跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/24 22:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:歐惠芳
研究生(外文):Hui-Fang Ou
論文名稱:使用三步化學蝕刻製成紋理微結構基板之光學及結構性質
論文名稱(外文):Optical and Structural Properties of Textured Silicon Substrates by Three-Step Chemical Etching Process
指導教授:薛承輝
指導教授(外文):Chun-Hway Hsueh
口試委員:何國川徐雍鎣
口試委員(外文):Kuo-Chuan HoYung-Jung Hsu
口試日期:2020-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:63
中文關鍵詞:非等向性濕式蝕刻金屬化學輔助蝕刻金字塔結構抗反射
外文關鍵詞:Anisotropic wet etchingMetal-assisted chemical etchingPyramidal structureAnti-reflection
DOI:10.6342/NTU202003231
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
與乾式蝕刻相比,濕式蝕刻製程普遍用於製作出大面積的紋理結構基板,由於此製程相對簡單、同時成本也低,因此可以達成大量製造的目的。加上因為金字塔不同多平面,使得光線可在結構之間產生多次的反射,而增加光的收割性質。在本次實驗中,使用了在 (100)方向的P型矽基板,使用三步化學蝕刻去形成一種混合性結構,包含金字塔、蝕刻洞、樹枝狀結構跟奈米尺寸的倒置金字塔洞。為了達到這種混合性結構,使用非等向性濕式蝕刻作為第一步蝕刻去成長出多種不同尺寸的金字塔,隨後,在矽基板上蒸鍍一層銀薄膜去生長出團聚的銀顆粒,使用金屬化學輔助蝕刻去形成垂直排列的蝕刻洞在原先的金字塔結構上,金屬輔助蝕刻則為第二步蝕刻。最後,再一次使用非等向性濕式蝕刻當作第三步蝕刻,通過蝕刻液穿透先前的蝕刻洞(第二步蝕刻)去成長出隨機的倒置金字塔結構和樹枝狀結構。經過最佳參數的三步蝕刻處理的矽基板,可得到大尺寸、低反射率的紋理結構。
Compared to dry etching, wet etching is commonly used in the fabrication of large-area textured silicon substrates because it is an inexpensive and uncomplicated method. The pyramidal structure can increase light collection because it has different neighbor facets, which can generate multiple reflections. In this thesis, we implemented the fabrication of mixed structures, including pyramids, etching holes and inverted pyramidal cavities on (100) p-type silicon substrates, using three-step chemical etching. To achieve this, we utilized the anisotropic wet etching as the first-step etching to form pyramids of various sizes. Subsequently, a thin Ag film was deposited on a p-type (100) silicon substrate to form agglomerated Ag particles, and metal-assisted chemical etching (MacEtch) was performed to develop aligned etching holes on pyramids structure. Ultimately, we again used the anisotropic wet etching as the third-step etching for the etchant to penetrate holes to form randomly inverted pyramidal cavities and dendrite-like structures. Optimizing the three-step etching treatments, large-scaled textured structures with low reflectance could be obtained.
CONTENTS

口試委員會審定書 #
誌謝 ii
中文摘要 iv
ABSTRACT v
CONTENTS vi
LIST OF FIGURES viii
Chapter 1 Motivation 1
Chapter 2 Literature Review 2
2.1 Subwavelength Structure 2
2.1.1 Anti-Reflection (AR) Coatings 5
2.1.2 Light-Trapping 7
2.2 Textured Silicon Substrate 10
2.2.1 Metal-Assisted Chemical Etching 12
2.2.2 Wet Etching With Alkaline Etchant 16
2.2.3 References 19
Chapter 3 Introduction 27
3.1 Experimental Details 29
3.1.1 Materials 29
3.1.2 Anisotropic Wet Etching 29
3.1.3 Metal-Assisted Chemical Etching 30
3.1.4 Inverted Pyramidal Forming 30
3.1.5 Characterization 31
Chapter 4 Results and Discussion 32
4.1 Morphology 32
4.2 Reflectance Measurements 43
4.3 SERS Effects 46
4.4 Conclusion 48
4.5 References 49
[1] I. Fraunhofer, Photovoltaics Report 2015, Fraunhofer Institute for Solar Energy Systems, Freiburg, Germany, (2015).
