|
1.Fujishima, A. and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972. 238 (5358): p.37. 2.Wei Wang, Moses O. Tade and Zongping Shao, Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev. 2015, 44, 5371. 3.Hisatomi, Takashi, Jun Kubota, and Kazunari Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews, 43.22 (2014): 7520-7535. 4.Brimblecombe, Robin, et al, Molecular water-oxidation catalysts for photoelectrochemical cells. Dalton Transactions 43 (2009): 9374-9384. 5.Boehm, H. P., et al., Das adsorptionsverhalten sehr dünner kohlenstoff‐folien. Zeitschrift für anorganische und allgemeine Chemie, 1962. 316 (3‐4): p.119-127. 6.Young, Robert J., et al. The mechanics of graphene nanocomposites: a review. Composites Science and Technology 72.12 (2012): 1459-1476. 7.Novoselov, K.S., et al. al., Electric field effect in atomically thin carbon films. Science, 2004. 306 (5696): p.666-669. 8.Neto, AH Castro, et al., The electronic properties of graphene, Reviews of modern physics, 81.1 (2009): 109. 9.Nair, R.R., et al., Fine structure constant defines visual transparency of graphene. Science, 2008. 320 (5881): p.1308. 10.Lee, C., et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008. 321 (5887): p. 385 388. 11.Balandin, A.A., et al., Superior thermal conductivity of single layer graphene. Nano Letters, 2008. 8 (3): p.902-907. 12.Schwierz, F., Graphene transistors. Nat Nanotechnol, 2010. 5 (7): p. 487-96. 13.Li, X., et al., Graphene on silicon Schottky junction solar cells. Adv Mater, 2010.22 (25): p. 2743-8. 14.Bae, S., et al., Towards industrial applications of graphene electrodes. Physica Scripta, 2012. T146. 15.Schedin, F., et al., Detection of individual gas molecules adsorbed on graphene. Nat Mater, 2007. 6 (9): p. 652-5. 16.Xia, F., et al., Ultrafast graphene photodetector. Nat Nanotechnol, 2009. 4 (12): p.839-43. 17.Liu, C., et al., Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett, 2010. 10(12): p. 4863-8. 18.Malik, O., C. Zúñiga, and G. Ruiz T, Efficient ITO Si solar cells and power modules fabricated with a low temperature technology: Results and perspectives., Journal of Non-Crystalline Solids, 2008. 354(19-25): p.2472- 2477. 19.Zhang, Yunfang, et al., Heterojunction with organic thin layers on silicon for record efficiency hybrid solar cells., Advanced Energy Materials 4.2 (2014): 1300923. 20.Yu, H. A., et al., Photovoltaic cell of carbonaceous film/n-type silicon., Applied physics letters 68.4 (1996): 547-549. 21.Jia, Yi, et al., Nanotube–silicon heterojunction solar cells., Advanced Materials 20.23 (2008): 4594-4598. 22.Jia, Yi, et al., Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping., Nano letters 11.5 (2011): 1901-1905. 23.Li, Xinming, et al., Graphene-on-silicon Schottky junction solar cells.", Advanced materials 22.25 (2010): 2743-2748. 24.Shi, Yumeng, et al., Work function engineering of graphene electrode via chemical doping., ACS nano 4.5 (2010): 2689-2694. 25.Xie, Chao, et al., Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells., Journal of Materials Chemistry A 1.30 (2013): 8567-8574. 26.Shi, Enzheng, et al., Colloidal antireflection coating improves graphene–silicon solar cells., Nano letters 13.4 (2013): 1776-1781. 27.Walter, Michael G., et al., Solar water splitting cells., Chemical reviews 110.11(2010): 6446-6473. 28.Kudo, Akihiko, and Yugo Miseki., Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews 38.1 (2009): 253-278. 29.Liu, Chong, Neil P. Dasgupta, and Peidong Yang., Semiconductor nanowires for artificial photosynthesis., Chemistry of Materials 26.1 (2013): 415-422. 