跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.174) 您好!臺灣時間:2024/12/03 19:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林以莊
研究生(外文):Yi-Chuang Lin
論文名稱:導航能動性提升空間環境之神經表徵
論文名稱(外文):Navigational Agency Enhances Neural Representations of Spatial Environments
指導教授:吳恩賜
指導教授(外文):Joshua Oon Soo Goh
口試委員:張玉玲黃植懋
口試委員(外文):Yu-Ling ChangChih-Mao Huang
口試日期:2020-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:腦與心智科學研究所
學門:醫藥衛生學門
學類:其他醫藥衛生學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:80
中文關鍵詞:空間導航價值決策網格細胞位置細胞海馬迴功能性磁振造影
外文關鍵詞:Spatial navigationDecision makingGrid cellPlace cellHippocampusfMRI
DOI:10.6342/NTU202003498
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
位於海馬迴中之網格細胞與位置細胞是為建立認知地圖之空間表徵。於本研究中,我們假設於導航期間,價值決策之能動性將加強發生於交界處與地標處之決策事件之權重,進而提升導航表現。此發生於交界處與地標處,或稱空間節點之編碼,提供了海馬迴神經細胞額外之權重,以編碼空間成為結構性之節點地圖。基於此假設,我們檢驗了於學習及提取期間,空間地圖於內部(自由導航)與外部(引導導航)產生之導航行為下之神經反應。我們招募了二十一位受試者於虛擬迷宮中分別進行自由導航、與引導導航之功能性磁振造影(fMRI)實驗。學習期間,於自由導航之情況下,受試者自由習得地標位置;於引導導航之情況下,受試者觀看影片引導其習得地標位置。提取期間,受試者判定目的地標之方向、距離、並且導航至目的地標始自不同之地點。我們觀察到於提取期間,引導導航相較於自由導航,受試者需花費更多時間導航至目的地標,並且展現更頻繁之失誤。關鍵腦區包含學習期間之輔助運動皮質區、與學習及提取期間之海馬迴,於自由導航之下,展現較引導導航下更高對於空間節點之神經反應;學習期間之顳中迴與提取期間之前、後扣帶迴皮質,於引導導航之下,展現較自由導航下更高對於空間節點之神經反應。特別來說,前海馬迴於學習期間自由導航下,展現較引導導航下更高對於空間節點之神經反應;後海馬迴則表現於提取期間引導導航下,較自由導航下更高由距離誤判比率調控對於距離判斷之神經反應。總結而言,我們展示於空間導航期間,價值決策能動性對於前海馬迴建構空間節點訊息之重要性。
Grid and place cell activity in the hippocampus (HC) instantiate cognitive map representations of space. In this study, we hypothesized that agency in navigational decision-making enhances navigational performances via emphasis on decision events at junctions and landmarks. Such coding of junctions and landmarks, or spatial nodes, provides HC neurons with additional weighting to encode plain space into structured node maps. To this end, we evaluated neural responses during learning and retrieving spatial maps under conditions of internally (Free) vs. externally (Tour) generated navigational movements. Twenty-one participants underwent functional magnetic resonance imaging (fMRI) spatial navigational experiments in virtual mazes under Free and Tour conditions. In the Free condition, participants learned landmark locations by free navigation. During retrieval, participants determined directions and distances and navigated to target landmarks from various start locations. In the Tour condition, participants viewed videos guiding them through the landmarks then did the same retrieval test. Navigation to target landmarks during retrieval took longer and failed more often for Tour than Free conditions. Critically, supplementary motor area responses during learning and HC responses during learning and retrieval to spatial nodes were higher for Free than Tour conditions. Middle temporal gyrus responses during learning, anterior and posterior cingulate cortex responses during retrieval to spatial nodes were higher for Tour than Free conditions. In particular, anterior HC responses to spatial nodes during learning were higher for Free than Tour conditions. In addition, posterior HC response modulation by distance mis-estimation during retrieval was greater for Tour than Free conditions. In sum, we demonstrate that agency in making navigational decisions is important for spatial node formation in anterior HC.