[2] M.F. Abdullah, M.A. Alghoul, H. Naser, N. Asim, S. Ahmadi, B. Yatim, K. Sopian, Research and development efforts on texturization to reduce the optical losses at front surface of silicon solar cell, Renew. Sust. Energ. Rev., 66 (2016) 380−398.
[3] T. Saga, Advances in crystalline silicon solar cell technology for industrial mass production, NPG Asia Mater., 2 (2010) 96−102.
[4] P.J. Reddy, Solar power generation: technology, new concepts & policy, CRC Press2012.
[5] C. Bernhard, Structural and functional adaptation in a visual system, Endeavour, 26 (1967) 79−84.
[6] S.A. Boden, D.M. Bagnall, Moth-Eye Antireflective Structures, in: B. Bhushan (Ed.) Encyclopedia of Nanotechnology, Springer Netherlands, Dordrecht, 2012, pp. 1467−1477.
[7] S. Wilson, M. Hutley, The optical properties of'moth eye'antireflection surfaces, Optica Acta: International Journal of Optics, 29 (1982) 993−1009.
[8] D.H. Raguin, S.M. Norton, G.M. Morris, Subwavelength structured surfaces and their applications, Diffractive and Miniaturized Optics: A Critical Review, International Society for Optics and Photonics, 1993, pp. 102710D.
[9] H. Kikuta, H. Toyota, W. Yu, Optical elements with subwavelength structured surfaces, Opt Rev, 10 (2003) 63−73.
[10] D.C. Flanders, Submicrometer periodicity gratings as artificial anisotropic dielectrics, Appl. Phys. Lett., 42 (1983) 492−494.
[11] R.C. Enger, S.K. Case, Optical elements with ultrahigh spatial-frequency surface corrugations, Appl. Opt., 22 (1983) 3220−3228.
[12] Y. Ono, Y. Kimura, Y. Ohta, N. Nishida, Antireflection effect in ultrahigh spatial-frequency holographic relief gratings, Appl. Opt., 26 (1987) 1142−1146.
[13] S.A. Boden, D.M. Bagnall, Nanostructured biomimetic moth-eye arrays in silicon by nanoimprint lithography, BIOINSPIR BIOMIM, International Society for Optics and Photonics, 2009, pp. 74010J.
[14] X.W. Geng, Z. Qi, M.C. Li, B.K. Duan, L.C. Zhao, P.W. Bohn, Fabrication of antireflective layers on silicon using metal-assisted chemical etching with in situ deposition of silver nanoparticle catalysts, Sol. Energy Mater Sol. Cells, 103 (2012) 98−107.
[15] D. Chen, Y. Yan, E. Westenberg, D. Niebauer, N. Sakaitani, S.R. Chaudhuri, Y. Sato, M. Takamatsu, Development of anti-reflection (AR) coating on plastic panels for display applications, J Solgel Sci Technol, 19 (2000) 77−82.
[16] H.A. Macleod, Thin-film optical filters, CRC press2017.
[17] D. Chen, Anti-reflection (AR) coatings made by sol–gel processes: a review, Sol. Energy Mater Sol. Cells, 68 (2001) 313−336.
[18] C.E. Tracy, W. Kern, R.D. Vibronek, Sprayable titanium composition, U.S. Patent No. 4,241,108. 23 Dec. 1980, 1980.
[19] U. Gangopadhyay, K. Kim, S. Dhungel, P. Basu, J. Yi, Low-cost texturization of large-area crystalline silicon solar cells using hydrazine mono-hydrate for industrial use, Renew. Energ., 31 (2006) 1906−1915.
[20] S. Koynov, M.S. Brandt, M. Stutzmann, Black nonreflecting silicon surfaces for solar cells, Appl. Phys. Lett., 88 (2006) 203107.
[21] A.M. Al-Husseini, B. Lahlouh, Influence of pyramid size on reflectivity of silicon surfaces textured using an alkaline etchant, Bull. Mater. Sci., 42 (2019) 152.
