跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/24 05:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:宋若濃
研究生(外文):Ruo-Nong Song
論文名稱:直接成長Ni-Fe LDH催化劑於石墨烯與矽之蕭特基接面之高效能光電化學產氧反應
論文名稱(外文):High Performance Graphene/Si Schottky Junction Photoanode for Water Oxidation by In-situ Growth of Ni-Fe LDH catalyst
指導教授:陳俊維陳俊維引用關係
指導教授(外文):Chun-Wei Chen
口試委員:李紹先王迪彥
口試委員(外文):Shao-Sian LiDi-Yan Wang
口試日期:2020-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:99
中文關鍵詞:光電化學水分解產氧反應石墨烯Ni-Fe LDH肖特基接面
外文關鍵詞:Photoelectrochemistry (PEC)Water splittingOxygen evolution reaction(OER)GrapheneNi-Fe LDHSchottky junction
DOI:10.6342/NTU202001298
相關次數:
  • 被引用被引用:0
  • 點閱點閱:8
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
化石燃料對地球所造成的汙染日益嚴重,迫使人類尋求對環境無害、可再生的替代能源以求永續發展。近年來,結合電化學與太陽能的光電化學於水分解的應用廣大的受到科學家的關注,希望能直接將太陽能轉換為容易儲存之化學能。本論文主要利用能隙較小、地球含量較多的矽作為光電化學水分解的電極材料,並以水分解主要能量反應步驟,即「產氧反應」為研究方向。
首先,由於二維材料單原子層石墨烯具有出眾的物理及化學特性,能夠與矽接觸形成肖特基接面,提高載子分離率,並具有惰性保護的能力。因此,我們利用低壓化學氣象沉積法,有效的成長一定面積且均勻的石墨烯薄膜,利用傳統PMMA轉印法,將在可見光範圍內具有高穿透率的單層石墨烯轉印至n-type矽基板上。接著,我們使用各種方式包括旋塗、水熱法以及電化學沉積等方式嘗試將具有良好電催化活性的Ni-Fe LDH 催化劑直接沉積於石墨烯/矽基板上。結果顯示,石墨烯/矽基板之異質結構有利於電沉積法,能夠有效地將大量的Ni-Fe LDH 催化劑直接成長於石墨烯/矽基板上。之後,我們使用X射線光電子能譜(XPS)、X射線射線繞射儀(XRD)、歐傑電子能譜儀(AES)以及選區電子繞射(SAED) 做Ni-Fe LDH 催化劑的元素成分價態與晶體結構的分析。並以掃描電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM) 觀察Ni-Fe LDH 催化劑表面形態、晶向以及整體元件結構。
最後,利用線性掃描伏安法(LSV)、電化學阻抗分析(EIS)以及莫特-肖特基圖(Mott-Schottky plot) 等方式,量測電化學沉積之Ni-Fe LDH於石墨烯/矽基板上的元件特性。實驗結果顯示大量的Ni-Fe LDH 催化劑沉積於石墨烯與矽的肖特基異質接面,促使產氧反應之起始電壓相較於理論值左移0.47 VRHE並達到飽和電流35 mA/cm2,展現出極佳的產氧效率。
To develop the alternative energy which is eco-friendly, the photoelectrochemistry water splitting has attracted a lot of attention in recent years. In this thesis, silicon which gets a large amount of earth content and with a small energy gap is used as the photoelectrochemical water splitting electrode material and the energy control step of the water splitting, namely "oxygen evolution reaction (OER)", is the main research direction.
First, the superior physical and chemical characteristics of the two-dimensional material graphene form Schottky junction when contacting with silicon, improve the carrier separation, and protect silicon from corrosion. We used PMMA to transfer the chemical vapor deposition synthesized graphene on n-type silicon. Next, the heterostructure of graphene/n-type silicon is beneficial for in-situ synthesizing highly electrocatalytic activity Ni-Fe LDH catalyst by electrodeposition method. X-ray photoelectron spectroscopy (XPS), X-ray diffractometer (XRD), Auger electron spectroscopy (AES) and selected area electron diffraction (SAED) is used to confirm the elemental composition, electronics states and crystal structure of Ni-Fe LDH. The surface morphology and crystal orientation of Ni-Fe LDH are observed with scanning electron microscope (SEM) and transmission electron microscope (TEM).