30.Candea, R.M., et al., Photoelectrolysis of water: Si in salt water., Journal of Applied Physics, 1976. 47(6): p.2724-2726. 31.Offereins, H. L., K. Kühl, and H. Sandmaier., Methods for the fabrication of convexcorners in anisotropic etching of (100) silicon in aqueous KOH., Sensors and Actuators A: Physical 25.1-3 (1990): 9-13. 32.Xia, Zhaoming, et al., Protection strategy for improved catalytic stability of silicon photoanodes for water oxidation., Science bulletin 60.16 (2015): 1395-1402. 33.Hu, S., et al., Thin Film Materials for the Protection of Semiconducting Photoelectrodes in Solar Fuel Generators., The Journal of Physical Chemistry C, 2015. 119 (43): p.24201-24228. 34.Kohl, P. A., Frank, S. N. & Bard, A. J. Semiconductor electrodes .11. Behavior of N-type and P-type single-crystal semiconductors covered with thin normal-TiO2 films. J. Electrochem. Soc. 1977, 124, p.225-229. 35.Chen, Yi Wei, et al., Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation., Nature materials, 2011, 10, 539-544. 36.Hu, Shu, et al. "Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation." Science344.6187 (2014): 1005-1009. 37.Hong, Wenting, et al., High-performance silicon photoanode enhanced by gold nanoparticles for efficient water oxidation., ACS applied materials & interfaces 10.7 (2018): 6262-6268. 38.Cai, Qian, et al., Impact of silicon resistivity on the performance of silicon photoanode for efficient water oxidation reaction., ACS Catalysis 7.5 (2017): 3277-3283. 39.Mei, Bastian, et al., Protection of p+-n-Si photoanodes by sputter-deposited Ir/IrOx thin films., The journal of physical chemistry letters 5.11 (2014): 1948-1952. 40.Jun, Kimin, et al., High photocurrent in silicon photoanodes catalyzed by iron oxide thin films for water oxidation., Angewandte Chemie International Edition 51.2 (2012): 423-427. 41.Sun, Ke, et al., Nickel oxide functionalized silicon for efficient photo-oxidation of water., Energy & Environmental Science 5.7 (2012): 7872-7877. 42.Strandwitz, Nicholas C., et al., Photoelectrochemical behavior of n-type Si (100) electrodes coated with thin films of manganese oxide grown by atomic layer deposition., The Journal of Physical Chemistry C 117.10 (2013): 4931-4936. 43.Kenney, Michael J., et al., High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation., Science 342.6160 (2013): 836-840. 44.Hill, James C., Alan T. Landers, and Jay A. Switzer. "An electrodeposited inhomogeneous metal–insulator–semiconductor junction for efficient photoelectrochemical water oxidation." Nature materials 14.11 (2015): 1150. 45.Zhou, Xinghao, et al. "570 mV photovoltage, stabilized n-Si/CoOx heterojunction photoanodes fabricated using atomic layer deposition." Energy & Environmental Science 9.3 (2016): 892-897. 46.Connelly, Daniel, et al., Fermi-level depinning for low-barrier Schottky source/drain transistors., Applied physics letters 88.1 (2006): 012105. 47.Mönch, Winfried., On the alleviation of Fermi-level pinning by ultrathin insulator layers in Schottky contacts., Journal of Applied Physics 111.7 (2012): 073706. 48.Agrawal, Ashish, et al., Fermi level depinning and contact resistivity reduction using a reduced titania interlayer in n-silicon metal-insulator-semiconductor ohmic contacts., Applied Physics Letters 104.11 (2014): 112101. 49.Zhou, Xinghao, et al., Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide., Energy & Environmental Science 8.9 (2015): 2644-2649. 50.Digdaya, Ibadillah A., et al., Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation., Nature communications 8 (2017): 15968. 