[22] M.A. Green, Solar cells: operating principles, technology, and system applications, Englewood Cliffs, NJ, Prentice-Hall, Inc., 1982. 288 p., (1982).
[23] E. Yablonovitch, G.D. Cody, Intensity enhancement in textured optical sheets for solar cells, IEEE Transactions on Electron Devices, 29 (1982) 300−305.
[24] Z. Tang, W. Tress, O. Inganäs, Light trapping in thin film organic solar cells, Mater. Today, 17 (2014) 389−396.
[25] K.R. McIntosh, L.P. Johnson, Recombination at textured silicon surfaces passivated with silicon dioxide, J. Appl. Phys., 105 (2009) 124520.
[26] P. Campbell, M.A. Green, Light trapping properties of pyramidally textured surfaces, J. Appl. Phys., 62 (1987) 243−249.
[27] A. Goetzberger, Proceedings of the 15th IEEE Photo-Voltaic Specialists Conference, Kissimmee, FL, (1981).
[28] E. Yablonovitch, Statistical ray optics, J Opt Soc Am, 72 (1982) 899−907.
[29] Y. He, C. Fan, S.-T. Lee, Silicon nanostructures for bioapplications, Nano Today, 5 (2010) 282−295.
[30] J. Xu, P. Kvasnička, M. Idso, R.W. Jordan, H. Gong, J. Homola, Q. Yu, Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures, Opt. Express, 19 (2011) 20493−20505.
[31] J. Xu, L. Zhang, H. Gong, J.í. Homola, Q. Yu, Tailoring plasmonic nanostructures for optimal SERS sensing of small molecules and large microorganisms, Small, 7 (2011) 371−376.
[32] V.S.-Y. Lin, K. Motesharei, K.-P.S. Dancil, M.J. Sailor, M.R. Ghadiri, A porous silicon-based optical interferometric biosensor, Science, 278 (1997) 840−843.
[33] A.M.A. Hussien, U.M. Nayef, H.T. Hussein, Preparation of chemical vapor sensor by reduction graphene oxide doped with nanoparticles of gold on porous silicon using photoluminescence, Optik, 206 (2020) 163576.
[34] D. Eisenhauer, C.T. Trinh, D. Amkreutz, C. Becker, Light management in crystalline silicon thin-film solar cells with imprint-textured glass superstrate, Sol. Energy Mater Sol. Cells, 200 (2019) 109928.
[35] F. Himpsel, J. McChesney, J. Crain, A. Kirakosian, V. Perez-Dieste, N.L. Abbott, Y.-Y. Luk, P.F. Nealey, D.Y. Petrovykh, Stepped silicon surfaces as templates for one-dimensional nanostructures, J. Phys. Chem. B, 108 (2004) 14484−14490.
[36] H. Park, M.h. Shin, S.M. Iftiquar, S.Q. Hussain, M. Ju, Y. Kim, E.-C. Cho, J. Yi, The light-trapping effect in various textured cover glass for enhancing the current density in silicon heterojunction solar cells, Opt. Commun., 467 (2020) 125657.
[37] V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, U. Gösele, Realization of a silicon nanowire vertical surround‐gate field‐effect transistor, Small, 2 (2006) 85−88.
[38] J. Goldberger, A.I. Hochbaum, R. Fan, P. Yang, Silicon vertically integrated nanowire field effect transistors, Nano Lett., 6 (2006) 973−977.
[39] E. Garnett, P. Yang, Light trapping in silicon nanowire solar cells, Nano Lett., 10 (2010) 1082−1087.
[40] T. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, S. Christiansen, Silicon nanowire-based solar cells, Nanotechnology, 19 (2008) 295203.
[41] Y. Zhao, Y. Liu, W. Chen, J. Wu, Q. Chen, H. Tang, Y. Wang, X. Du, Regulation of surface texturization through copper-assisted chemical etching for silicon solar cells, Sol Energy, 201 (2020) 461−468.
[42] P. Fallahazad, N. Naderi, M.J. Eshraghi, Improved photovoltaic performance of graphene-based solar cells on textured silicon substrate, J. Alloys Compd., 834 (2020) 155123.