Finally, using linear scanning voltammetry (LSV), electrochemical impedance analysis (EIS), and Mott-Schottky plot to measure the photoelectrochemical behavior. Large amount of Ni-Fe LDH catalyst deposited on the heterostructure of graphene/silicon displays excellent OER efficiency with negatively shifted about 0.47 VRHE relative to the theoretical value in the OER on-set potential and the saturation current about 35 mA /cm2.
誌謝……………....……………..…………..………………………………….…..........................................i
中文摘要………………………………………………………………………….….............................................ii
ABSTRACT……………………………………………………………………….…............................................iii
CONTENTS……………………………………………………………………….….............................................iv
LIST OF FIGURES………………………………………………………………...................................…….…...vii
LIST OF TABLES……………………………………………………………………….…......................................xiv
Chapter 1 Introduction.……...…………...…….…………......................……………….…....1
1.1 Photoelectrochemical (PEC) Water Splitting.……...…………...…….………............……1
1.1.1 Mechanism of PEC water splitting.……...…………...……........................……………2
1.2 Graphene.……...………..............................................…...…….……………3
1.2.1 Structure and history of graphene...........................................3
1.2.2 Basic properties of graphene................................................6
1.3 Schottky Junction.……...………...............................…...…….……………......6
1.3.1 Fundamental theory..........................................................6
1.3.2 Graphene application in Schottky junction solar cell........................9
1.4 Motivation.……...……….......................................................11
Chapter 2 Literature Review.……...…………...…….……………………….................….…....13
2.1 Transparent conducting electrode silicon Schottky junction solar cell.…...13
2.1.1 Indium tin oxide..................................................13
2.1.2 Organic polymer…….................................................14
2.1.3 Carbon-based materials…...........................................15
2.2 Silicon-Based Water Splitting Photoanode..................................18
2.2.1 Protective material and catalyst in silicon based OER application..........20
2.2.2 Interfacial engineering of photoanode......................................28
2.2.3 List of photoanodes in literatures.........................................30
2.3 The catalyst of Ni-Fe layer double hydroxide..............................31
Chapter 3 Method.……...…………...…….………………………….…................................37
3.1 Graphene Growth and Transfer..............................37
3.1.1 The substrate selection for Graphene growth...............37
3.1.2 Pre-treatment of copper foil..............................38
3.1.3 Chemical vapor deposition (CVD) graphene..................39
3.1.4 PMMA graphene transfer method.............................40
3.2 Material Characterization and Analysis.…..……..............................43
3.2.1 Raman spectroscopy................................................43
3.2.2 Atomic force microscope (AFM) ....................................44
3.2.3 Scanning electron microscope (SEM) .......................................45
3.2.4 Auger electron spectroscopy (AES) ........................................47
3.2.5 Transmission electron microscopy (TEM) ...................................48
3.2.6 X-ray Photoelectron Spectroscopy (XPS) ...................................49
3.2.7 X-ray Diffraction (XRD) ..................................................50
3.2.8 Ultraviolet visible spectroscopy..........................................51
3.3 Photoelectrochemical Measurement..........……..............................52
3.3.1 Simulated sun light: air mass 1.5 G (AM 1.5G) ............................52
3.3.2 Three-electrode electrochemical cell......................................54
3.3.3 Linear sweep voltammetry(LSV)............................................55
3.3.4 Chronoamperometry/Chronopotentiometry......................................56
3.3.5 Electrochemical impedance microscopy (EIS) ................................57
3.3.6 Mott-Schottky Plot.........................................................59
Chapter 4 Si-Gr Schottky Junction Photoanode…...…………...…….…….................60
4.1 The Role of Gr-Si Schottky Junction in OER…...………….....…….……...............60
4.2 The Role of Gr-Si in the Growth of Ni-Fe LDH for Water Splitting Photoanode.........................................................................64
4.3 Ni-Fe LDH/Gr/Silicon Water Splitting Photoanode...........................76
Chapter 5 Conclusion.........................................................86
REFERENCE....……....................................................................87
1.Fujishima, A. and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972. 238 (5358): p.37.
