W. Yuan, F.J. Belarre, J. Arbiol, et al., “Recent Developments and Future Directions in the Growth of Nanostructures by van der Waals Epitaxy,” Nanoscale 5, 3570-3588, 2013.
[10]Koma, A., K. Sunouchi, and T. Miyajima, “Fabrication and Characterization of Heterostructures with Subnanometer Thickness,” Microelectron. Eng. 2, 129-136, 1984.
[11]Duong, D.L., S.J. Yun, and Y.H. Lee, “van der Waals Layered Materials: Opportunities and Challenges,” ACS Nano 11, 11803-11830, 2017.
[12]Kim, Y., S.S. Cruz, K. Lee, B.O. Alawode, C. Choi, Y. Song, et al., “Remote Epitaxy through Graphene Enables Two-dimensional Material-based Layer Transfer,” Nature 544, 340, 2017.
[13]Jeong, J., K.A. Min, D.H. Shin, W.S. Yang, J. Yoo, S.W. Lee, et al., “Remote Homoepitaxy of ZnO Microrods across Graphene Layers,” Nanoscale 10, 22970-22980, 2018.
[14]Lu, Z.H., X. Sun, W.Y. Xie, A. Littlejohn, G.C. Wang, S.B. Zhang, et al., “Remote Epitaxy of Copper on Sapphire through Monolayer Graphene Buffer,” Nanotechnology 29, 11, 2018.
[15]Jeong, J., K.A. Min, B.K. Kang, D.H. Shin, J. Yoo, W.S. Yang, et al., “Remote Heteroepitaxy across Graphene: Hydrothermal Growth of Vertical ZnO Microrods on Graphene-coated GaN Substrate,” Appl. Phys. Lett. 113, 5, 2018.
[16]Li, X.S., Y.W. Zhu, W.W. Cai, M. Borysiak, B.Y. Han, D. Chen, et al., “Transfer of Large-area Graphene Films for High-performance transparent conductive electrodes,” Nano Lett. 9, 4359-4363, 2009.
[17]Chen, Y., X.L. Gong, and J.G. Gai, “Progress and Challenges in Transfer of Large-area Graphene Films,” Adv. Sci. 3, 15, 2016.
[18]Wong, K.T. and N.S. Lewis, “What a Difference a Bond Makes: The Structural, Chemical, and Physical Properties of Methyl-terminated Si(111) Surfaces,” Acc. Chem. Res. 47, 3037-3044, 2014.
[19]Kolodziejczak-Radzimska, A. and T. Jesionowski, “Zinc Oxide-from Synthesis to Application: A Review,” Materials 7, 2833-2881, 2014.
[20]Xu, S. and Z.L. Wang, “One-dimensional ZnO Nanostructures: Solution Growth and Functional Properties,” Nano Research 4, 1013-1098, 2011.
[21]Bjornehohn, E., M.H. Hansen, A. Hodgson, L.M. Liu, D.T. Limmer, A. Michaelides, et al., “Water at Interfaces,” Chemical Reviews 116, 7698-7726, 2016.
[22]Spaepen, F., “Condensed-matter Science - Five-fold Symmetry in Liquids,” Nature 408, 781-782, 2000.
[23]Rayner-Canham, G. and T. Overton, “Descriptive Inorganic Chemistry.” W. H. Freeman, 2013.
[24]Paul, D.J., “Si/SiGe Heterostructures: From Material and Physics to Devices and Circuits,” Semicond. Sci. Technol. 19, R75-R108, 2004.
[25]Vandermerwe, J.H., “Misfitting Monolayers and Oriented Overgrowth,” Discussions of the Faraday Society, 201-214, 1949.
[26]Matthews, J.W. and A.E. Blakeslee, “Defects in Epitaxial Multilayers .I. Misfit Dislocations,” J. Cryst. Growth 27, 118-125, 1974.
[27]Glas, F., “Critical Dimensions for the Plastic Relaxation of Strained Axial Heterostructures in Free-standing Nanowires,” Phys. Rev. B 74, 4, 2006.