[43] M.K. Basher, M.K. Hossain, M.A.R. Akand, Effect of surface texturization on minority carrier lifetime and photovoltaic performance of monocrystalline silicon solar cell, Optik, 176 (2019) 93−101.
[44] S. Jung, H. Jung, Efficient lithium storage of concave graphitic anode embedded with nanoconfined silicon, Chem. Phys. Lett., 706 (2018) 189−195.
[45] K. Peng, J. Jie, W. Zhang, S.-T. Lee, Silicon nanowires for rechargeable lithium-ion battery anodes, Appl. Phys. Lett., 93 (2008) 033105.
[46] C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol., 3 (2008) 31.
[47] W. McSweeney, H. Geaney, C. O’Dwyer, Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes, Nano Research, 8 (2015) 1395−1442.
[48] P. Spinelli, M.A. Verschuuren, A. Polman, Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators, Nat Commun, 3 (2012) 692.
[49] J. Zhu, Z. Yu, G.F. Burkhard, C.-M. Hsu, S.T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays, Nano Lett., 9 (2009) 279−282.
[50] Z. Huang, N. Geyer, P. Werner, J. de Boor, U. Gosele, Metal-assisted chemical etching of silicon: a review, Adv Mater, 23 (2011) 285−308.
[51] X. Li, P. Bohn, Metal-assisted chemical etching in HF/H 2O2 produces porous silicon, Appl. Phys. Lett., 77 (2000) 2572−2574.
[52] S. Chattopadhyay, X. Li, P.W. Bohn, In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching, J. Appl. Phys., 91 (2002) 6134−6140.
[53] C.Y. Chen, C.S. Wu, C.J. Chou, T.J. Yen, Morphological Control of Single‐Crystalline Silicon Nanowire Arrays near Room Temperature, Adv. Mater., 20 (2008) 3811−3815.
[54] C.-L. Lee, K. Tsujino, Y. Kanda, S. Ikeda, M. Matsumura, Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts, J. Mater. Chem. C, 18 (2008) 1015−1020.
[55] K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, S. Lee, Metal‐particle‐induced, highly localized site‐specific etching of Si and formation of single‐crystalline Si nanowires in aqueous fluoride solution, Chem. Eur. J., 12 (2006) 7942−7947.
[56] C. Chartier, S. Bastide, C. Lévy-Clément, Metal-assisted chemical etching of silicon in HF–H2O2, Electrochim. Acta, 53 (2008) 5509−5516.
[57] X. Li, Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics, Curr Opin Solid State Mater Sci, 16 (2012) 71−81.
[58] H. Seidel, L. Csepregi, A. Heuberger, H. Baumgärtel, Anisotropic etching of crystalline silicon in alkaline solutions I. Orientation dependence and behavior of passivation layers, J. Electrochem. Soc., 137 (1990) 3612−3626.
[59] I. Zubel, M. Kramkowska, Etch rates and morphology of silicon (hkl) surfaces etched in KOH and KOH saturated with isopropanol solutions, Sens. Actuator A Phys., 115 (2004) 549−556.
[60] S.R. Chitre, HIGH VOLUME COST EFFICIENT PRODUCTION MACROSTRUCTURING PROCESS, Conference Record of the IEEE Photovoltaic Specialists Conference, (1978) 152−154.
[61] D.L. King, Experimental optimization of an anisotropic etching process for random texturization of silicon solar cells, Proceedings of the 22nd IEEE Photovoltaic Specialists Conference, (1991) 303−308.
[62] Z. Xi, D. Yang, W. Dan, C. Jun, X. Li, D. Que, Investigation of texturization for monocrystalline silicon solar cells with different kinds of alkaline, Renew. Energ., 29 (2004) 2101−2107.
[63] EVazsonyi, K. Clercq, REinhaus, E. Kerschaver, KSaid, JPoortmans, JSzlufcik, JNijs, Improved anisotropic etching process for industrial texturing of silicon solar cells, Sol. Energy Mater Sol. Cells 57 (1999) 179−188.
[64] Y. Wang, R. Luo, J. Ma, S.-Q. Man, Fabrication of the pyramidal microstructure on silicon substrate using KOH solution, Advances in Engineering Research, (2015).