2.Wei Wang, Moses O. Tade and Zongping Shao, Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev. 2015, 44, 5371.
3.Hisatomi, Takashi, Jun Kubota, and Kazunari Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews, 43.22 (2014): 7520-7535.
4.Brimblecombe, Robin, et al, Molecular water-oxidation catalysts for photoelectrochemical cells. Dalton Transactions 43 (2009): 9374-9384.
5.Boehm, H. P., et al., Das adsorptionsverhalten sehr dünner kohlenstoff‐folien. Zeitschrift für anorganische und allgemeine Chemie, 1962. 316 (3‐4): p.119-127.
6.Young, Robert J., et al. The mechanics of graphene nanocomposites: a review. Composites Science and Technology 72.12 (2012): 1459-1476.
7.Novoselov, K.S., et al. al., Electric field effect in atomically thin carbon films. Science, 2004. 306 (5696): p.666-669.
8.Neto, AH Castro, et al., The electronic properties of graphene, Reviews of modern physics, 81.1 (2009): 109.
9.Nair, R.R., et al., Fine structure constant defines visual transparency of graphene. Science, 2008. 320 (5881): p.1308.
10.Lee, C., et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008. 321 (5887): p. 385 388.
11.Balandin, A.A., et al., Superior thermal conductivity of single layer graphene. Nano Letters, 2008. 8 (3): p.902-907.
12.Schwierz, F., Graphene transistors. Nat Nanotechnol, 2010. 5 (7): p. 487-96.
13.Li, X., et al., Graphene on silicon Schottky junction solar cells. Adv Mater, 2010.22 (25): p. 2743-8.
14.Bae, S., et al., Towards industrial applications of graphene electrodes. Physica Scripta, 2012. T146.
15.Schedin, F., et al., Detection of individual gas molecules adsorbed on graphene. Nat Mater, 2007. 6 (9): p. 652-5.
16.Xia, F., et al., Ultrafast graphene photodetector. Nat Nanotechnol, 2009. 4 (12): p.839-43.
17.Liu, C., et al., Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett, 2010. 10(12): p. 4863-8.
18.Malik, O., C. Zúñiga, and G. Ruiz T, Efficient ITO Si solar cells and power modules fabricated with a low temperature technology: Results and perspectives., Journal of Non-Crystalline Solids, 2008. 354(19-25): p.2472- 2477.
19.Zhang, Yunfang, et al., Heterojunction with organic thin layers on silicon for record efficiency hybrid solar cells., Advanced Energy Materials 4.2 (2014): 1300923.
20.Yu, H. A., et al., Photovoltaic cell of carbonaceous film/n-type silicon., Applied physics letters 68.4 (1996): 547-549.
21.Jia, Yi, et al., Nanotube–silicon heterojunction solar cells., Advanced Materials 20.23 (2008): 4594-4598.
22.Jia, Yi, et al., Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping., Nano letters 11.5 (2011): 1901-1905.
23.Li, Xinming, et al., Graphene-on-silicon Schottky junction solar cells.", Advanced materials 22.25 (2010): 2743-2748.
24.Shi, Yumeng, et al., Work function engineering of graphene electrode via chemical doping., ACS nano 4.5 (2010): 2689-2694.
25.Xie, Chao, et al., Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells., Journal of Materials Chemistry A 1.30 (2013): 8567-8574.
26.Shi, Enzheng, et al., Colloidal antireflection coating improves graphene–silicon solar cells., Nano letters 13.4 (2013): 1776-1781.
27.Walter, Michael G., et al., Solar water splitting cells., Chemical reviews 110.11(2010): 6446-6473.