[28]Amato, M., M. Palummo, R. Rurali, and S. Ossicini, “Silicon-germanium Nanowires: Chemistry and Physics in Play, from Basic Principles to Advanced Applications,” Chemical Reviews 114, 1371-1412, 2014.
[29]Hobbs, R.G., N. Petkov, and J.D. Holmes, “Semiconductor Nanowire Fabrication by Bottom-up and Top-down Paradigms,” Chem. Mat. 24, 1975-1991, 2012.
[30]Wei, L. and M.L. Charles, “Semiconductor Nanowires,” Journal of Physics D: Applied Physics 39, R387, 2006.
[31]Schmidt, V., J.V. Wittemann, S. Senz, and U. Gosele, “Silicon Nanowires: A Review on Aspects of their Growth and Their Electrical Properties,” Adv. Mater. 21, 2681-2702, 2009.
[32]Hochbaum, A.I., R. Fan, R.R. He, and P.D. Yang, “Controlled Growth of Si Nanowire Arrays for Device Integration,” Nano Lett. 5, 457-460, 2005.
[33]Wagner, R.S. and W.C. Ellis, “Vapor-liquid-solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4, 89-&, 1964.
[34]Cui, Y., L.J. Lauhon, M.S. Gudiksen, J.F. Wang, and C.M. Lieber, “Diameter-Controlled Synthesis of Single-crystal Silicon Nanowires,” Appl. Phys. Lett. 78, 2214-2216, 2001.
[35]Clark, T.E., P. Nimmatoori, K.K. Lew, L. Pan, J.M. Redwing, and E.C. Dickey, “Diameter Dependent Growth Rate and Interfacial Abruptness in Vapor-liquid-solid Si/Si(1-X)Ge(X) Heterostructure Nanowires,” Nano Lett. 8, 1246-1252, 2008.
[36]Chou, Y.C., C.Y. Wen, M.C. Reuter, D. Su, E.A. Stach, and F.M. Ross, “Controlling the Growth of Si/Ge Nanowires and Heterojunctions Using Silver-gold Alloy Catalysts,” ACS Nano 6, 6407-6415, 2012.
[37]People, R. and J.C. Bean, “Calculation of Critical Layer Thickness versus Lattice Mismatch for Gexsi1-X/Si Strained-Layer Heterostructures,” Appl. Phys. Lett. 47, 322-324, 1985.
[38]Vandermerwe, J.H., “Crystal Interfaces .II. Finite Overgrowths,” J. Appl. Phys. 34, 123-&, 1963.
[39]Van De Walle, C.G. and R.M. Martin, “Theoretical Calculations of Heterojunction Discontinuities in the Si/Ge System,” Phys. Rev. B 34, 5621-5634, 1986.
[40]Kasap, S. and P. Capper, “Springer Handbook of Electronic and Photonic Materials.” Springer International Publishing, 2017.
[41]Wen, C.Y., M.C. Reuter, D. Su, E.A. Stach, and F.M. Ross, “Strain and Stability of Ultrathin Ge Layers in Si/Ge/Si Axial Heterojunction Nanowires,” Nano Lett. 15, 1654-1659, 2015.
[42]King, P.D.C., T.D. Veal, P.H. Jefferson, C.F. McConville, T. Wang, P.J. Parbrook, et al., “Valence Band Offset of InN/AlN Heterojunctions Measured by X-Ray Photoelectron Spectroscopy,” Appl. Phys. Lett. 90, 3, 2007.
[43]Egoavil, R., N. Gauquelin, G.T. Martinez, S. Van Aert, G. Van Tendeloo, and J. Verbeeck, “Atomic Resolution Mapping of Phonon Excitations in STEM-EELS Experiments,” Ultramicroscopy 147, 1-7, 2014.
[44]Williams, D.B. and C.B. Carter, The Transmission Electron Microscope, in Transmission Electron Microscopy. 1996, Springer.
[45]Egerton, R., “Electron Energy-loss Spectroscopy in the Electron Microscope.” Springer US, 2012.