[65] J.Y. Jung, Z. Guo, S.W. Jee, H.D. Um, K.T. Park, J.H. Lee, A strong antireflective solar cell prepared by tapering silicon nanowires, Opt Express, 18 Suppl 3 (2010) A286−292.
[66] A.K. Chu, J.S. Wang, Z.Y. Tsai, C.K. Lee, A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafers, Sol. Energy Mater Sol. Cells 93 (2009) 1276−1280.
[67] M.K. Basher, M.K. Hossain, M.J. Uddin, M.A.R. Akand, K.M. Shorowordi, Effect of pyramidal texturization on the optical surface reflectance of monocrystalline photovoltaic silicon wafers, Optik, 172 (2018) 801−811.
[68] I. Zubel, K. Rola, M. Kramkowska, The effect of isopropyl alcohol concentration on the etching process of Si-substrates in KOH solutions, Sens. Actuator A Phys., 171 (2011) 436−445.
[69] W.Y. Ou, Y. Zhang, H.L. Li, L. Zhao, C.L. Zhou, H.W. Diao, M. Liu, W.M. Lu, J. Zhang, W.J. Wang, Effects of IPA on Texturing Process for Mono-Crystalline Silicon Solar Cell in TMAH Solution, Mater. Sci. Forum, 685 (2011) 31−37.
[70] I. Zubel, M. Kramkowska, The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions, Sens. Actuator A Phys., 93 (2001) 138−147.
[71] J. Yoo, J. Cho, K. Han, J. Yi, RIE surface texturing for optimum light trapping in multicrystalline silicon solar cells, J Korean Phys Soc, 60 (2012) 2071−2074.
[72] H. Park, S. Kwon, J.S. Lee, H.J. Lim, S. Yoon, D. Kim, Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution, Sol. Energy Mater Sol. Cells, 93 (2009) 1773−1778.
[73] P.K. Singh, R. Kumar, M. Lal, S. Singh, B. Das, Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions, Sol. Energy Mater Sol. Cells 70 (2001) 103−113.
[74] C.-R. Yang, P.-Y. Chen, C.-H. Yang, Y.-C. Chiou, R.-T. Lee, Effects of various ion-typed surfactants on silicon anisotropic etching properties in KOH and TMAH solutions, Sens. Actuator A Phys., 119 (2005) 271−281.
[75] K. Nakamura, M. Aoki, I. Sumita, H. Sato, Y. Kumagai, Y. Kawata, Y. Ohshita, Texturization control for fabrication of high efficiency mono crystalline si solar cell, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), IEEE, 2013, pp. 2239−2242.
[1] K. Rajkanan‡, R. Singh, J. Shewchun, Absorption coefficient of silicon for solar cell calculations, Solid State Electron. Lett., 22 (1979) 793−795.
[2] T. Saga, Advances in crystalline silicon solar cell technology for industrial mass production, NPG Asia Mater., 2 (2010) 96−102.
[3] Z.H. Huang, J.E. Carey, M.G. Liu, X.Y. Guo, E. Mazur, J.C. Campbell, Microstructured silicon photodetector, Appl. Phys. Lett., 89 (2006) 033506.
[4] C.J. Yang, X.B. Jing, F.J. Wang, O.R.N. Ehmann, Y.L. Tian, Z.H. Pu, Fabrication of controllable wettability of crystalline silicon surfaces by laser surface texturing and silanization, Appl. Surf. Sci., 497 (2019) 143805.
[5] Y. He, C. Fan, S.-T. Lee, Silicon nanostructures for bioapplications, Nano Today, 5 (2010) 282−295.
[6] B.-R. Wu, S.-L. Ou, S.-Y. Lo, H.-Y. Mao, J.-Y. Yang, D.-S. Wuu, Texture-Etched SnO2Glasses Applied to Silicon Thin-Film Solar Cells, J. Nanomater., 2014 (2014) 1−9.
[7] E. Abdur-Rahman, I. Alghoraibi, H. Alkurdi, Effect of Isopropyl Alcohol Concentration and Etching Time on Wet Chemical Anisotropic Etching of Low-Resistivity Crystalline Silicon Wafer, Int J Anal Chem, 2017 (2017) 7542870.