28.Kudo, Akihiko, and Yugo Miseki., Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews 38.1 (2009): 253-278.
29.Liu, Chong, Neil P. Dasgupta, and Peidong Yang., Semiconductor nanowires for artificial photosynthesis., Chemistry of Materials 26.1 (2013): 415-422.
30.Candea, R.M., et al., Photoelectrolysis of water: Si in salt water., Journal of Applied Physics, 1976. 47(6): p.2724-2726.
31.Offereins, H. L., K. Kühl, and H. Sandmaier., Methods for the fabrication of convexcorners in anisotropic etching of (100) silicon in aqueous KOH., Sensors and Actuators A: Physical 25.1-3 (1990): 9-13.
32.Xia, Zhaoming, et al., Protection strategy for improved catalytic stability of silicon photoanodes for water oxidation., Science bulletin 60.16 (2015): 1395-1402.
33.Hu, S., et al., Thin Film Materials for the Protection of Semiconducting Photoelectrodes in Solar Fuel Generators., The Journal of Physical Chemistry C, 2015. 119 (43): p.24201-24228.
34.Kohl, P. A., Frank, S. N. & Bard, A. J. Semiconductor electrodes .11. Behavior of N-type and P-type single-crystal semiconductors covered with thin normal-TiO2 films. J. Electrochem. Soc. 1977, 124, p.225-229.
35.Chen, Yi Wei, et al., Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation., Nature materials, 2011, 10, 539-544.
36.Hu, Shu, et al. "Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation." Science344.6187 (2014): 1005-1009.
37.Hong, Wenting, et al., High-performance silicon photoanode enhanced by gold nanoparticles for efficient water oxidation., ACS applied materials & interfaces 10.7 (2018): 6262-6268.
38.Cai, Qian, et al., Impact of silicon resistivity on the performance of silicon photoanode for efficient water oxidation reaction., ACS Catalysis 7.5 (2017): 3277-3283.
39.Mei, Bastian, et al., Protection of p+-n-Si photoanodes by sputter-deposited Ir/IrOx thin films., The journal of physical chemistry letters 5.11 (2014): 1948-1952.
40.Jun, Kimin, et al., High photocurrent in silicon photoanodes catalyzed by iron oxide thin films for water oxidation., Angewandte Chemie International Edition 51.2 (2012): 423-427.
41.Sun, Ke, et al., Nickel oxide functionalized silicon for efficient photo-oxidation of water., Energy & Environmental Science 5.7 (2012): 7872-7877.
42.Strandwitz, Nicholas C., et al., Photoelectrochemical behavior of n-type Si (100) electrodes coated with thin films of manganese oxide grown by atomic layer deposition., The Journal of Physical Chemistry C 117.10 (2013): 4931-4936.
43.Kenney, Michael J., et al., High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation., Science 342.6160 (2013): 836-840.
44.Hill, James C., Alan T. Landers, and Jay A. Switzer. "An electrodeposited inhomogeneous metal–insulator–semiconductor junction for efficient photoelectrochemical water oxidation." Nature materials 14.11 (2015): 1150.
45.Zhou, Xinghao, et al. "570 mV photovoltage, stabilized n-Si/CoOx heterojunction photoanodes fabricated using atomic layer deposition." Energy & Environmental Science 9.3 (2016): 892-897.
46.Connelly, Daniel, et al., Fermi-level depinning for low-barrier Schottky source/drain transistors., Applied physics letters 88.1 (2006): 012105.
47.Mönch, Winfried., On the alleviation of Fermi-level pinning by ultrathin insulator layers in Schottky contacts., Journal of Applied Physics 111.7 (2012): 073706.
48.Agrawal, Ashish, et al., Fermi level depinning and contact resistivity reduction using a reduced titania interlayer in n-silicon metal-insulator-semiconductor ohmic contacts., Applied Physics Letters 104.11 (2014): 112101.
49.Zhou, Xinghao, et al., Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide., Energy & Environmental Science 8.9 (2015): 2644-2649.