51.Li, Shengyang, et al., Enhancing the Photovoltage of Ni/n-Si Photoanode for Water Oxidation through a Rapid Thermal Process., ACS applied materials & interfaces 10.10 (2018): 8594-8598. 52.Gabriel Loget, et al., Dispersed Ni Nanoparticles Stabilize Silicon Photoanodes for Efficient and Inexpensive Sunlight-Assisted Water Oxidation., ACS Energy Letter, (2017), 2, 569−573. 53.Sol A. Lee, et al., Amorphous Cobalt Oxide Nanowalls as Catalyst and Protection Layers on n‑Type Silicon for Efficient Photoelectrochemical Water Oxidation., ACS Catalysis, (2020), 10, 420−429. 54.Jinhui Yang, et al., Efficient and Sustained Photoelectrochemical Water Oxidation by Cobalt Oxide/Silicon Photoanodes with Nanotextured Interfaces., Journal of the American Chemical Society (2014), 136, 6191−6194. 55.Gonzalo Abellán, et al., In-Situ Growth of Ultrathin Films of NiFe-LDHs: Towards a Hierarchical Synthesis of Bamboo-Like Carbon Nanotubes., Advanced Materials Interfaces, (2014), 1, 1400184. 56.Aisha Alobaid, et al., Mechanism and Kinetics of HER and OER on NiFe LDH Films in an Alkaline Electrolyte., Journal of The Electrochemical Society, (2018), 165 (15) J3395-J3404. 57.M.V.Bukhtiyarova, A review on effect of synthesis conditions on the formation of layered double hydroxides., Journal of Solid State Chemistry Volume 269, January (2019), Pages 494-506. 58.Haidong Yang, et al., In situ growth of ultrathin Ni–Fe LDH nanosheets for high performance oxygen evolution reaction, INORGANIC CHEMISTRY Front., (2017), 4, 1173–1181. 59.Susanginee Nayak, et al., Visible light-driven novel g-C3N4/NiFe-LDH composite photocatalyst with enhanced photocatalytic activity towards water oxidation and reduction reaction., Journal of Materials Chemistry A, (2015), 3, 18622–18635. 60.B. M. Hunter, et al., Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity., Energy Environmental Science, (2016), 9, 1734-1743. 61.Xiaowen Yu, et al., A high-performance three-dimensional Ni–Fe layered double hydroxide/graphene electrode for water oxidation., Journal of Materials Chemistry A (2015), 3, 6921–6928. 62.Harri Ali-Löytty, et al., Ambient-Pressure XPS Study of a Ni−Fe Electrocatalyst for the Oxygen Evolution Reaction., Journal Physical Chemistry C, (2016), 120, 2247−2253. 63.Rong Chen, et al., Achieving stable and efficient water oxidation by incorporating NiFe layered double hydroxide nanoparticles into aligned carbon nanotubes., Nanoscale Horizons, (2016), 1, 156-160. 64.Jiheng Zhao, et al., Stabilizing Silicon Photocathodes by Solution-Deposited Ni−Fe Layered Double Hydroxide for Efficient Hydrogen Evolution in Alkaline Media., ACS Energy Letter (2017), 2, 1939−1946. 65.Mingfei Shao, et al., Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications., Chem. Commun., (2015), 51, 15880-15893. 66.Beidou Guo, et al., Facile Integration between Si and Catalyst for High-Performance Photoanodes by a Multifunctional Bridging Layer., Nano Letter (2018), 18, 1516−1521. 67.Li, Xuesong, et al., Large-area synthesis of high-quality and uniform graphene films on copper foils., science 324.5932 (2009): 1312-1314. 68.Contolini, Robert J., Anthony F. Bernhardt, and Steven T. Mayer., Electrochemical planarization for multilevel metallization., Journal of The Electrochemical Society 141.9 (1994): 2503-2510. 69.Luo, Zhengtang, et al., Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure., Chemistry of Materials 23.6 (2011): 1441-1447. 