口試委員審定書 i
誌謝 ii
中文摘要 iv
Abstract v
Content vii
Introduction 1
Grid and Place Cells Represent Space in Animal Hippocampus 2
Grid and Place Cells are also in the Human Hippocampus 4
Navigational Agency Modulates Spatial Map Representations 7
Theory: Decision Making Circuits Provide Basis to Label Internal Brain Activity States in Navigational Agency 9
Hypothesis: Map Learning with Navigational Decisions Enhances Spatial Representations 11
Methods 14
Participants 14
Stimuli 14
Virtual Environment Visuals, Interface, and Parameters 14
Debriefing and Questionnaire 16
Procedure 16
Familiarization 17
Formal Experiment 19
Debriefing and Questionnaire 20
Behavioral Error Rates During Retrieval Analysis 20
Brain Imaging Acquisition 21
fMRI Data Preprocessing 22
First Level Model of Learning Phase Neural Responses 23
First Level Model of Retrieval Phase Neural Responses 24
Second Level Model of Neural Responses 24
Region of Interest (ROI) Definition and Analysis 25
Results 26
Behavioral Results 26
Learning Patterns in Free and Tour Conditions 26
Better Map Retrieval Performances in Free than Tour 26
Functional Imaging Results 27
Differences of Neural Responses During Free and Tour Learning 27
Differences of Neural Responses During Free and Tour Retrieval 28
Specific Spatial Environments Represented in ROIs 29
Specific Neural Responses in Hippocampal Subregions 30
Correlations Between Hippocampal Responses and Behavioral Performances 30
Discussion 32
Navigational Agency Enhances Navigational Performances 32
Decision Making Provides Basis to Label Internal Brain Activity States in Navigational Agency 34
Dissociation Between Anterior and Posterior Hippocampus in Decision Making Based Navigational Neural Representations 36
Limitations and Implications 37
References 39
Figures 47
Figure 1. Hypothesized Brain Activations During Learning 47
Figure 2. Hypothesized Brain Activations During Retrieval 48
Figure 3. Virtual Environment Settings 49
Figure 4. Familiarization Procedure and Design 50
Figure 5. Formal Experiment Procedure and Design 51
Figure 6. a priori anatomical hippocampal ROIs 52
Figure 7. Learning Paths in Free and Tour Conditions of Single Subject 53
Figure 8. Learning Patterns in Free and Tour Conditions 54
Figure 9. Behavioral Error Rates 55
Figure 10. Behavioral Durations 56
Figure 11. Differences of Neural Responses During Free and Tour Learning 57
Figure 12. Differences of Neural Responses at Different Location States During Free and Tour Learning 58
Figure 13. Differences of Neural Responses at Different Location States During Free and Tour Retrieval 59
Figure 14. Differences of Neural Responses During Free and Tour Retrieval Judgements 60
Figure 15. Specific Spatial Environments Represented in ROIs 61
Figure 16. Specific Neural Responses in Hippocampal Subregions 62
Figure 17. Correlations Between Hippocampal Responses and Behavioral Performances 63
Tables 64
Table 1. Learning Patterns in Free and Tour Conditions 64
Table 2. ANOVA Table of Error Rates 65
Table 3. Paired T Test Table of Error Rates in Free and Tour Conditions 66
Table 4. Paired T Test Table of Direction Judgement Error Rate 67
Table 5. Paired T Test Table of Distance Judgement Error Rate 68
Table 6. Paired T Test Table of Navigational Error Rate 69
Table 7. ANOVA Table of Durations 70
Table 8. Paired T Test Table of Durations in Free and Tour Conditions 71
Table 9. Paired T Test Table of Direction Judgement Duration 72
Table 10. Paired T Test Table of Distance Judgement Duration 73
Table 11. Paired T Test Table of Navigational Duration 74
Table 12. Differences of Neural Responses During Free and Tour Learning 75
Table 13. Differences of Neural Responses At Different Location States During Free and Tour Learning 76
Table 14. Differences of Neural Responses At Different Location States During Free and Tour Retrieval 77
Table 15. Differences of Neural Responses During Free and Tour Retrieval Judgements 78
Table 16. Specific Spatial Environments Represented in ROIs 79
Table 17. Specific Neural Responses in Hippocampal Subregions 80
Albert, W., Reinitz, M. T., Beusmans, J., & Gopal, S. (1999). The role of attention in spatial learning during simulated route navigation. Environment and planning A, 31(8), 1459-1472.