50.Digdaya, Ibadillah A., et al., Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation., Nature communications 8 (2017): 15968.
51.Li, Shengyang, et al., Enhancing the Photovoltage of Ni/n-Si Photoanode for Water Oxidation through a Rapid Thermal Process., ACS applied materials & interfaces 10.10 (2018): 8594-8598.
52.Gabriel Loget, et al., Dispersed Ni Nanoparticles Stabilize Silicon Photoanodes for Efficient and Inexpensive Sunlight-Assisted Water Oxidation., ACS Energy Letter, (2017), 2, 569−573.
53.Sol A. Lee, et al., Amorphous Cobalt Oxide Nanowalls as Catalyst and Protection Layers on n‑Type Silicon for Efficient Photoelectrochemical Water Oxidation., ACS Catalysis, (2020), 10, 420−429.
54.Jinhui Yang, et al., Efficient and Sustained Photoelectrochemical Water Oxidation by Cobalt Oxide/Silicon Photoanodes with Nanotextured Interfaces., Journal of the American Chemical Society (2014), 136, 6191−6194.
55.Gonzalo Abellán, et al., In-Situ Growth of Ultrathin Films of NiFe-LDHs: Towards a Hierarchical Synthesis of Bamboo-Like Carbon Nanotubes., Advanced Materials Interfaces, (2014), 1, 1400184.
56.Aisha Alobaid, et al., Mechanism and Kinetics of HER and OER on NiFe LDH Films in an Alkaline Electrolyte., Journal of The Electrochemical Society, (2018), 165 (15) J3395-J3404.
57.M.V.Bukhtiyarova, A review on effect of synthesis conditions on the formation of layered double hydroxides., Journal of Solid State Chemistry Volume 269, January (2019), Pages 494-506.
58.Haidong Yang, et al., In situ growth of ultrathin Ni–Fe LDH nanosheets for high performance oxygen evolution reaction, INORGANIC CHEMISTRY Front., (2017), 4, 1173–1181.
59.Susanginee Nayak, et al., Visible light-driven novel g-C3N4/NiFe-LDH composite photocatalyst with enhanced photocatalytic activity towards water oxidation and reduction reaction., Journal of Materials Chemistry A, (2015), 3, 18622–18635.
60.B. M. Hunter, et al., Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity., Energy Environmental Science, (2016), 9, 1734-1743.
61.Xiaowen Yu, et al., A high-performance three-dimensional Ni–Fe layered double hydroxide/graphene electrode for water oxidation., Journal of Materials Chemistry A (2015), 3, 6921–6928.
62.Harri Ali-Löytty, et al., Ambient-Pressure XPS Study of a Ni−Fe Electrocatalyst for the Oxygen Evolution Reaction., Journal Physical Chemistry C, (2016), 120, 2247−2253.
63.Rong Chen, et al., Achieving stable and efficient water oxidation by incorporating NiFe layered double hydroxide nanoparticles into aligned carbon nanotubes., Nanoscale Horizons, (2016), 1, 156-160.
64.Jiheng Zhao, et al., Stabilizing Silicon Photocathodes by Solution-Deposited Ni−Fe Layered Double Hydroxide for Efficient Hydrogen Evolution in Alkaline Media., ACS Energy Letter (2017), 2, 1939−1946.
65.Mingfei Shao, et al., Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications., Chem. Commun., (2015), 51, 15880-15893.
66.Beidou Guo, et al., Facile Integration between Si and Catalyst for High-Performance Photoanodes by a Multifunctional Bridging Layer., Nano Letter (2018), 18, 1516−1521.
67.Li, Xuesong, et al., Large-area synthesis of high-quality and uniform graphene films on copper foils., science 324.5932 (2009): 1312-1314.
68.Contolini, Robert J., Anthony F. Bernhardt, and Steven T. Mayer., Electrochemical planarization for multilevel metallization., Journal of The Electrochemical Society 141.9 (1994): 2503-2510.