[46]Li, G.P., L. Jiang, S.J. Wang, X.W. Sun, X.D. Chen, and T. Wu, “Buffer-layer-assisted Epitaxial Growth of Perfectly Aligned Oxide Nanorod Arrays in Solution,” Crystal Growth & Design 11, 4885-4891, 2011.
[47]Euaruksakul, C., Z.W. Li, F. Zheng, F.J. Himpsel, C.S. Ritz, B. Tanto, et al., “Influence of Strain on the Conduction Band Structure of Strained Silicon Nanomembranes,” Physical Review Letters 101, 4, 2008.
[48]Euaruksakul, C., F. Chen, B. Tanto, C.S. Ritz, D.M. Paskiewicz, F.J. Himpsel, et al., “Relationships between Strain and Band Structure in Si(001) and Si(110) Nanomembranes,” Phys. Rev. B 80, 11, 2009.
[49]!!! INVALID CITATION !!! [49].
[50]Cavallo, F. and M.G. Lagally, “Semiconductor Nanomembranes: A Platform for New Properties via Strain Engineering,” Nanoscale Res. Lett. 7, 1-10, 2012.
[51]Ozgur, U., Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, et al., “A Comprehensive Review of ZnO Materials and Devices,” J. Appl. Phys. 98, 103, 2005.
[52]Wang, Z.L., “Zinc Oxide Nanostructures: Growth, Properties and Applications,” Journal of Physics-Condensed Matter 16, R829-R858, 2004.
[53]Zhao, H., L.Z. Hu, Z.Y. Wang, Z.J. Wang, H.Q. Zhang, Y. Zhao, et al., “Epitaxial Growth of ZnO Thin Films on Si Substrates by PLD Technique,” J. Cryst. Growth 280, 455-461, 2005.
[54]Tynell, T. and M. Karppinen, “Atomic Layer Deposition of ZnO: A Review,” Semicond. Sci. Technol. 29, 15, 2014.
[55]Znaidi, L., “Sol-gel-deposited ZnO Thin Films: A Review,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 174, 18-30, 2010.
[56]Purica, M., E. Budianu, E. Rusu, M. Danila, and R. Gavrila, “Optical and Structural Investigation of ZnO Thin Films Prepared by Chemical Vapor Deposition (CVD),” Thin Solid Films 403, 485-488, 2002.
[57]Huang, S.M., Z.Q. Bian, J.B. Chu, Z.A. Wang, X.D. Li, H.B. Zhu, et al., “One-step Growth of Structured ZnO Thin Films by Chemical Bath Deposition in Aqueous Ammonia Solution,” J. Phys. D-Appl. Phys. 42, 6, 2009.
[58]Kim, J.H., E.M. Kim, D. Andeen, D. Thomson, S.P. DenBaars, and F.F. Lange, “Growth of Heteroepitaxial ZnO Thin Films on GaN-Buffered Al2O3(0001) Substrates by Low-temperature Hydrothermal Synthesis at 90 Degrees C,” Adv. Funct. Mater. 17, 463-471, 2007.
[59]Scatena, L.F., M.G. Brown, and G.L. Richmond, “Water at Hydrophobic Surfaces: Weak Hydrogen Bonding and Strong Orientation Effects,” Science 292, 908-912, 2001.
[60]Du, Q., E. Freysz, and Y.R. Shen, “Surface Vibrational Spectroscopic Studies of Hydrogen-bonding and Hydrophobicity,” Science 264, 826-828, 1994.
[61]Tyrode, E. and J.F.D. Liljeblad, “Water Structure Next to Ordered and Disordered Hydrophobic Silane Monolayers: A Vibrational Sum Frequency Spectroscopy Study,” J. Phys. Chem. C 117, 1780-1790, 2013.
[62]Horinek, D. and R.R. Netz, “Specific Ion Adsorption at Hydrophobic Solid Surfaces,” Physical Review Letters 99, 4, 2007.
[63]Schwierz, N., D. Horinek, and R.R. Netz, “Anionic and Cationic Hofmeister Effects on Hydrophobic and Hydrophilic Surfaces,” Langmuir 29, 2602-2614, 2013.