Barry, C., & Burgess, N. (2007). Learning in a geometric model of place cell firing. Hippocampus, 17(9), 786-800.
Barry, C., Lever, C., Hayman, R., Hartley, T., Burton, S., O'Keefe, J., . . . Burgess, N. (2006). The boundary vector cell model of place cell firing and spatial memory. Reviews in the Neurosciences, 17(1-2), 71.
Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10(3), 295-307.
Bellmund, J. L. S., Deuker, L., Navarro Schröder, T., & Doeller, C. F. (2016). Grid-cell representations in mental simulation. eLife, 5, e17089. doi:10.7554/eLife.17089
Bjerknes, T. L., Moser, E. I., & Moser, M.-B. (2014). Representation of geometric borders in the developing rat. Neuron, 82(1), 71-78. doi:10.1016/j.neuron.2014.02.014
Bowman, D. A., Davis, E. T., Hodges, L. F., & Badre, A. N. (1999). Maintaining spatial orientation during travel in an immersive virtual environment. Presence, 8(6), 618-631.
Chen, L. L., Lin, L.-H., Green, E. J., Barnes, C. A., & McNaughton, B. L. (1994). Head-direction cells in the rat posterior cortex. Experimental brain research, 101(1), 8-23.
Chrastil, E. R., Sherrill, K. R., Hasselmo, M. E., & Stern, C. E. (2015). There and Back Again: Hippocampus and Retrosplenial Cortex Track Homing Distance during Human Path Integration. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35(46), 15442-15452. doi:10.1523/JNEUROSCI.1209-15.2015
Chrastil, E. R., & Warren, W. H. (2013). Active and passive spatial learning in human navigation: Acquisition of survey knowledge. Journal of experimental psychology: learning, memory, and cognition, 39(5), 1520.
Chrastil, E. R., & Warren, W. H. (2015). Active and passive spatial learning in human navigation: acquisition of graph knowledge. Journal of Experimental Psychology. Learning, Memory, and Cognition, 41(4), 1162-1178. doi:10.1037/xlm0000082
Daw, N. D., O'doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876-879.
De Martino, B., Kumaran, D., Seymour, B., & Dolan, R. J. (2006). Frames, biases, and rational decision-making in the human brain. Science (New York, N.Y.), 313(5787), 684-687.
Doeller, C. F., Barry, C., & Burgess, N. (2010). Evidence for grid cells in a human memory network. Nature, 463(7281), 657. doi:10.1038/nature08704
Duarte, I. C., Ferreira, C., Marques, J., & Castelo-Branco, M. (2014). Anterior/posterior competitive deactivation/activation dichotomy in the human hippocampus as revealed by a 3D navigation task. PLoS One, 9(1), e86213.
Edvardsen, V., Bicanski, A., & Burgess, N. (2020). Navigating with grid and place cells in cluttered environments. Hippocampus, 30(3), 220-232.
Ekstrom, A. D., Kahana, M. J., Caplan, J. B., Fields, T. A., Isham, E. A., Newman, E. L., & Fried, I. (2003). Cellular networks underlying human spatial navigation. Nature, 425(6954), 184-188.
Elliott, R., Dolan, R. J., & Frith, C. D. (2000). Dissociable functions in the medial and lateral orbitofrontal cortex: evidence from human neuroimaging studies. Cerebral Cortex, 10(3), 308-317.