[8] W.Y. Ou, Y. Zhang, H.L. Li, L. Zhao, C.L. Zhou, H.W. Diao, M. Liu, W.M. Lu, J. Zhang, W.J. Wang, Effects of IPA on Texturing Process for Mono-Crystalline Silicon Solar Cell in TMAH Solution, Mater. Sci. Forum, 685 (2011) 31−37.
[9] H. Park, S. Kwon, J.S. Lee, H.J. Lim, S. Yoon, D. Kim, Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution, Sol. Energy Mater Sol. Cells, 93 (2009) 1773−1778.
[10] S.A. Boden, D.M. Bagnall, Moth-Eye Antireflective Structures, in: B. Bhushan (Ed.) Encyclopedia of Nanotechnology, Springer Netherlands, Dordrecht, 2012, pp. 1467−1477.
[11] C. Lee, S.Y. Bae, S. Mobasse, r. Manohara, A Novel Silicon Nanotips Antireflection Surface for the Micro Sun Sensor, Nano Lett., 5 (2005) 2438−2442.
[12] C.C. Striemer, P.M. Fauchet, Dynamic etching of silicon for broadband antireflection applications, Appl. Phys. Lett., 81 (2002) 2980−2982.
[13] T.M Bruton, General trends about photovoltaics based on crystalline silicon, Sol. Energy Mater Sol. Cells, 72 (2002) 3−10.
[14] T. Glaser, A. Ihring, W. Morgenroth, N. Seifert, S. Schröter, V. Baier, High temperature resistant antireflective moth-eye structures for infrared radiation sensors, Microsyst. Technol., 11 (2005) 86−90.
[15] U. Gangopadhyay, K. Kim, S. Dhungel, P. Basu, J. Yi, Low-cost texturization of large-area crystalline silicon solar cells using hydrazine mono-hydrate for industrial use, Renew. Energ., 31 (2006) 1906−1915.
[16] Z. Guo, W. Liu, B.L. Su, Superhydrophobic surfaces: from natural to biomimetic to functional, J. Colloid. Interface Sci, 353 (2011) 335−355.
[17] Y. Xiu, L. Zhu, D.W. Hess, C. Wong, Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity, Nano Lett., 7 (2007) 3388−3393.
[18] J.W. Leem, B. Dudem, J.S. Yu, Biomimetic nano/micro double-textured silicon with outstanding antireflective and super-hydrophilic surfaces for high optical performance, RSC Advances, 7 (2017) 33757−33763.
[19] P. Verlinden, O. Evrard, E. Mazy, A. Crahay, The surface texturization of solar cells: a new method using V-grooves with controllable sidewall angles, Sol. Energy Mater. Sol. Cells, 26 (1992) 71−78.
[20] Z. Xi, D. Yang, W. Dan, C. Jun, X. Li, D. Que, Investigation of texturization for monocrystalline silicon solar cells with different kinds of alkaline, Renew. Energ., 29 (2004) 2101−2107.
[21] A.W.Smith, A.Rohatgi, Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency silicon solar cells, Sol. Energy Mater. Sol. Cells, 29 (1993) 37−49.
[22] B.S. Akila, K. Vaithinathan, T. Balaganapathi, S. Vinoth, P. Thilakan, Investigations on the correlation between surface texturing histogram and the spectral reflectance of (100) Crystalline Silicon Substrate textured using anisotropic etching, SENSOR ACTUAT A-PHYS, 263 (2017) 445−450.
[23] A.M. Al-Husseini, B. Lahlouh, Influence of pyramid size on reflectivity of silicon surfaces textured using an alkaline etchant, Bull. Mater. Sci., 42 (2019) 152.
[24] H. Abe, M. Yoneda, N. Fujiwara, Developments of Plasma Etching Technology for Fabricating Semiconductor Devices, Jpn J Appl Phys (2008), 47 (2008) 1435−1455.
[25] K. Nojiri, Dry etching technology for semiconductors, Springer2015.