[64]Kim, Y.J., Hadiyawarman, A. Yoon, M. Kim, G.C. Yi, and C. Liu, “Hydrothermally Grown ZnO Nanostructures on Few-layer Graphene Sheets,” Nanotechnology 22, 8, 2011.
[65]Kim, B.H. and J.W. Kwon, “Metal Catalyst for Low-temperature Growth of Controlled Zinc Oxide Nanowires on Arbitrary Substrates,” Sci Rep 4, 9, 2014.
[66]Wang, F., J.H. Seo, G.F. Luo, M.B. Starr, Z.D. Li, D.L. Geng, et al., “Nanometre-Thick Single-crystalline Nanosheets Grown at the Water-air Interface,” Nat. Commun. 7, 7, 2016.
[67]Masuda, Y. and K. Kato, “High c-Axis Oriented Stand-alone ZnO Self-assembled Film,” Cryst. Growth Des. 8, 275-279, 2008.
[68]Masuda, Y., N. Kinoshita, F. Sato, and K. Koumoto, “Site-selective Deposition and Morphology Control of UV- and Visible-Light-Emitting ZnO Crystals,” Cryst. Growth Des. 6, 75-78, 2006.
[69]Liu, C.S., Y. Masuda, Y.Y. Wu, and O. Takai, “A Simple Route for Growing Thin Films of Uniform ZnO Nanorod Arrays on Functionalized Si Surfaces,” Thin Solid Films 503, 110-114, 2006.
[70]Liu, C.S., Y. Masuda, Z.W. Li, Q. Zhang, and T. Li, “Site-selective Growth of Highly Oriented ZnO Rod Arrays on Patterned Functionalized Si Substrates from Aqueous Solution,” Cryst. Growth Des. 9, 2168-2172, 2009.
[71]Ahn, C.C. and O.L. Krivanek, “EELS Atlas: A Reference Collection of Electron Energy Loss Spectra Covering All Stable Elements.” Gatan, 1983.
[72]Suntola, T. and J. Antson, “Method for Producing Compound Thin Films,” 1977, Google Patents.
[73]George, S.M., “Atomic Layer Deposition: An Overview,” Chemical Reviews 110, 111-131, 2010.
[74]Miikkulainen, V., M. Leskela, M. Ritala, and R.L. Puurunen, “Crystallinity of Inorganic Films Grown by Atomic Layer Deposition: Overview and General Trends,” J. Appl. Phys. 113, 101, 2013.
[75]Johnson, R.W., A. Hultqvist, and S.F. Bent, “A Brief Review of Atomic Layer Deposition: From Fundamentals to Applications,” Materials Today 17, 236-246, 2014.
[76]Higashi, G.S. and C.G. Fleming, “Sequential Surface Chemical-Reaction Limited Growth of High-quality Al2O3 Dielectrics,” Appl. Phys. Lett. 55, 1963-1965, 1989.
[77]Puurunen, R.L., “Surface Chemistry of Atomic Layer Deposition: A Case Study for the Trimethylaluminum/water Process,” J. Appl. Phys. 97, 52, 2005.
[78]Tian, J.H., J. Hu, S.S. Li, F. Zhang, J. Liu, J. Shi, et al., “Improved Seedless Hydrothermal Synthesis of Dense and Ultralong ZnO Nanowires,” Nanotechnology 22, 9, 2011.
[79]Ashfold, M.N.R., R.P. Doherty, N.G. Ndifor-Angwafor, D.J. Riley, and Y. Sun, “The Kinetics of the Hydrothermal Growth of ZnO Nanostructures,” Thin Solid Films 515, 8679-8683, 2007.
[80]Yamabi, S. and H. Imai, “Growth Conditions for Wurtzite Zinc Oxide Films in Aqueous Solutions,” J. Mater. Chem. 12, 3773-3778, 2002.
[81]Ito, Y., A.A. Virkar, S. Mannsfeld, J.H. Oh, M. Toney, J. Locklin, et al., “Crystalline Ultrasmooth Self-assembled Monolayers of Alkylsilanes for Organic Field-effect Transistors,” J. Am. Chem. Soc. 131, 9396-9404, 2009.