Epic Games. (2019). Unreal Engine (Version: 4.18.3) [Computer software]. Retrieved from https://www.unrealengine.com
Epstein, R. A., Patai, E. Z., Julian, J. B., & Spiers, H. J. (2017). The cognitive map in humans: spatial navigation and beyond. Nature Neuroscience, 20(11), 1504.
Etienne, A. S., & Jeffery, K. J. (2004). Path integration in mammals. Hippocampus, 14(2), 180-192.
Etienne, A. S., Teroni, E., Hurni, C., & Portenier, V. (1990). The effect of a single light cue on homing behaviour of the golden hamster. Animal Behaviour, 39(1), 17-41.
Gagliardo, A., Ioalé, P., & Bingman, V. P. (1999). Homing in pigeons: the role of the hippocampal formation in the representation of landmarks used for navigation. Journal of Neuroscience, 19(1), 311-315.
Geva-Sagiv, M., Las, L., Yovel, Y., & Ulanovsky, N. (2015). Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation. Nature Reviews Neuroscience, 16(2), 94-108.
Gu, Y., Lewallen, S., Kinkhabwala, A. A., Domnisoru, C., Yoon, K., Gauthier, J. L., . . . Tank, D. W. (2018). A map-like micro-organization of grid cells in the medial entorhinal cortex. Cell, 175(3), 736-750. e730.
Guterstam, A., Björnsdotter, M., Gentile, G., & Ehrsson, H. H. (2015). Posterior cingulate cortex integrates the senses of self-location and body ownership. Current Biology, 25(11), 1416-1425.
Haber, S. N., & Knutson, B. (2010). The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 4-26.
Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., & Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052), 801-806. doi:10.1038/nature03721
Hägglund, M., Mørreaunet, M., Moser, M.-B., & Moser, E. I. (2019). Grid-cell distortion along geometric borders. Current Biology, 29(6), 1047-1054. e1043.
Hare, T. A., Camerer, C. F., & Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. Science (New York, N.Y.), 324(5927), 646-648.
Hazama, Y., & Tamura, R. (2019). Effects of self-locomotion on the activity of place cells in the hippocampus of a freely behaving monkey. Neuroscience letters, 701, 32-37.
Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., & Camerer, C. F. (2005). Neural systems responding to degrees of uncertainty in human decision-making. Science (New York, N.Y.), 310(5754), 1680-1683.
Ikeda, A., Lüders, H. O., Burgess, R. C., & Shibasaki, H. (1992). Movement-related potentials recorded from supplementary motor area and primary motor area: role of supplementary motor area in voluntary movements. Brain, 115(4), 1017-1043.
Jacobs, J., Weidemann, C. T., Miller, J. F., Solway, A., Burke, J. F., Wei, X.-X., . . . Fried, I. (2013). Direct recordings of grid-like neuronal activity in human spatial navigation. Nature Neuroscience, 16(9), 1188-1190.
Kennerley, S. W., Walton, M. E., Behrens, T. E., Buckley, M. J., & Rushworth, M. F. (2006). Optimal decision making and the anterior cingulate cortex. Nature Neuroscience, 9(7), 940-947.
Kesner, R. P., & Olton, D. S. (2014). Neurobiology of comparative cognition: Psychology Press.
Knapp, J. M., & Loomis, J. M. (2004). Limited field of view of head-mounted displays is not the cause of distance underestimation in virtual environments. Presence: Teleoperators & Virtual Environments, 13(5), 572-577.
Knutson, B., Fong, G. W., Adams, C. M., Varner, J. L., & Hommer, D. (2001). Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport, 12(17), 3683-3687.
Li, Z., Phillips, J., & Durgin, F. H. (2011). The underestimation of egocentric distance: Evidence from frontal matching tasks. Attention, Perception, & Psychophysics, 73(7), 2205.
Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences, 97(8), 4398-4403.