[26] Y.-K. Lin, Y.-S. Chen, C.-H. Hsueh, Combined metal-assisted chemical etching and anisotropic wet etching for anti-reflection inverted pyramidal cavities on dendrite-like textured substrates, Results Phys., 12 (2019) 244−249.
[27] Y.-C. Lai, L.-W. Nien, H.-C. Ho, J.-H. Li, C.-H. Hsueh, Molecular Sensing and Color Manipulation Based on Dimension-Controlled Plasmon-Enhanced Silicon Nanotube SERS Substrates, J. Phys. Chem. C, 122 (2018) 8510−8516.
[28] Y. Wang, R. Luo, J. Ma, S.-Q. Man, Fabrication of the pyramidal microstructure on silicon substrate using KOH solution, 2015 International Conference on Advanced Engineering Materials and Technology, Atlantis Press, 2015.
[29] EVazsonyi, K. Clercq, REinhaus, E. Kerschaver, KSaid, JPoortmans, JSzlufcik, JNijs, Improved anisotropic etching process for industrial texturing of silicon solar cells, Sol. Energy Mater Sol. Cells 57 (1999) 179−188.
[30] A.K. Chu, J.S. Wang, Z.Y. Tsai, C.K. Lee, A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafers, Sol. Energy Mater Sol. Cells 93 (2009) 1276−1280.
[31] D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, L. Chi, Simple approach to wafer-scale self-cleaning antireflective silicon surfaces, Langmuir, 25 (2009) 7769−7772.
[32] X.W. Geng, Z. Qi, M.C. Li, B.K. Duan, L.C. Zhao, P.W. Bohn, Fabrication of antireflective layers on silicon using metal-assisted chemical etching with in situ deposition of silver nanoparticle catalysts, Sol. Energy Mater Sol. Cells, 103 (2012) 98−107.
[33] J.Y. Jung, Z. Guo, S.W. Jee, H.D. Um, K.T. Park, J.H. Lee, A strong antireflective solar cell prepared by tapering silicon nanowires, Opt. Express, 18 Suppl 3 (2010) A286−292.
[34] B.K. Chao, H.H. Cheng, L.W. Nien, M.J. Chen, T. Nagao, J.H. Li, C.H. Hsueh, Anti-reflection textured structures by wet etching and island lithography for surface-enhanced Raman spectroscopy, Appl. Surf. Sci., 357 (2015) 615−621.
[35] C. Wang, L.-W. Nien, H.-C. Ho, Y.-C. Lai, C.-H. Hsueh, Surface Plasmon Excited on Imprintable Thin-Film Metallic Glasses for Surface-Enhanced Raman Scattering Applications, ACS Appl. Nano Mater., 1 (2018) 908−914.
[36] M. Osawa, N. Matsuda, K. Yoshii, I. Uchida, Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution, J. Phys. Chem. C , 98 (1994) 12702−12707.
[37] H.-C. Ho, L.-W. Nien, J.-H. Li, C.-H. Hsueh, Suspended graphene with periodic dimer nanostructure on Si cavities for surface-enhanced Raman scattering applications, Appl. Phys. Lett., 110 (2017) 171111.
[38] B.K. Chao, Y. Xu, H.C. Ho, P. Yiu, Y.C. Lai, C.H. Shek, C.H. Hsueh, Gold-rich ligament nanostructure by dealloying Au-based metallic glass ribbon for surface-enhanced Raman scattering, Sci Rep, 7 (2017) 7485.
[39] H.-H. Cheng, Y.-Y. Chang, J.-Y. Chu, D.-Z. Lin, Y.-P. Chen, J.-H. Li, Light trapping enhancements of inverted pyramidal structures with the tips for silicon solar cells, Appl. Phys. Lett., 101 (2012).
[40] S. Siddhanta, V. Thakur, C. Narayana, S.M. Shivaprasad, Universal metal-semiconductor hybrid nanostructured SERS substrate for biosensing, ACS Appl Mater Interfaces, 4 (2012) 5807−5812.
[41] C.-A. Wang, H.-C. Ho, C.-H. Hsueh, Periodic ZnO-Elevated Gold Dimer Nanostructures for Surface-Enhanced Raman Scattering Applications, J. Phys. Chem. C, 122 (2018) 27016−27023.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