[82]Birkholz, M., “Thin Film Analysis by X-ray Scattering.” Wiley, 2006.
[83]Bracco, G. and B. Holst, “Surface Science Techniques.” Springer Berlin Heidelberg, 2013.
[84]Bigelow, W.C., D.L. Pickett, and W.A. Zisman, “Oleophobic Monolayers .1. Films Adsorbed from Solution in Non-polar Liquids,” Journal of Colloid Science 1, 513-538, 1946.
[85]Skoog, D.A., F.J. Holler, and S.R. Crouch, “Principles of Instrumental Analysis.” Cengage Learning, 2017.
[86]Ni, Z.H., Y.Y. Wang, T. Yu, and Z.X. Shen, “Raman Spectroscopy and Imaging of Graphene,” Nano Research 1, 273-291, 2008.
[87]Goldstein, J.I., D.E. Newbury, J.R. Michael, N.W.M. Ritchie, J.H.J. Scott, and D.C. Joy, “Scanning Electron Microscopy and X-ray Microanalysis.” Springer New York, 2017.
[88]Watts, J.F. and J. Wolstenholme, “An Introduction to Surface Analysis by XPS and AES.” Wiley, 2003.
[89]Wolstenholme, J., “Auger Electron Spectroscopy: Practical Application to Materials Analysis and Characterization of Surfaces, Interfaces, and Thin Films.” Momentum Press, 2015.
[90]Hytch, M.J., E. Snoeck, and R. Kilaas, “Quantitative Measurement of Displacement and Strain Fields from HREM Micrographs,” Ultramicroscopy 74, 131-146, 1998.
[91]Pennycook, S.J. and P.D. Nellist, “Scanning Transmission Electron Microscopy: Imaging and Analysis.” Springer New York, 2011.
[92]Egerton, R.F., “Electron Energy-loss Spectroscopy in the Electron Microscope.” Springer US, 2011.
[93]Saito, H., C.H. Chen, and H. Kurata, “Optical Guided Modes Coupled with Cerenkov Radiation Excited in Si Slab Using Angular-resolved Electron Energy-loss Spectrum,” J. Appl. Phys. 113, 7, 2013.
[94]Muller, D.A. and J. Silcox, “Delocalization in Inelastic-scattering,” Ultramicroscopy 59, 195-213, 1995.
[95]Payne, M.C., M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, “Iterative Minimization Techniques for Abinitio Total-energy Calculations - Molecular-Dynamics and Conjugate Gradients,” Rev. Mod. Phys. 64, 1045-1097, 1992.
[96]Clark, S.J., M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, et al., “First Principles Methods Using CASTEP,” Z. Kristall. 220, 567-570, 2005.
[97]Segall, M.D., P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, et al., “First-principles Simulation: Ideas, Illustrations and the CASTEP Code,” Journal of Physics-Condensed Matter 14, 2717-2744, 2002.
[98]Rafferty, B. and L.M. Brown, “Direct and Indirect Transitions in the Region of the Band Gap Using Electron-energy-loss Spectroscopy,” Phys. Rev. B 58, 10326-10337, 1998.
[99]Nicholas, N.J., G.V. Franks, and W.A. Ducker, “The Mechanism for Hydrothermal Growth of Zinc Oxide,” Crystengcomm 14, 1232-1240, 2012.
[100]Lieth, R.M.A. and R.M. Lieth, “Preparation and Crystal Growth of Materials with Layered Structures.” Springer, 1977.
[101]Danon, A., P.C. Stair, and E. Weitz, “FTIR Study of CO2 Adsorption on Amine-grafted Sba-15: Elucidation of Adsorbed Species,” J. Phys. Chem. C 115, 11540-11549, 2011.
[102]Chang, A.C.C., S.S.C. Chuang, M. Gray, and Y. Soong, “In-situ Infrared Study of CO2 Adsorption on Sba-15 Grafted with Gamma-(aminopropyl)triethoxysilane,” Energy Fuels 17, 468-473, 2003.
[103]Fujishima, A. and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238, 37, 1972.