Marchette, S. A., Bakker, A., & Shelton, A. L. (2011). Cognitive Mappers to Creatures of Habit: Differential Engagement of Place and Response Learning Mechanisms Predicts Human Navigational Behavior. Journal of Neuroscience, 31(43), 15264-15268. doi:10.1523/JNEUROSCI.3634-11.2011
Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., . . . Pike, B. (2001). A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356(1412), 1293-1322.
Morgan, L. K., Macevoy, S. P., Aguirre, G. K., & Epstein, R. A. (2011). Distances between real-world locations are represented in the human hippocampus. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(4), 1238-1245. doi:10.1523/JNEUROSCI.4667-10.2011
Morris, R. G., Garrud, P., Rawlins, J. a., & O'Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681-683.
Muller, R. U., & Kubie, J. L. (1987). The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. Journal of Neuroscience, 7(7), 1951-1968.
Nadel, L., Hoscheidt, S., & Ryan, L. R. (2013). Spatial cognition and the hippocampus: the anterior–posterior axis. Journal of cognitive neuroscience, 25(1), 22-28.
O'Keefe, J., & Burgess, N. (1996). Geometric determinants of the place fields of hippocampal neurons. Nature, 381(6581), 425-428.
O'Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171-175. doi:https://doi.org/10.1016/0006-8993(71)90358-1
O'keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map: Oxford: Clarendon Press.
Packard, M. G., & McGaugh, J. L. (1996). Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiology of Learning and Memory, 65(1), 65-72.
Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J., & Nichols, T. E. (2011). Statistical parametric mapping: the analysis of functional brain images: Elsevier.
R Core Team (2013). R: A language and environment for statistical computing [Computer software manual]. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from http://www.R-project.org/
Rolls, E., Miyashita, Y., Cahusac, P., Kesner, R., Niki, H., Feigenbaum, J., & Bach, L. (1989). Hippocampal neurons in the monkey with activity related to the place in which a stimulus is shown. Journal of Neuroscience, 9(6), 1835-1845.
Rolls, E. T. (1999). Spatial view cells and the representation of place in the primate hippocampus. Hippocampus, 9(4), 467-480.
Rushworth, M. F., Behrens, T., Rudebeck, P., & Walton, M. (2007). Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour. Trends in Cognitive Sciences, 11(4), 168-176.
Schneider, W., Eschman, A., and Zuccolotto, A. (2012). E-Prime Reference Guide. Pittsburgh: Psychology Software Tools, Inc.
Sherrill, K. R., Chrastil, E. R., Aselcioglu, I., Hasselmo, M. E., & Stern, C. E. (2018). Structural differences in hippocampal and entorhinal gray matter volume support individual differences in first person navigational ability. Neuroscience, 380, 123-131.
Shibasaki, H., Sadato, N., Lyshkow, H., Yonekura, Y., Honda, M., Nagamine, T., . . . Miyazaki, M. (1993). Both primary motor cortex and supplementary motor area play an important role in complex finger movement. Brain, 116(6), 1387-1398.
Taube, J. S. (1995). Head direction cells recorded in the anterior thalamic nuclei of freely moving rats. Journal of Neuroscience, 15(1), 70-86.
Taube, J. S., Muller, R. U., & Ranck, J. B. (1990). Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. Journal of Neuroscience, 10(2), 420-435.
The Math Works, Inc. (2017). MATLAB (Version 2017a) [Computer software]. Retrieved from https://www.mathworks.com/
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological review, 55(4), 189.
Ulanovsky, N., & Moss, C. F. (2007). Hippocampal cellular and network activity in freely moving echolocating bats. Nature Neuroscience, 10(2), 224-233.
Wunderlich, K., Rangel, A., & O'Doherty, J. P. (2009). Neural computations underlying action-based decision making in the human brain. Proceedings of the National Academy of Sciences, 106(40), 17199-17204.
Yamamoto, N. (2012). The role of active locomotion in space perception. Cognitive Processing, 13(1), 365-368.
Yan, C.-G., Wang, X.-D., Zuo, X.-N., & Zang, Y.-F. (2016). DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics, 14(3), 339-351.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