69.Luo, Zhengtang, et al., Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure., Chemistry of Materials 23.6 (2011): 1441-1447.
70.Li, X., et al., Transfer of large area graphene films for high performance transparent conductive electrodes. Nano letters, 2009. 9 (12): p. 4359-4363.
71.Bae, S., et al., Roll to roll production of 30 inch graphene films for transparent electrodes. Nat Nanotechnol, 2010. 5 (8): p. 574-8.
72.Wang, D.Y., et al., Clean lifting transfer of large area residual free graphene films. Adv Mater, 2013. 25 (32): p. 4521-6.
73.Wang, Y., et al., Electrochemical delamination of CVD grown graphene film: toward the rec yclable use of copper catalyst. ACS nano, 2011. 5 (12): p. 9927-9933.
74.Blake, P., et al., Making graphene visible. Applied Physics Letters, 2007. 91 (6).
75.Liang, Xuelei, et al., Toward clean and crackless transfer of graphene., ACS nano 5.11 (2011): 9144-9153.
76.Li, Xuesong, et al., Transfer of large-area graphene films for high-performance transparent conductive electrodes., Nano letters 9.12 (2009): 4359-4363.
77.Ming Gong, et al., An Advanced Ni−Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation., Journal of American Chemical Society, (2013), 135, 8452−8455.
78.Qing Wang, et al., NiFe Layered Double Hydroxide Nanoparticles on Co, N-Codoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable Zinc–Air Batteries., Advanced Energy Materials, (2017), 7, 1700467.
79.Li Tan,et al., Oxygen evolution catalytic performance of quantum dot nickel-irondouble hydroxide/reduced graphene oxide composites., Materials Letters Volume 231, 15 November (2018), Pages 24-27.
80.Ferrari, Andrea C., et al., Raman spectrum of graphene and graphene layers., Physical review letters 97.18 (2006): 187401.
81.Das, Anindya, et al., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor., Nature nanotechnology 3.4 (2008): 210.
82.Binnig, G., C.F. Quate, and C. Gerber, Atomic force microscope. Physical review letters, 1986. 56 (9): p.930.
83.Qianqian Zhou, et al, CuO Nanorod Arrays Shelled with Amorphous NiFe Layered Double Hydroxide Film for Enhanced Electrocatalytic Water Oxidation Activity., ACS Applied Energy Materials, (2018), 1, 1364−1373.
84.Xiumin Li, et al, In-situ intercalation of NiFe LDH materials: An efficient approach to improve electrocatalytic activity and stability for water splitting., Journal of Power Sources 347 (2017) 193-200.
85.Xiaomin Li, et al, Atomically thin layered NiFe double hydroxides assembled 3D microspheres with promoted electrochemical performances., Journal of Power Sources 325 (2016) 675-681.
86.Helen Hansma, Atomic Force Microscopy and Spectroscopy of Silk from Spider Draglines, Capture-Web Spirals, and Silkworms. Modular Spider Silk Fibers: Defining New Modules and Optimizing Fiber Properties, January 2014, pp.123-136.
87.Dharmadasa, I. M., & Haigh, J. Strengths and Advantages of Electrodeposition as a Semiconductor Growth Technique for Applications in Macroelectronic Devices. Journal of the Electrochemical Society, (2006).153(1), G47.
88.Yu, Yanhao, et al, Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode., Nature Energy 2.6 (2017): 17045.
89.Luo Yu, et al., Amorphous NiFe layered double hydroxide nanosheets decorated on 3D nickel phosphide nanoarrays: a hierarchical core–shell electrocatalyst for efficient oxygen evolution., Journal of Materials Chemistry A, (2018), 6, 13619–13623.
90.Shengming Yin, et al., A Highly Efficient Oxygen Evolution Catalyst Consisting of Interconnected Nickel–Iron-Layered Double Hydroxide and Carbon Nanodomains., Advanced Materials, (2018), 30, 1705106.
91.Fanyu Ning, et al., TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting., Energy Environmental Science, (2016), 9, 2633-2643.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