[104]van Benthem, K., C. Elsasser, and R.H. French, “Bulk Electronic Structure of SrTiO3: Experiment and Theory,” J. Appl. Phys. 90, 6156-6164, 2001.
[105]Gai, Y.Q., J.B. Li, S.S. Li, J.B. Xia, and S.H. Wei, “Design of Narrow-gap TiO2: A Passivated Codoping Approach for Enhanced Photoelectrochemical Activity,” Physical Review Letters 102, 4, 2009.
[106]Chen, H.C., C.W. Huang, J.C.S. Wu, and S.T. Lin, “Theoretical Investigation of the Metal-doped SrTiO3 Photocatalysts for Water Splitting,” J. Phys. Chem. C 116, 7897-7903, 2012.
[107]Al-Hadidi, M., J.P. Goss, P.R. Briddon, R. Al-Hamadany, M. Ahmed, and M.J. Rayson, “Carbon Impurities in SrTiO3 from First Principles,” Model. Simul. Mater. Sci. Eng. 23, 15, 2015.
[108]Li, N. and K.L. Yao, “The Electronic and Optical Properties of Carbon-doped SrTiO3: Density Functional Characterization,” AIP Adv. 2, 10, 2012.
[109]Zhang, C., Y.Z. Jia, Y. Jing, Y. Yao, J. Ma, and J.H. Sun, “Effect of Non-metal Elements (B, C, N, F, P, S) Mono-doping as Anions on Electronic Structure of SrTiO3,” Comput. Mater. Sci. 79, 69-74, 2013.
[110]Baer, W.S., “Free-carrier Absorption in Reduced SrTiO3,” Physical Review 144, 734, 1966.
[111]Chang-Chen Luo, “Graphene Growth on γ Phase Alumina Oxide Substrate,” N TThesis in National Taiwan University, 2015.
[112]Levin, I. and D. Brandon, “Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences,” J. Am. Ceram. Soc. 81, 1995-2012, 1998.
[113]Ionescu, A., A. Allouche, J.P. Aycard, M. Rajzmann, and F. Hutschka, “Study of Gamma-alumina Surface Reactivity: Adsorption of Water and Hydrogen Sulfide on Octahedral Aluminum Sites,” J. Phys. Chem. B 106, 9359-9366, 2002.
[114]Trueba, M. and S.P. Trasatti, “Gamma-alumina as a Support for Catalysts: A Review of Fundamental Aspects,” Eur. J. Inorg. Chem., 3393-3403, 2005.
[115]Jakschik, S., U. Schroeder, T. Hecht, M. Gutsche, H. Seidl, and J.W. Bartha, “Crystallization Behavior of Thin ALD-Al2O3 Films,” Thin Solid Films 425, 216-220, 2003.
[116]Ngo, T.Q., N.J. Goble, A. Posadas, K.J. Kormondy, S.R. Lu, M.D. McDaniel, et al., “Quasi-two-dimensional Electron Gas at the Interface of Gamma-Al2O3/SrTiO3 Heterostructures Grown by Atomic Layer Deposition,” J. Appl. Phys. 118, 7, 2015.
[117]Novoselov, K.S., A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, et al., “Electric Field Effect in Atomically Thin Carbon Films,” Science 306, 666-669, 2004.
[118]Geim, A.K. and K.S. Novoselov, “The Rise of Graphene,” Nat. Mater. 6, 183-191, 2007.
[119]Choi, W., I. Lahiri, R. Seelaboyina, and Y.S. Kang, “Synthesis of Graphene and its Applications: A Review,” Crit. Rev. Solid State Mat. Sci. 35, 52-71, 2010.
[120]Young, R.J., I.A. Kinloch, L. Gong, and K.S. Novoselov, “The Mechanics of Graphene Nanocomposites: A Review,” Compos. Sci. Technol. 72, 1459-1476, 2012.
[121]Liao, L. and X.F. Duan, “Graphene-dielectric Integration for Graphene Transistors,” Mater. Sci. Eng. R-Rep. 70, 354-370, 2010.