70.Li, X., et al., Transfer of large area graphene films for high performance transparent conductive electrodes. Nano letters, 2009. 9 (12): p. 4359-4363. 71.Bae, S., et al., Roll to roll production of 30 inch graphene films for transparent electrodes. Nat Nanotechnol, 2010. 5 (8): p. 574-8. 72.Wang, D.Y., et al., Clean lifting transfer of large area residual free graphene films. Adv Mater, 2013. 25 (32): p. 4521-6. 73.Wang, Y., et al., Electrochemical delamination of CVD grown graphene film: toward the rec yclable use of copper catalyst. ACS nano, 2011. 5 (12): p. 9927-9933. 74.Blake, P., et al., Making graphene visible. Applied Physics Letters, 2007. 91 (6). 75.Liang, Xuelei, et al., Toward clean and crackless transfer of graphene., ACS nano 5.11 (2011): 9144-9153. 76.Li, Xuesong, et al., Transfer of large-area graphene films for high-performance transparent conductive electrodes., Nano letters 9.12 (2009): 4359-4363. 77.Ming Gong, et al., An Advanced Ni−Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation., Journal of American Chemical Society, (2013), 135, 8452−8455. 78.Qing Wang, et al., NiFe Layered Double Hydroxide Nanoparticles on Co, N-Codoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable Zinc–Air Batteries., Advanced Energy Materials, (2017), 7, 1700467. 79.Li Tan,et al., Oxygen evolution catalytic performance of quantum dot nickel-irondouble hydroxide/reduced graphene oxide composites., Materials Letters Volume 231, 15 November (2018), Pages 24-27. 80.Ferrari, Andrea C., et al., Raman spectrum of graphene and graphene layers., Physical review letters 97.18 (2006): 187401. 81.Das, Anindya, et al., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor., Nature nanotechnology 3.4 (2008): 210. 82.Binnig, G., C.F. Quate, and C. Gerber, Atomic force microscope. Physical review letters, 1986. 56 (9): p.930. 83.Qianqian Zhou, et al, CuO Nanorod Arrays Shelled with Amorphous NiFe Layered Double Hydroxide Film for Enhanced Electrocatalytic Water Oxidation Activity., ACS Applied Energy Materials, (2018), 1, 1364−1373. 84.Xiumin Li, et al, In-situ intercalation of NiFe LDH materials: An efficient approach to improve electrocatalytic activity and stability for water splitting., Journal of Power Sources 347 (2017) 193-200. 85.Xiaomin Li, et al, Atomically thin layered NiFe double hydroxides assembled 3D microspheres with promoted electrochemical performances., Journal of Power Sources 325 (2016) 675-681. 86.Helen Hansma, Atomic Force Microscopy and Spectroscopy of Silk from Spider Draglines, Capture-Web Spirals, and Silkworms. Modular Spider Silk Fibers: Defining New Modules and Optimizing Fiber Properties, January 2014, pp.123-136. 87.Dharmadasa, I. M., & Haigh, J. Strengths and Advantages of Electrodeposition as a Semiconductor Growth Technique for Applications in Macroelectronic Devices. Journal of the Electrochemical Society, (2006).153(1), G47. 88.Yu, Yanhao, et al, Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode., Nature Energy 2.6 (2017): 17045. 89.Luo Yu, et al., Amorphous NiFe layered double hydroxide nanosheets decorated on 3D nickel phosphide nanoarrays: a hierarchical core–shell electrocatalyst for efficient oxygen evolution., Journal of Materials Chemistry A, (2018), 6, 13619–13623. 90.Shengming Yin, et al., A Highly Efficient Oxygen Evolution Catalyst Consisting of Interconnected Nickel–Iron-Layered Double Hydroxide and Carbon Nanodomains., Advanced Materials, (2018), 30, 1705106. 91.Fanyu Ning, et al., TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting., Energy Environmental Science, (2016), 9, 2633-2643.
|