[122]Han, Y.Y., L. Zhang, X.J. Zhang, K.Q. Ruan, L.S. Cui, Y.M. Wang, et al., “Clean Surface Transfer of Graphene Films via an Effective Sandwich Method for Organic Light-emitting Diode Applications,” J. Mater. Chem. C 2, 201-207, 2014.
[123]Wu, W., Z.H. Liu, L.A. Jauregui, Q.K. Yu, R. Pillai, H.L. Cao, et al., “Wafer-scale Synthesis of Graphene by Chemical Vapor Deposition and its Application in Hydrogen Sensing,” Sens. Actuator B-Chem. 150, 296-300, 2010.
[124]Bai, H., C. Li, and G.Q. Shi, “Functional Composite Materials Based on Chemically Converted Graphene,” Adv. Mater. 23, 1089-1115, 2011.
[125]Lu, X.K., M.F. Yu, H. Huang, and R.S. Ruoff, “Tailoring Graphite with the Goal of Achieving Single Sheets,” Nanotechnology 10, 269-272, 1999.
[126]Munoz, R. and C. Gomez-Aleixandre, “Review of CVD Synthesis of Graphene,” Chemical Vapor Deposition 19, 297-322, 2013.
[127]Shin, H.J., K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, et al., “Efficient Reduction of Graphite Oxide by Sodium Borohydride and its Effect on Electrical Conductance,” Adv. Funct. Mater. 19, 1987-1992, 2009.
[128]Mattevi, C., H. Kim, and M. Chhowalla, “A Review of Chemical Vapour Deposition of Graphene on Copper,” J. Mater. Chem. 21, 3324-3334, 2011.
[129]Berger, C., Z.M. Song, X.B. Li, X.S. Wu, N. Brown, C. Naud, et al., “Electronic Confinement and Coherence in Patterned Epitaxial Graphene,” Science 312, 1191-1196, 2006.
[130]Sun, J.Y., T. Gao, X.J. Song, Y.F. Zhao, Y.W. Lin, H.C. Wang, et al., “Direct Growth of High-quality Graphene on High-kappa Dielectric SrTiO3 Substrates,” J. Am. Chem. Soc. 136, 6574-6577, 2014.
[131]Ismach, A., C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, et al., “Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces,” Nano Lett. 10, 1542-1548, 2010.
[132]Hwang, J., M. Kim, D. Campbell, H.A. Alsalman, J.Y. Kwak, S. Shivaraman, et al., “van der Waals Epitaxial Growth of Graphene on Sapphire by Chemical Vapor Deposition without a Metal Catalyst,” ACS Nano 7, 385-395, 2013.
[133]Song, H.J., M. Son, C. Park, H. Lim, M.P. Levendorf, A.W. Tsen, et al., “Large Scale Metal-free Synthesis of Graphene on Sapphire and Transfer-free Device Fabrication,” Nanoscale 4, 3050-3054, 2012.
[134]Park, J., J. Lee, J.H. Choi, D.K. Hwang, and Y.W. Song, “Growth, Quantitative Growth Analysis, and Applications of Graphene on Gamma-Al2O3 Catalysts,” Sci Rep 5, 12, 2015.
[135]Moreno-Barcenas, A., J.F. Perez-Robles, Y.V. Vorobiev, N. Ornelas-Soto, A. Mexicano, and A.G. Garcia, “Graphene Synthesis Using a CVD Reactor and a Discontinuous Feed of Gas Precursor at Atmospheric Pressure,” J. Nanomater., 11, 2018.
[136]Rummeli, M.H., A. Bachmatiuk, A. Scott, F. Borrnert, J.H. Warner, V. Hoffman, et al., “Direct Low-temperature Nanographene CVD Synthesis over a Dielectric Insulator,” ACS Nano 4, 4206-4210, 2010.
[137]Connell, J.G., B.J. Isaac, G.B. Ekanayake, D.R. Strachan, and S.S.A. Seo, “Preparation of Atomically Flat SrTiO3 Surfaces Using a Deionized-water Leaching and Thermal Annealing Procedure,” Appl. Phys. Lett. 101, 3, 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